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Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods,
promise to open biologically significant time scales for study. In order to promote efficient
fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in
these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of
a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a
corresponding reversible, symplectic integrator is presented. The novel technique performs very
well on both model and biophysical problems in accord with a formal theoretical analysis given
within, which gives an explicit condition for an integrator to possess a conserved quantity, an
explicit expression for the conserved quantity of a symplectic integrator, the latter following and in
accord with Calvo and Sanz-Sarna,Numerical Hamiltonian Problems~1994!, and extension of the
explicit expression to general systems with a flat phase space. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1473654#
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I. INTRODUCTION

In the last year, the human genome project has b
largely completed, and the primary structures of the la
majority of all human proteins are, now, available for stud1

This presents a unique opportunity for the field of compu
tional biology to make contributions in the determination
the three-dimensional structures of new proteins, the disc
ery of protein substrates and inhibitors, and the generatio
the mechanism by which proteins chemically modify m
ecules. However, computational methods and computer
chitectures of unprecedented speed, efficiency, and accu
must be developed in order to process the vast quantitie
data produced by the genome project.

Recently, IBM has announced a next-generation, m
sively parallel, supercomputer that will be employed to p
form biophysical molecular dynamics~MD! simulation
studies.2 This new advance in computational power will,
principle, allow long time scales to be sampled and n
biological insights to be obtained. Unfortunately, curre
multiple time step MD integration methods,3,4 while sym-
plectic and, thus, stable at long times,5 require large numbers
of computationally inexpensive force evaluations to be p
formed. These operations limit the efficiency of the fin
grained parallel decompositions employed on massively
allel supercomputers due to communication overhead
opposed to their negligible cost to actually compute.

The fast degrees of freedom in a large biomolecule
the solvent can be removed using holonomic constrai

a!Electronic mail: gmartyna@indiana.edu
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thus, creating a dynamical system of coupled sets of ri
bodies with lower communication overhead. However, ex
ing methods designed to treat sets of rigid bodies are ei
~a! solved iteratively and are, hence, not reversible6,7 and
cannot be used in hybrid Monte Carlo~HMC! calculations;
~b! are not symplectic and, hence, not stable at long time8,9

or ~c! introduce many extra parameters that must themse
be constrained and, hence, go beyond the four parame
required to define a nonsingular mapping of rigid bo
rotations.10,11 Finally, using modern methods, phase spa
volume preserving but nonsymplectic integrators have b
developed12 but theoretical tools to formally assess the utili
of this and similar approaches have been lacking.~Note, a
symplectic integrator both possesses a time-step-depen
energy, which is invariant along the trajectory produced
the integrator, and is phase space volume preserving. A p
space volume preserving integrator need not be symple
Furthermore, neither phase space volume preservation
the symplectic property quantity, guarantee that an integr
will possess time reversal symmetry.!

In this paper, the equations of motion for rigid bodies
terms of the unit quaternion,13 the minimal parameter se
most commonly used in MD simulation as first proposed
Evans,8,9 are presented. A novel Hamiltonian or symplec
form of the equations is then derived and expressed as a
over permutations. The new form, denoted NO–SQUISH
~novel symplectic quaternIon scheme!, allows a symplectic
reversible integrator to be formulated, naturally, via t
Trotter–Suzuki operator splitting approach.3,14 Next, a gen-
eral explanation of the properties of numerical integrators
provided ~symplectic, phase space volume preserving, ti
9 © 2002 American Institute of Physics
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reversible, etc.!. This is followed by a formal developmen
that relates the existence of conserved quantities in the
proximate integrators constructed using the Trotter–Suz
approach to a simple recursion relation valid for both no
symplectic and symplectic integrators. A general express
for the conserved quantities of symplectic integrator deriv
via the Trotter–Suzuki approach is given followed by a n
extension to general systems with a flat phase space~defined
within!. Both the theory and NO–SQUISH are tested usin
comparisons to a reversible phase space volume prese
but nonsymplectic integration scheme for the unit quatern
equations,12 and the SHAKE/RATTLE method,6,7 which is
neither reversible nor symplectic unless iterated to
convergence,15 on model and biophysically important prob
lems.

II. METHODS

In this section, the novel rigid body techniques are d
veloped. First, the standard equations for rigid body mot
are expressed in terms of the unit quaternion. The equat
are then recast in Hamiltonian form which is further reduc
to a sum over permutation matrices using quaternion alge
In order to understand better the properties of numerical
tegrators, a general discussion of the concepts such as
reversal symmetry and the symplectic property is given
r

o
n.

,
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lowed by a new treatment that expresses the condition f
conserved quantity to exist in a symplectic or nonsymplec
integrator in the form of a recursion relation. A precise e
pression for the conserved quantity of a symplectic integra
developed using the Trotter–Suzuki approach, is then
rived and an extension to general systems with a flat ph
space given. Last, the new symplectic integrator for
Hamiltonian form of the equations of motion is present
and the derivation of an older phase space volume preser
but nonsymplectic integrator is reviewed.12

A. Equations of motion

In the classical mechanics of rigid body motion, the u
quaternion,$q0 ,q1 ,q2 ,q3% with ( iqi

251, is introduced in
order to generate a minimal, nonsingular, representation
the rotation matrix from a space-fixed~denoted ‘‘s’’ ! to a
body-fixed coordinate system~denoted ‘‘b’’ !

r ~b!5A~q!r ~s!, r ~s!5AT~q!r ~b!, ~2.1!

in which the moment of inertia tensorI

Iab5 (
k51

N

mk~ ur ku2dab2r ka
r kb

! ~2.2!

is diagonal.13 Here,
A~q!5S q0
21q1

22q2
22q3

2 2~q1q21q0q3! 2~q1q32q0q2!

2~q1q22q0q3! q0
22q1

21q2
22q3

2 2~q2q31q0q1!

2~q1q31q0q2! 2~q2q32q0q1! q0
22q1

22q2
21q3

2
D , ~2.3!
-

tial
or-

the
and

q05cosS u

2D cosS f1c

2 D , q15sinS u

2D cosS f2c

2 D ,

~2.4!

q25sinS u

2D sinS f2c

2 D , q35cosS u

2D sinS f1c

2 D ,

whereu, f, andc are the three Euler angles in the standa
convention13 and a body consisting ofN point particles at
position r k5$r k1

,r k2
r k3

%5$xk ,yk ,zk%, with mass mk as-
sumed for convenience in the definition of the moment
inertia tensor~see Fig. 1! and the center of mass at the origi
Introducing the body-fixed angular velocitiesvx , vy , and
vz , the rigid body equations of motion can be written as

q̇5 1
2S~q!v~4!,

v̇x5
tx

I xx
1

~ I yy2I zz!

I xx
vyvz ,

~2.5!

v̇y5
ty

I yy
1

~ I zz2I xx!

I yy
vzvx ,

v̇z5
tz

I zz
1

~ I xx2I yy!

I zz
vxvy ,
d

f

wherev (4)5(0,vx ,vy ,vz),

S~q!5S q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

D , ~2.6!

@S(q)ST(q)#ab5uqu2dab5dab , t are the torques in the
body-fixed frame, andI xx , I yy , and I zz are the diagonal el-
ements of the moment of inertia tensor~note, again,I is
diagonal in the body fixed frame!. Note, the equations em
body the time derivative of the constraint,( iqi q̇i50, via the
first element of the vectorv (4)52ST(q)q̇. The torques can
be written in the form

t~4!52 1
2S

T~q!¹qf~q!1t int
~4! , ~2.7!

wheref(q) is the potential energy andt int
(4) is the usually

unspecified internal ‘‘torque’’ of the form$t int
(0),0,0,0% that

cancels any internal forces generated by the poten
f(q).13 That is, the four-vector notation necessitates the f
mal introduction of internal or constraint forces.13 If the body
is assumed to consist of discrete particles and introducing
center of mass
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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dk
~s!5AT~q!dk

~b! , dk
~s!5r k

~s!2r cm
~s! , ~2.8!

with center of mass positionr cm. Then, it is easy to show
that

t~4!5H(
k

Fk
~b!
•dk

~b! ,(
k

dk
~b!3Fk

~b!J 1t int
~4! ,

~2.9!
t~4!5$0,tx ,ty ,tz%,

where Fk is the external force on thekth particle. Again,
external forces acting to deform the body are exactly b
anced by the typically unspecified internal/constraint for
contained int int

(0) and the first element oft (4) vanishes,
identically.13 ~This explicit treatment of the internal forces
provided to remind nonexpert reader that standard bioph
cal force fields/potential functions do, indeed, contain for
acting to deform the body and internal forces/constra
forces must be invoked.13! The equations of motion conserv
the sum of the rotational kinetic energy plus the poten
energy,

E5T~v!1f~q!5 1
2I xxvx

21 1
2I yyvy

21 1
2I zzvz

21f~q!,
~2.10!

although they arenot Hamiltonian.
Given the symmetry of the quaternion equations of m

tion, it is natural to postulate the extended Lagrangian,16

L5T~v~4!!2f~q!, ~2.11!

FIG. 1. ~a! Angular velocity, v, rotates the body-fixed coordinate fram
(xb ,yb ,zb) away from the system frame (xs ,ys ,zs). ~b! Resulting rotation
is specified by the Euler angles~f, u, c!. Angle f is a counterclockwise
rotation about thezs axis. This is followed by counterclockwise rotation o
u about the newly generatedx axis shown as a dotted line. Last,c is a
rotation about the newly generatedz axis.
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T~v~4!!5T~v!1 1
2I 00v0

2 ~2.12!

by redefining

v~4!52ST~q!q̇5$v0 ,vx ,vy ,vz%. ~2.13!

A Legendre transform can then be performed to yield
extended Hamiltonian

H~p,q!5 1
8p

TS~q!DST~q!p1f~q!5T~p,q!1f~q!,
~2.14!

where

p5
2

uqu4
S~q!D21v~4!

~2.15!

D5S I 00
21 0 0 0

0 I xx
21 0 0

0 0 I yy
21 0

0 0 0 I zz
21

D .

Using Hamilton’s equations in the extended phase space

q̇5¹pH~p,q!,
~2.16!

ṗ52¹qH~p,q!,

it can be shown that

v̇05
v0

2

uqu2 ,

v̇x5
v0vx

uqu2 1
tx

I xx
1

~ I yy2I zz!

I xx
vyvz ,

~2.17!

v̇y5
v0vy

uqu2
1

ty

I yy
1

~ I zz2I xx!

I yy
vzvx ,

v̇z5
v0vz

uqu2
1

tz

I zz
1

~ I xx2I yy!

I zz
vxvy .

Therefore, if v0(0)50 and ( iqi
2(0)5uq(0)u251, unit

quaternion dynamics are produced for all timet. In a key
step, the properties of quaternion algebra13 are used to de-
compose, exactly, the extended Hamiltonian, Eq.~2.14!, into
a sum over permutation matrices,

H~p,q!5 (
k50

3

hk~p,q!1f~q!,

hk~p,q!5
1

8I k
@pTPkq#2,

~2.18!
P0q5$q0 ,q1 ,q2 ,q3%, P1q5$2q1 ,q0 ,q3 ,2q2%,

P2q5$2q2 ,2q3 ,q0 ,q1%, P3q5$2q3 ,q2 ,2q1 ,q0%,

where I 05I 00, I 15I xx , I 25I yy , I 35I zz and (PPT)ab

5dab . If v0(0)50, thenh0(p,q)50, and remains zero fo
all time t because each of the other ‘‘sub-Hamiltonians
hk(p,q), kÞ0, preserves the normuqu2, and the torque on
the faux angular velocityv0 is by definition zero. Equation
~2.18! is denoted NO–SQUISH.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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For linear molecules/bodies, one of the eigenvalues
the moment inertia vanishes or, equivalently, in the bo
fixed frame one of the diagonal elements of the tenso
zero. The resulting singularity can be removed analytica
and a special set of equations of motion and a correspon
numerical integrator for linear bodies constructed. Altern
tively, for this special case, the Lagrange multipliers requi
by the standard SHAKE/RATTLE method can be det
mined, analytically; SHAKE yields a quadratic equation a
RATTLE a linear equation. Thus, the most convenient a
simple reversible symplectic integrator for linear bodies
the SHAKE/RATTLE algorithm, in conjunction with the
analytical solutions for multipliers. Again, SHAKE/RATTLE
numerical integration is, for a general case, nonrevers
only because the Lagrange multipliers required by SHA
must be obtained using an iterative procedure which is,
thermore, typically, solved to a fairly low toleranc
RATTLE yields a set of linear equations which can be
ways solved analytically. Note, SHAKE/RATTLE is neithe
reversible nor symplectic unless iterated to compl
convergence15 ~which is impractical unless an analytical s
lution for the multipliers can be found!. Finally, rigid body
algorithms cannot be used to treat partially constrained
tems, for example, constraining the C–H bondsbut not the
H–C–H bond angles in a CH3 group.

B. Conserved quantities in numerical integration

Hamilton’s equations cannot be solved, exactly, in g
eral, and numerical integration schemes must be develo
Briefly, a numerical integrator or a ‘‘map,’’ is a finite tim
stepDt approximation to the true dynamical equations tha
applied iterative to produce a discrete approximate traject
x̃k(nDt)5 x̃k@ x̃(@n21#Dt);Dt# wheren is an integer. For a
Hamiltonian system, one takesk51, 2N so that$x̃k ,x̃k1N%
[$ p̃k ,q̃k%. The approximate trajectory will share some b
not all of the properties of the exact trajectory,xk(t)
5xk@x(t2t);t#. Consider a‘‘reversible’’ integrator. The
term, reversible indicates that the integrator possesses
reversal symmetry like the original equations. That is, a
jectory evolved backwards from the final state leads to
same initial state,x̃k(@n21#Dt)[ x̃k@ x̃(nDt);2Dt#. Next,
consider a ‘‘symplectic’’ integrator. The term symplectic im
plies that the integrator~of a Hamiltonian system! can be
derived from a time-step-dependent Hamiltonian differ
from the original,H̃(p,q;Dt)ÞH(p,q) ~see below for a pre-
cise definition of the symplectic property!. This Hamiltonian,
H̃(p,q;Dt), is then, of course, preserved along the traject
generated by the integrator. If an integrator is to be revers
and symplectic,H̃(p,q;Dt) must be an even function ofDt

or H̃(p,q;Dt)5H̃(p,q;2Dt). Thus, a symplectic integrato
is not necessarily time reversible@i.e., a well defined
H̃(p,q;Dt) need not be an even function ofDt#. Further-
more, since Hamiltonian systems obey Liouville’s theorem
symplectic integrator is phase space volume preservin13

However, beyond one physical dimension, a system tha
phase space volume conserving, need not be symplec13

Finally, a reversible integrator need not be symplectic
Downloaded 25 Jun 2008 to 131.215.225.137. Redistribution subject to A
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phase space volume preserving. More details are given
low along with a novel generalization to non-Hamiltonia
systems.

One powerful method to develop numerical integrato
with desirable properties is the Trotter–Suzuki evolution o
erator splitting technique.3,14,17,18Here, the method is ana
lyzed in order to demonstrate, clearly, how the propert
described above arise and how they can be controlled. In
next subsection, the Trotter–Suzuki approach is applied
the systems of interest in this paper. In order to proce
further, consider the closed set of equations,

ẋ~ t !5G„x~ t !…, x~ t !5eiLtx, iL5G~x!•¹x , ~2.19!

where the time evolution of the system has been expres
formally using the Liouville operator formalism andx(t) is
the exact solution. It is often possible to decompose the
Liouville operator into a few simple parts,iL5 iL11 iL2 ,
which can be applied analytically to yield a short time a
proximation to the true dynamics,

eiLt5)
k51

P

eiLDt, ei L̃Dt[eiL1~Dt/2!eiL2DteiL1~Dt/2!,

~2.20!

eiLt5)
k51

P

ei L̃Dt1O~ tDt2!,

where Dt5t/P and the unitary property, exp(iL̃Dt)
3exp(2iL̃Dt)51, leads directly to time reversibility. Note
the error in the approximate evolution, in principle, increas
linearly with time,t.

Fortunately, the Trotter–Suzuki approach allows a f
mal analysis that defines conditions under which more
pealing error bounds exist. Applying the BCH~Baker-
Campbell-Hansdorf! formula14,19 to the integrator yields

ei L̃Dt5eDtF iL1(
k51

`

Dt2kC~k!G5eDtF iL1(
k51

`

Dt2ki L̃~k!G ,
~2.21!

)
k51

P

ei L̃Dt5e0PDtF iL1(
k51

`

Dt2ki L̃~k!G5etF iL1(
k51

`

Dt2ki L̃~k!G ,
because the commutator of any two Liouville operato
yields a third,

L̃~k!5G̃~k!
•¹x ~2.22!

and, for example,

C~1!5 1
24~L112L2 ,@L11L2# !5 i L̃~1!. ~2.23!

Thus, the integrator generates the solution to the continu
time equations of motion,

x8 ~ t !5 (
k50

`

Dt2kG̃~k!
„x̃~ t !…, ~2.24!

at intervals nDt, where n is an integer, G̃(0)
„x̃(t)…

[G„x̃(t)…, and x̃(t)Þx(t). In order to define error bounds
consider the case that the original equations possess a
served quantity,
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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dH„x~ t !…

dt
50, ~2.25!

or

G~x!•¹xH~x!50, ~2.26!

and determine the conditions under which Eqs.~2.24! emit a
corresponding conservation law,H̃„x̃(t);Dt… such that

H̃„x̃~ t !;Dt…5H„x̃~ t !…1Dt2H̃ ~1!
„x̃~ t !…, ~2.27!

with no linear growth in timet. Formally expanding the pro
posed conserved quantity in a Maclaurin series with e
powers ofDt because the integrator is reversible,

H̃~x;Dt !5 (
k50

`

Dt2kH̃ ~k!~x!, ~2.28!

and setting the time derivative ofH̃„x(t);Dt… as defined by
Eq. ~2.24! equal to zero,

(
k50

`

Dt2kG̃~k!~x!•¹xH̃~x;Dt !50, ~2.29!

yields the recursion relation,

(
k50

n

G̃~n2k!~x!•¹xH̃
~k!~x!50. ~2.30!

Equation~2.30! must be satisfied for alln if H̃(x;Dt) is to
exist. Note, then50 term vanishes identically becaus
H(x)[H̃ (0)(x) and G̃(0)(x)[G(x) and the integrator is
thus, second order. This expression, Eq.~2.30!, for a general
set of equations of motion has not appeared previously to
knowledge.

It is useful to see under what conditions, Eq.~2.30!, can
be made to vanish. If each of the ‘‘perturbation dynamic
G̃(k)(x) takes the form

G̃~k!~x!5¹xH̃
~k!~x!•g21~x!, ~2.31!

whereg21(x) is an antisymmetric matrix with zero diagon
elements, then each perturbation dynamics has a cons
tion law G̃(k)(x)•¹xH̃

(k)(x)[0. Furthermore, Eq.~2.30! will
be satisfied

(
k50

n

¹xH̃
~n2k!~x!•g21~x!•¹xH̃

~k!~x!50, ~2.32!

by symmetry. Note, upon coordinate changey(x),g21(x)
transforms like a metric tensor

G̃~k!~y!5¹yH̃
~k!~y!•@J~x!g21~x!J~T!~x!#

5¹yH̃
~k!~y!•ḡ21~y!, ~2.33!

where matrix J(x)5]y/]x. If in any coordinate system
g21(x) is an antisymmetric matrix with zero diagonal el
ments, it retains this form in all coordinate systems. Furth
more, if, in any coordinate system,g21 can be transformed
into a matrix of constants, then the phase space is flat20–22

and the determinant of the metric in this special coordin
system is defined to be unity, detg21[1, with the required
Downloaded 25 Jun 2008 to 131.215.225.137. Redistribution subject to A
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constant absorbed into the conserved quantity/quantities.
this latter case,g21 is the phase space metric tensor~see
below!.20–22

The above, general, analysis allows the choice of dec
position,L5L11L2 to be connected directly to propertie
of the integrator. If the original equations are Hamiltonia
then

x5$p,q%,

G~x!5¹xH~x!•g215G~p,q!5$2¹qH~p,q!,¹pH~p,q!%,
~2.34!

g215S 0 I

2I 0D .

Following Ref. 5, ifiL1 ,iL2 are each derivable from Hamil
tonians,

iL15¹xh1~x!•g215¹ph1~p,q!•¹q2¹qh1~p,q!•¹p ,

iL25¹xh2~x!•g215¹ph2~p,q!•¹q2¹qh2~p,q!•¹p , ~2.35!

H~x!5h1~x!1h2~x!5H~p,q!5h1~p,q!1h2~p,q!,

then eachG̃(k)(x)5G̃(k)(p,q) is Hamiltonian, i.e., derived
from H̃ (k)(x)5H̃ (k)(p,q), H̃(p,q;Dt) is the Hamiltonian of
Eq. ~2.24! and Eq.~2.30! is trivially satisfied. This occurs
because the commutator of any two Hamiltonian Liouvi
operators yields a third, whose associated Hamiltonian
given by the Poisson bracket,h35$h1 ,h2%, i.e.,

iL35@ iL1 ,iL2#,

iL35¹xh3~x!•g21
•¹x5¹ph3~p,q!•¹q2¹qh3~p,q!•¹p ,

~2.36!

h3~x!5¹xh1~x!•g21
•¹xh2~x!5h3~p,q!5$h1 ,h2%,

5¹ph1~p,q!•¹qh2~p,q!2¹qh1~p,q!•¹ph2~p,q!.

Thus, for decompositions of the form of Eq.~2.35!, it is
straightforward, if tedious, to construct all the coefficients
the Maclaurin series expansion ofH̃(p,q;Dt) from nested
Poisson brackets and the BCH expansion.5,19 For example,
given the symmetric decomposition of Eq.~2.20!, it follows
from the first term of the BCH expansion and Eq.~2.36! that

H̃ ~1!~p,q!5 1
24$h112h2 ,$h11h2%%. ~2.37!

Note, if an asymmetric decomposition were taken,

ei L̃Dt[eiL2DteiL1Dt5eiLDt1O~Dt2!, ~2.38!

as opposed to the second-order symmetric decompositio
Eq. ~2.20! and iL1 ,iL2 were each derivable from Hamilto
nians following Eq.~2.35!, then the resulting first-order in
tegrator would possess a conserved quantity but wouldnot

possess time reversal symmetry,H̃(p,q;Dt)ÞH̃(p,q;2Dt)

or ei L̃Dte2 i L̃DtÞ1 ~see Ref. 5, Chap. 12!.
The derivation described above is generalized from t

given in Ref. 5. Here, it is clear from the presentation the k
result, Eq.~2.36!, holds for any antisymmetric matrix of con
stants with zero diagonal elementsg21, not just the form of
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Eq. ~2.34!. In addition, Eq.~2.36! holds, if a transformation
to anycoordinate system,y(x) whereḡ21(y)5ḡ21 is a con-
stant antisymmetric matrix with zero diagonal elements
ists,

@ iL1 ,iL2#5$@¹xh1~x!•g21~x!•¹x#,@¹xh2~x!•g21~x!•¹x#%

5$@¹yh1~y!•J~y!g21~x!JT~y!•¹y#,

@¹yh2~y!•J~y!g21~x!JT~y!•¹y#%

5$@¹yh1~y!•ḡ21
•¹y#,@¹yh3~y!•ḡ21

•¹y#%

5¹yh3~y!•ḡ21
•¹y

5¹yh3~y!•J~y!g21~x!JT~y!•¹y

5¹xh3~x!•g21~x!•¹x, ~2.39!

h3~x!5¹yh1~y!•ḡ21
•¹yh2~y!

5¹yh1~y!•J~y!g21~x!JT~y!•¹yh2~y!

5¹xh1~x!•g21~x!•¹xh2~x!. ~2.40!

That is, for a system of equations of motion with a flat pha
space, an integrator can be formulated with a conser
quantity following the procedure given above in any coor
nate system. Simply using Liouville operator decompositio
derived by splitting the conserved quantityH(x) in proper
combination with the metric tensor of the coordinate syst
of interest will yield integrators with conserved quantities
construction. Note, satisfying the above condition, E
~2.39!, is sufficient for phase space to be flat.

Next, consider a system of equations of motion that c
be written in the form described above,

ẋ~ t !5G„x~ t !…5¹x~ t !H„x~ t !…•g21
„x~ t !…, ~2.41!

whereg21 is taken to be a constant antisymmetric that h
zero diagonal elements andH„x(t)… is preserved. In genera
one can view the equations of motion as coordinate trans
mation fromx(0)→x@x(0);t# parametrized byt.20–22 Thus,
the time derivative of the coordinates at timet can be ex-
pressed in terms of the time derivative of the equations
time zero. For the case in which phase space is
g21

„x(t)…5g21,

G„x~0!…5¹x~0!H„x~0!…•@g21#,

G„x~ t !…5¹x~ t !H„x~0!…•@J~ t !g21JT~ t !#

5¹x~ t !H„x~ t !…•@J~ t !g21JT~ t !#,

where J(t)5]x(t)/]x(0) and H@x(t)#[H@x(0)#. This
naturally leads to

J~ t !g21JT~ t !5g21,
~2.42!

J~ t !g21@y~0!#JT~ t !5g21@y~ t !#,

so that the Eq.~2.41! is preserved. Equation~2.42! demon-
strates theg21 role as a metric tensor of phase space a
also, holds in a general coordinate system,y(x). For Hamil-
tonian systems,
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J~ t !5S ]p~ t !

]p~0!

]p~ t !

]q~0!

]q~ t !

]p~0!

]q~ t !

]q~0!

D , g215S 0 I

2I 0D . ~2.43!

Equation~2.42! is referred to as the symplectic property, i.e
wheng21 is of the form in Eq.~2.43!. Satisfying Eq.~2.42!
is sufficient for a set of equations to possess a conse
quantity given a flat phase space.

It should be noted that the symplectic property is oft
employed to analyze numerical integrators of Hamilton
systems. It is straightforward to compute an integrato
Jacobian matrixJ and implicitly determine if an integrate
possess continuous time equations of Hamiltonian form a
hence, a conserved quantity. The Liouville operator form
ism, from which the equations of motion given in Eq.~2.24!
arise naturally, has important advantages as Jacobian m
ces of complex integrators are tedious to obtain, analytica
Also, simply considering the Jacobian matrix, only, miss
the detailed connection to the equations of motion and
construction ofH̃(Dt) from Poisson brackets provided b
the evolution operator formalism~see Ref. 5!. For systems
with a flat phase space, the Liouville operator construction
also possible as described above. Equation~2.42! can be em-
ployed to check integrators for conserved quantities whe
g21(x) is known or can be inferred provided phase space
flat @the metric satisfies Eq.~2.39!#.

Next, phase space volume preservation is conside
For systems with flat phase space, again,g21 has constant
elements and unit determinant. Thus, Eq.~2.42! implies
phase space volume preservation,

detJ~ t !51, ~2.44!

or, equivalently,

dx~ t !5@detJ~ t !#dx~0!5dx~0!, ~2.45!

where detJ(t) for the transformation. Phase space volum
preservation also embodies Liouville’s theorem,

d@detJ~ t !#

dt
5@detJ~ t !#¹x• ẋ~ t !,

~2.46!
d log@detJ~ t !#

dt
5k~ t !5¹x~ t !¹x~ t !H„x~ t !…••g2150,

wherek5¹x• ẋ is called the compressibility of the dynamic
system. Interested readers are encouraged to see Refs. 2
24 for a simple derivation of Eq.~2.46! starting from the
definition of J(t)5]x(t)/]x(0). Of course, a constant o
unit Jacobian is a necessary but not sufficient condition fo
flat phase space to exist. All elements ofg21 must be con-
stant.

Now, consider a set of equations of motion that hav
Jacobian without explicit time dependence. That is, view
the equations of motion as a variable transformation, it
possible to write
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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dx~ t !5dx~0!$detJ@x~ t !#%

5dx~0!Adetg21
„x~ t !…

detg21
„x~0!…

5dx~0!Adetg„x~0!…

detg„x~ t !…
, ~2.47!

dx~ t !Adetg„x~ t !…5dx~0!Adetg„x~0!…, ~2.48!

through the use of Eq.~2.42!, valid when phase space is fla
Equation ~2.47! is generally valid. Equation~2.48!, again,
illustrates theg„x(t)… role as the metric tensor of the pha
space.20–22 Here, the equations of motion are compressi
and do not obey Liouville’s theorem or preserve the ph
space volume@dx(0)Þdx(t)#. Nevertheless, they do pos
sess an analogous measure conservation law, Eq.~2.48!.23,24

Note, the measure conservation law holds for a general s
equations of motion23,24not only for flat phase spaces but th
identification of the metric tensor is not obvious. Final
measure conservation and a time step dependent cons
quantity together allow a well defined, if time step depe
dent, statistical mechanical ensemble to be elucidated.25

Next, consider an integrator derived from the Liouvil
operator formalism which preserves a time-step-indepen
measure, detJ̃(t)5detJ̃„x̃(t)…,

d log $detJ̃„x̃~ t !…%

dt
2¹x•xP50,

(
k

Dt2k$G̃~k!~x!•¹x log@detJ̃~x!#2¹x•G̃~k!~x!%50, ~2.49!

G̃~k!~x!•¹x log@detJ̃~x!#2k̃~k!~x!50,

where Eq.~2.24! has been employed. This condition is su
ficient to guarantee that the integrator preserves the s
measure as the original set of equations, detJ̃„x(t)…
[detJ„x(t)…, becauseG̃(0)(x)[G(x). In addition, ~1! a
common transformation can be made to the coordinate
tem in which all the perturbationsk are incompressible
k̃ (k)50, or all the equations cannot vanish simultaneously
Eq. ~2.49!; ~2! since an incompressible dynamics may
Hamiltonian or possess a flat phase space, the common t
formationmay lead to a set of variables in which all pertu
bation terms are Hamiltonian or have a flat phase sp
Therefore, a measure preserving the integrator of a n
Hamiltonian set of equations can, in principle, exhibit lo
time stability via a conserved quantity of the form,H̃(x;Dt)
but is not guaranteed to do so. Lack of measure conserva
indicates that no such transformation can exist. Hence, m
sure conservation is a necessary but not sufficient cond
for conserved quantities to exist.

Last, it is useful to observe thatH̃(x;Dt) will, in general,
only be close toH(x;Dt) for smallDt. Thus, the trajectories
of the numerical integrator will be meaningful approxim
tions to the true trajectories only in this limit. However, th
existence of the conserved quantity does guarantee that
is a bound on the deviation of the integrator’s trajectory fro
exact. In addition, the integrator can possess closed o
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close to those of the true system~i.e., if they are present!. As
a specific example, consider a one-dimensional harmonic
cillator

H~p,q!5
p2

2m
1

mv2q2

2
, ~2.50!

integrated using a simple Trotter–Suzuki decomposition
the form,iL152mv2q, iL25p, to yield the velocity Verlet
algorithm,17,26 which is symplectic. The conserved quantit
integrator Hamiltonian is

H̃~p,q;Dt !5S p2F12S vDt

2 D 2G21/2

2m

1

mv2q2F12S vDt

2 D 2G1/2

2
D

3

arccosS 12
v2Dt2

2 D
uvDtu

. ~2.51!

The integrator has closed orbits forvDt/2,1 and yields a
good approximation to the true trajectories ifvDt!1 @i.e.,
limvDt→0H̃(p,q;Dt)5H(p,q)#.

In summary, the properties of numerical integrators d
rived from Trotter decompositions have been discussed
detail. In particular, decompositions of equations of moti
defined by a conserved quantity and metric tensor,
~2.41!, have been investigated, in detail. It has been sho
that if a set of equations of motion possess a flat phase sp
then Trotter decomposing the conserved quantity in any
ordinate system, will yield an integrator that, itself, emits
conserved quantity. This generalizes the results of Ref
which strictly treats the Hamiltonian case in canonical va
ables. In addition, a generalized symplectic property
been derived for systems with a flat phase space, Eq.~2.42!,
that can be employed to check if an integrator possess
conserved quantity. Finally, phase space volume conse
tion has been shown to be a necessary but not suffic
condition for an integrator to possess a conserved quantit
might, well, be expected.

C. Numerical integration of rigid bodies

It is, now, straightforward to design a symplectic int
grator for NO–SQUISH, Eq.~2.18!. This Hamiltonian@i.e.,
Eq. ~2.18!#, is decomposed into five sub-Hamiltonians,

hk~p,q!, k50,4, h4~p,q!5f~q!, ~2.52!

and the explicit form for the first four@hk(p,q),k50,3# are
given in Eq. ~2.18!. The symplectic integrator scheme
naturally formed by

ei L̃Dt5eiL4~Dt/2!@eiL3~dt/2!

3eiL2~dt/2!eiL1dteiL2~dt/2!eiL3~dt/2!#mroteiL4~Dt/2!,
~2.53!

iLk5¹phk~p,q!•¹q2¹qhk~p,q!•¹p ,
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wheredt5Dt/mrot , exp(iL̃Dt)5exp(iLDt)1O(Dt3), each
of the four evolution operators is, itself, Hamiltonianandcan
be applied analytically. The integer parametermrot can be
employed to increase the accuracy of the computation
inexpensive portion involving free rotation3 ~that is, at little
computational cost, the accuracy of this part of the appro
mate evolution operator can be improved!. Note,

h0@p~ t !,q~ t !#[0, exp@ iL0t#[1, ~2.54!

and the approximate evolution precisely conserve

uq~ t !u2[1, v0~ t ![0. ~2.55!

The action of the first three evolution operators~1!–~3!,
takes the simple form

eiLkdtq5cos~zkdt !q1sin~zkdt !Pkq,
~2.56!

eiLkdtp5cos~zkdt !p1sin~zkdt !Pkp,

where

zk5
1

4I k
pTPkq, ~2.57!

and the fourth evolution operator translates the momenta
the force

eiL4~Dt/2!pk5pk1
Dt

2
F~4!. ~2.58!

Of course, sincef(q), for realistic systems, contains intern
forces, one must construct

text
~4!52 1

2S
T~q!¹qf~q!, ~2.59!

generatet (4) from text
(4) by setting the first element oftext

(4) to
zero and solve for the forces13

F~4!52S~q!t~4!. ~2.60!

Note, the Maclaurin series expansion ofH̃(p,q;Dt) for the
NO–SQUISH integrator could be obtained using the analy
of the previous section. Also, the NO–SQUISH integrator
could not be developed using a simple leap-frog or Tay
series approach but requires the Trotter–Suzuki techni
Some implementation details of the NO–SQUISH scheme
are provided as a pseudocode in the Appendix.~See Refs. 3
and 8 for a pedagogical overview.!

In order to illustrate the properties of the Trotter–Suzu
operator factorization method on a non-Hamiltonian syste
we decompose Eq.~2.5! into four parts following Ref. 12:

iL15 1
2@S~q!v~4!#•¹q ,

iL25F ~ I yy2I zz!

I xx
vyvzG ]

vx
1F ~ I zz2I yy!

I zz
vyvxG ]

vz
,

~2.61!

iL35F ~ I zz2I xx!

I yy
vzvxG ]

vy
1F ~ I xx2I zz!

I zz
vyvxG ]

vz
,

iL45
tx

I xx

]

vx
1

ty

I yy

]

vy
1

tz

I zz

]

vz
,

and define an approximate evolution operator analogou
Eq. ~2.53!. Here, iLk are not Hamiltonian, the evolution is
not symplectic but phase space volume preserving, a spe
Downloaded 25 Jun 2008 to 131.215.225.137. Redistribution subject to A
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case of measure conservation, that permits a conserved q
tity, H̃(x;Dt), to exist but does not guarantee existence
described above. Note, ifv0 is introduced, explicitly, the
equations of motion can be written in the form of Eq.~2.41!
for which the phase space is flat~i.e., a variable transforma
tion to a Hamiltonian system can been constructed; it
NO–SQUISH!. Thus, a Lioville operator decompositio
could be developed using$v (4),q% in conjunction with its
metric tensor as described in Sec. II B. However, the deco
position of Ref. 12, Eq.~2.61!, is not of this form.

D. Rigid bodies in biophysical systems

It is important to discuss the applicability of using rig
body algorithms to simulate biophysical systems. First, st
dard force fields treat the water molecules as rigid bodies
the methodology is, thus, perfectly adapted for these deg
of freedom.27 Second, in a peptide or protein it is useful
treat groups involving hydrogens, CH3, CH2, NH2, OH,
NH, CH, and SH, as rigid moieties because X–H bonds a
H–X–H bonds have the highest frequencies in the molec
~The lower-frequency CO motions are permitted to ‘‘flex.!
The work presented in Refs. 28 and 29 clearly show that
approach yields accurate results. That is, physically imp
tant distribution functions are not altered by treati
hydrogen-containing groups as rigid bodies.

III. RESULTS

The two rigid body methods were tested on three pr
lems, the water dimer, liquid water and a helical pept
solvated in water~usingmrot51!. The rigid water–water in-
teraction potential employed was TIP3P and the peptid
peptide, peptide–water interactions were taken from
CHARMM22 force field.27

In Fig. 2~a!, an energy conservation measure along
trajectory is presented for the water dimer. NO–SQUISH is
more accurate than Ref. 12 but both methods are stab
long times. In Fig. 2~b!, results are presented for liquid wate

FIG. 2. ~a! Light water dimer (mH50.1 amu) at̂ T&5155 K, Dt50.3 fs.

The energy conservation measure,DE(t)5@E(t)2Ē#/uĒu, for
NO–SQUISH ~solid line! and Ref. 12~dotted line!. ~b! Liquid water at
^T&5295 K, r51 g/cm3 (mH51.008 amu), Dt53.0 fs. NO–SQUISH
~solid line! and Ref. 12~dotted line!.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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which exhibit similar trends. In general, the phase space
ume preserving integrator performs well but not as well
the symplectic NO–SQUISH.

Next, a peptide~WEAQAREALAKEAARA ! in water
was studied using thePINY–MD simulation package30 with
both the water molecules and all CH3, CH2, NH2, OH, NH,
and CH groups in the peptide treated as rigid moieties w
the CO groups were permitted to flex. Here, a compariso
NO–SQUISH to the SHAKE/RATTLE method6,7 demon-
strates the excellent performance of the new, reversible, s
plectic technique. Note, SHAKE/RATTLE is symplectic an
reversible only if the Lagrange multipliers are solved to f
convergence/determined exactly;15 otherwise, SHAKE/
RATTLE is neither reversible nor symplectic.15 Nonetheless,
NO–SQUISH and SHAKE/RATTLE perform well and th
average energy conservation measure is 3.531025 for both
methods~see Fig. 3!. This indicates that for the peptide/wat
system the error in the two integrators is dominated by
tential coupling, not by the treatment of the rotational m
tion.

In general, NO–SQUISH can be employed in conjunc
tion with HMC calculations while SHAKE/RATTLE cannot
It is faster than our specialized implementation of SHAK
RATTLE for small rigid bodies and it is significantly easie
to implement efficiently for large bodies. Briefly, in our sp
cialized implementation of SHAKE for rigid bodies, we lin
earize the SHAKE equations for the multipliers, solve t
coupled equations via LU~lower/upper! decomposition~for
nonplanar structures!, and directly for planar structures, an
iterate until convergence of the nonlinear equations
achieved. For large nonplanar rigid molecules of greater t
four atoms, linear constraints are used to ‘‘build’’ the ad
tional atoms onto the rigid frame formed by four specia
chosen basis atoms, a procedure that is not general and r
awkward to implement, in practice~see, for instance, Refs
28 and 31 for discussions of SHAKE/RATTLE implement
tions!. Finally, the standard Runge–Kutta or gear predic
corrector integrators originally proposed for use8,9 do not
conserveuqu2, and have been shown to exhibit poor ener
conservation compared to Ref. 12 and other meth
elsewhere.10–12

FIG. 3. Helical peptide in liquid water̂T&5300 K, Dt53.0 fs. ~a! Energy
conservation measure for NO–SQUISH and ~b! the SHAKE/RATTLE
method~Refs. 6 and 7!.
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IV. CONCLUSION

In response to the challenges inherent in utilizing no
massively parallel architectures for biophysical MD studi
the equations of motion governing coupled sets of rigid b
ies have been reinvestigated. A rigid body Hamiltonian
the unit quaternion, the minimal nonsingular representat
of rotation most commonly used in MD simulations,9 was
derived along with a reversible, symplectic, integrati
scheme~NO–SQUISH!. Tests on model and realistic sys
tems indicate that NO–SQUISH is superior to nonsymplecti
but area preserving methods,12 equal to the nonreversible
nonsymplectic~for practical implementations! and, hence,
less versatile SHAKE/RATTLE technique,6,7 and far more
accurate than standard gear predictor corrector or Run
Kutta methods proposed for use with the unit quaternion
years ago.8,9 Finally, a new theoretical analysis has been p
sented that gives an explicit condition for an integrator
possess a conserved quantity, an explicit expression for
conserved quantity of a symplectic integrator, the latter f
lowing and in accord with Ref. 5, and extension of the e
plicit expression to general systems with flat phase spac
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APPENDIX: NO_SQUISH IMPLEMENTATION DETAILS

It is simple to implement the NO–SQUISH method
within a MD standard code using velocity Verlet to integra
degrees of freedomnot involved in a rigid body. In this
work, SHAKE/RATTLE is used to treat linear rigid bodies
rods, only. The other rigid bodies are divided into grou
determine by the number of atoms in the bo
(atms/body5natm–body). For example, if three groups a
defined with natm–body@1#53, natm–body@2#54,
natm–body@3#55 then all H2O, CH2, NH2, etc., moieties
will be evolved together in the first group and so on. In t
following $p,r% denote Cartesian momenta and positio
$p–com,r –com%, denote center of mass momenta and po
tion, $q,p–qua% denote quaternion momenta and positio
d–body the position of an atom in the body fixed frame,
the time step, Dt, dti the small step, Dt/mrot ,
A,A–transpose the matricesA(q), AT(q), dotA–transpose

the matrix dAT(q)/dt5ȦT(p,q), S the matrix S(q), P–k
the constant matrix,Pk , t3 the torques andt4 the four com-
ponent torque introduced in the text. All Cartesian and cen
of mass vectors have three components while the quater
contains four. Finally, two arrays of indices, index–vv@# and
index–rb@#@# are employed that indirectly address the arr
of Cartesian momenta and positions.

routine integrate~!
no–squish–evolve–0–to–dt2();
loop over particles not contained in a nonlinear rigid bo
p@ index–vv@ iatm##150.5* dt* F@ index–vv@ iatm##;
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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r @ index–vv@ iatm##15

(p@ index–vv@ iatm##* dt)/m@ index–vv@ iatm##;
end loop
shake~!;
get–forces~!;
no–squish–evolve–dt2–to–dt();
loop over particles not contained in a nonlinear rigid bo
p@ index–vv@ iatm##150.5* dt* F@ index–vv@ iatm##;

end loop
rattle~!;

end routine
routine no–squish–evolve–0–to–dt2()
loop over the rigid body groups
create–quaternion–and–com–forces(rigid@ igroup#);
p–qua5rigid@ igroup#.p–qua;
F –qua5rigid@ igroup#.F –qua;
r –com5rigid@ igroup#.r –com;
p–com5rigid@ igroup#.p–com;
F –com5rigid@ igroup#.F –com;
loop over bodies in this group

p–qua@ ib#15F –qua@ ib#* dt* 0.5;
p–com@ ib#15F –com@ ib#* dt* 0.5;
r –com@ ib#15(p–com@ ib#* dt)/M –com@ ib#;

end loop over bodies in this group
no–squish–free–rotor(rigid@ igroup#);
create–Cartesian–positions(rigid@ igroup#);

end loop over the rigid body groups
end routine

routine no–squish–evolve–dt2–to–dt()
loop over the rigid body groups
create–quaternion– and –com–forces(rigid@ igroup#);
p–qua5rigid@ igroup#.p–qua;
F –qua5rigid@ igroup#.F –qua;
p–com5rigid@ igroup#.p–com;
F –com5rigid@ igroup#.F –com;
loop over bodies in this group

p–qua@ ib#15F –qua@ ib#* dt* 0.5;
p–com@ ib#15F –com@ ib#* dt* 0.5;

end loop over bodies in this group
create–Cartesian–velocities(rigid@ igroup#);

end loop over the rigid body groups
end routine

routine create–Cartesian–positions~rigid!
create–A–transpose–and–S(rigid);
loop over bodies in this group
loop over bodies in this group

r @ index–rb@ ib#@ iatm##5r –com@ ib#

1A–transpose@ ib#* d–body@ ib#@ iatm#;
end loop over bodies in this group

end loop over number of atms/body in this group
end routine

routine create–Cartesian–velocities~rigid!
create–dotA–transpose(rigid);
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loop over number of atms/body in this group
loop over bodies in this group

p@ index–rb@ ib#@ iatm##5m@ index–rb@ ib#@ iatm##

3(p–com@ ib#/M –com@ ib#

1dotA–transpose@ ib#* d–body@ ib#@ iatm#);
end loop over bodies in this group

end loop over number of atms/body in this group
end routine

routine create–quaternion–and–com–forces~rigid!
loop over number of atms/body in group
loop over bodies in group

F –com@ ib#15F@ index–rb@ ib#@ iatm##;
end loop over bodies in this group

end loop over number of atms/body in this group
loop over number of atms/body in this group
loop over bodies in this group

F –space5F@ index–rb@ ib#@ iatm##

2F –com@ ib#* (m@ index–rb@ ib#@ iatm##/M –com@ ib#);
F –body5A@ ib#* F –space;
t3@ ib#15d–body@ ib#@ iatm#* ~cross–prod)* F –body;

end loop over bodies in this group
end loop over number of atms/body in this group
loop over bodies in this group
t45(0,t3@ ib#);
F –qua@ ib#52S* t4;

end loop over bodies in this group
end routine

routine no–squish–free–rotor~rigid!
loop overm–rot small time steps
no–squish–rotate(3,dti/2);
no–squish–rotate(2,dti/2);
no–squish–rotate(1,dti);
no–squish–rotate(2,dti/2);
no–squish–rotate(3,dti/2);

end loop overm–rot small time steps
end routine

routine no–squish–rotate(k,dt)
loop over bodies in this group
zeta–dt5dt* (p–qua@ ib#* P–k* q@ ib#)/(4I –k);

q@ ib#5cos (zeta–dt)* q@ ib#1sin (zeta–dt)* P–k* q@ ib#;

p–qua@ ib#5cos (zeta–dt)* p–qua@ ib#

1sin (zeta–dt)* P–k* p–qua@ ib#;
end loop over bodies in this group

end routine
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