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Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods,
promise to open biologically significant time scales for study. In order to promote efficient
fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in
these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of
a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a
corresponding reversible, symplectic integrator is presented. The novel technique performs very
well on both model and biophysical problems in accord with a formal theoretical analysis given
within, which gives an explicit condition for an integrator to possess a conserved quantity, an
explicit expression for the conserved quantity of a symplectic integrator, the latter following and in
accord with Calvo and Sanz-Sarmdumerical Hamiltonian Problemg&l994), and extension of the
explicit expression to general systems with a flat phase space20@®@ American Institute of
Physics. [DOI: 10.1063/1.1473654

I. INTRODUCTION thus, creating a dynamical system of coupled sets of rigid
bodies with lower communication overhead. However, exist-
In the last year, the human genome project has beeihg methods designed to treat sets of rigid bodies are either
largely completed, and the primary structures of the largea) solved iteratively and are, hence, not reversibland
majority of all human proteins are, now, available for stbdy. cannot be used in hybrid Monte CarlBlMC) calculations;
This presents a unique opportunity for the field of computa<b) are not symplectic and, hence, not stable at long tifrfes;
tional biology to make contributions in the determination of or (c) introduce many extra parameters that must themselves
the three-dimensional structures of new proteins, the discowe constrained and, hence, go beyond the four parameters
ery of protein substrates and inhibitors, and the generation @kquired to define a nonsingular mapping of rigid body
the mechanism by which proteins chemically modify mol-rotations!®** Finally, using modern methods, phase space
ecules. However, computational methods and computer agolume preserving but nonsymplectic integrators have been
chitectures of unprecedented speed, efficiency, and accuragvelopedf but theoretical tools to formally assess the utility
must be developed in order to process the vast quantities @ this and similar approaches have been lackiipte, a
data produced by the genome project. symplectic integrator both possesses a time-step-dependent
Recently, IBM has announced a next-generation, masenergy, which is invariant along the trajectory produced by
sively parallel, supercomputer that will be employed to perthe integrator, and is phase space volume preserving. A phase
form biophysical molecular dynamic$MD) simulation  space volume preserving integrator need not be symplectic.
studies” This new advance in computational power will, in Fyrthermore, neither phase space volume preservation nor
principle, allow long time scales to be sampled and newhe symplectic property quantity, guarantee that an integrator
biological insights to be obtained. Unfortunately, currentyy possess time reversal symmejry.
multiple time step MD integration method$,while sym- In this paper, the equations of motion for rigid bodies in
plectic and, thus, stable at long timesquire large numbers terms of the unit quaterniol?, the minimal parameter set
of computationally inexpensive force evaluations to be permgst commonly used in MD simulation as first proposed by
formed. These operations limit the efficiency of the ﬁ”e'Evans?'g are presented. A novel Hamiltonian or symplectic
grained parallel decompositions employed on massively pafyrm of the equations is then derived and expressed as a sum
allel supercomputers due to communication overhead agyer permutations. The new form, denoted NEDUISH
opposed to their negligible cost to actually compute. novel symplectic quaternlon schemellows a symplectic
The fast degrees of freedom in a large biomolecule an‘iseversible integrator to be formulated, naturally, via the

the solvent can be removed using holonomic constraintSyotier—Suzuki operator splitting approath: Next, a gen-

eral explanation of the properties of numerical integrators is
dElectronic mail: gmartyna@indiana.edu provided (symplectic, phase space volume preserving, time
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reversible, etg. This is followed by a formal development lowed by a new treatment that expresses the condition for a

that relates the existence of conserved quantities in the agonserved quantity to exist in a symplectic or nonsymplectic

proximate integrators constructed using the Trotter—Suzukintegrator in the form of a recursion relation. A precise ex-

approach to a simple recursion relation valid for both non-ression for the conserved quantity of a symplectic integrator

symplectic and symplectic integrators. A general expressiodeveloped using the Trotter—Suzuki approach, is then de-

for the conserved quantities of symplectic integrator derivedived and an extension to general systems with a flat phase

via the Trotter—Suzuki approach is given followed by a newspace given. Last, the new symplectic integrator for the

extension to general systems with a flat phase sfidefined  Hamiltonian form of the equations of motion is presented

within). Both the theory and NOSQUISH are tested using and the derivation of an older phase space volume preserving

comparisons to a reversible phase space volume preservifyit nonsymplectic integrator is review&d.

but nonsymplectic integration scheme for the unit quaternion

equations? and the SHAKE/RATTLE methof’ which is _ _

neither reversible nor symplectic unless iterated to full™ EQuations of motion

convergencé> on model and biophysically important prob- In the classical mechanics of rigid body motion, the unit

lems. quaternion,{go,d;,0,,03} with =;g?=1, is introduced in
order to generate a minimal, nonsingular, representation of

Il. METHODS the rotation matrix from a space-fixgdenoted ") to a

In this section, the novel rigid body techniques are de20dy-fixed coordinate systefdenoted 'b”)
veloped. First, the standard equations for rigid body motion  r(®=A(q)r®, r®=AT(q)r®, (2.2
are expressed in terms of the unit quaternion. The equations |, . N
are then recast in Hamiltonian form which is further reduced" which the moment of inertia tensor
to a sum over permutation matrices using quaternion algebra. N
In order to understand better the properties of numerical in- 5= >, mk(|rk|25aﬂ_rkarkﬁ) (2.2
tegrators, a general discussion of the concepts such as time K=t
reversal symmetry and the symplectic property is given folis diagonaf:® Here,

95+0a3—0a3—a5  2(d182+0o0s)  2(4103—Codz)
A= 2(0102-dods) a5—ai+a3—a3 2(0x03+9ods) |, 2.3
2(0y03+dodz)  2(G203—dods) 93— 95— G3+03

and wherew ™= (0,04, 0y, 0,),
0 + 0 - B B B
q()zcos(—>cos<u , qlzsin<— cos<(ZS lp), Go ~d1 —92 —0s
2 2 2 2
2.4 S(q)= di Go ~—03 Q2 2.6
=i 9\ -y - 9\ oty 02 03 Qo —01] '
dz=sin 5|sin ——/, ds=cog 5 |sin ——|,

s —02 Qi Jdo

where 6, ¢, andy are the three Euler angles in the Standard[S(q)ST(q)] Iql26 s are the torques in the
CYB: DZB: DKB s T

conventiont® and a body consisting dfl point particles at
y g P P body-fixed frame, and,,, Iy, andl,, are the diagonal el-

osition r ={ry ,r.r.}=1{X¢,Y«:2, with massm, as- / . A
P =1 kyTky k3} { koY k}. . k ements of the moment of inertia tens@rote, again, is
sumed for convenience in the definition of the moment Ofdiagonal in the body fixed frameNote, the equations em-
inertia tensoksee Fig. 1 and the center of mass at the origin. ’

introducing the body-fixed angular velocities,, v, , and body the time derivative of the constraiit;,q;q; =0, via the

the rigid bod i ¢ moi ba it first element of the vecton¥=2S7(q)§. The torques can
w,, the rigid body equations of motion can be written as, " o i the form
4= S(@ o',

2_’_ (Iyy_lzz)

IXX IXX

7= =38 (@) Vah(@) + 7 @7

where ¢(q) is the potential energy and(,ft) is the usually
(2.5  unspecified internal “torque” of the forn{={y),0,0,¢ that
cancels any internal forces generated by the potential

Wy = Wy,

. Ty (12— 1%
(Uy:_

lyy lyy @20 #(q).*2 That is, the four-vector notation necessitates the for-
Lo mal introduction of internal or constraint forcESif the body
PR (o lyy) 0w is assumed to consist of discrete particles and introducing the
z xWy

I, I, center of mass
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7 with
C\ T(0“)=T(w)+ 3l gwf (2.12
() by redefining
4)=28T(q)q={wo,wx,wy,wz}. (2.13
egenare transtorm can then pe periormed 1o yie e
Vs AL dre t f then b f d to yield th
extended Hamiltonian
Xs H(p,q)=35p"S(q)DS'(q)p+ $(a)=T(p,a) + ¢(q),
(2.1
a where
Zb)/e— p= |q|4S(q)D Lo
_ (2.15
Yo Ik 0 0 0
0 It 0o o
D= -1
0 0 I, 0
g 0o 0 o0 I}
I Using Hamilton’s equations in the extended phase space,
' xb
o v L
q=VpH(p.a),
. 2.1
b p=—VgH(p.a), (216
FIG. 1. (@) Angular velocity, , rotates the body-fixed coordinate frame it can be shown that
(Xp ,Yp »2Zp) away from the system framexd,ys,zs). (b) Resulting rotation
is specified by the Euler anglég, 6, #). Angle ¢ is a counterclockwise . w%
rotation about theg axis. This is followed by counterclockwise rotation of wo:W,
0 about the newly generatedaxis shown as a dotted line. Last,is a a
rotation about the newly generatedxis.
:wowx Tx (Iyy_lzz)
wx |q|2 XX IXX wwa’
d(kS):AT(q)d(kb) ) d(kS): r&S) rf:?‘r)w (2.9 WoWy 7'y (22— 1xx) 219
Oy=T—7 — W,y
with center of mass position,,. Then, it is easy to show Y | vy lyy o

that . Wz Ty (Ixx_lyy)
@) — (b)_ (b) (D)5 g® | 4 (4) T F I, 2,
T = 2 Fk 'dk ,2 dk XFK +Tint f
K k Therefore, if wo(0)=0 and =;g*(0)=|q(0)|>=1, unit
D=1{0,r,, 7,75}, (2.9 quaternion dynamics are produced for all timen a key
step the properties of quaternion algebtare used to de-

where F, is the external force on thkth particle. Again, compose, exactly, the extended Hamiltonian, @q14), into
external forces acting to deform the body are exactly baly, gum over permutatlon matrices,

anced by the typically unspecified internal/constraint forces
contained in7{% and the first element of*) vanishes,
identically® (This explicit treatment of the internal forces is H(p,9)= go h(p.@)+ ¢(a),
provided to remind nonexpert reader that standard biophysi-
cal force fields/potential functions do, indeed, contain forces B Th 12
acting to deform the body and internal forces/constraint k(p’q)_ﬁk[p Pal”,
forces must be invoketf) The equations of motion conserve (2.19
tehneersgl;/m of the rotational kinetic energy plus the potential Pod={d0,01,02,03}, P1a={—d1,00.03,~ 02},
E=T(w)+ $(q)= 4 0’ 2, Iyyw +1lzzwz+¢(q) P,d=1{—02,—03,00,d1}, P3d={—03,d2,—d1,do},
(2.10  Wwhere Ig=lgg, 11=14x, 12=1lyy, 13=1,, and PP"),z
=06, If wo(0)=0, thenhy(p,q) =0, and remains zero for
all time t because each of the other “sub-Hamiltonians,”
he(p.q), k#0, preserves the noriig|?, and the torque on
the faux angular velocity, is by definition zero. Equation
L=T(o™)—¢(q), (2.1)  (2.18 is denoted NQSQUISH.

ONONE

although they ar@ot Hamiltonian.
Given the symmetry of the quaternion equations of mo-
tion, it is natural to postulate the extended Lagrangfan,
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For linear molecules/bodies, one of the eigenvalues ophase space volume preserving. More details are given be-
the moment inertia vanishes or, equivalently, in the body{ow along with a novel generalization to non-Hamiltonian
fixed frame one of the diagonal elements of the tensor isystems.
zero. The resulting singularity can be removed analytically = One powerful method to develop numerical integrators
and a special set of equations of motion and a correspondingith desirable properties is the Trotter—Suzuki evolution op-
numerical integrator for linear bodies constructed. Alterna-erator splitting techniqu&!*1"'8Here, the method is ana-
tively, for this special case, the Lagrange multipliers requiredyzed in order to demonstrate, clearly, how the properties
by the standard SHAKE/RATTLE method can be deter-described above arise and how they can be controlled. In the
mined, analytically; SHAKE yields a quadratic equation andnext subsection, the Trotter—Suzuki approach is applied to
RATTLE a linear equation. Thus, the most convenient andhe systems of interest in this paper. In order to proceed
simple reversible symplectic integrator for linear bodies isfurther, consider the closed set of equations,
the SHAKE/RATTLE algorithm, in conjunction with the _ ; .
analytical solutions for multipliers. Again, SHAKE/RATTLE X0)=GX(1), x()=e“x, iL=G()-V, (219
numerical integration is, for a general case, nonreversiblghere the time evolution of the system has been expressed
only because the Lagrange multipliers required by SHAKEformally using the Liouville operator formalism andt) is
must be obtained using an iterative procedure which is, furthe exact solution. It is often possible to decompose the full
thermore, typically, solved to a fairly low tolerance. |jouville operator into a few simple part$£=iL,+iL,,

RATTLE yleldS a set of linear equations which can be al-Which can be app“ed ana|ytica||y to y|e|d a short time ap-
ways solved analytica”y. Note, SHAKE/RATTLE is neither proximation to the true dynamiCS,

reversible nor symplectic unless iterated to complete
convergenc® (which is impractical unless an analytical so-

P
: ch . na iLt_ LAt i LAt_ ai £4(AU2) ni LoAtai £1(AL2)
lution for the multipliers can be foundFinally, rigid body € kljl er, erm=erTrerre T,

algorithms cannot be used to treat partially constrained sys- (2.20
tems, for example, constraining the C—H borg not the " P a ,
H—C—Hbond angles in a Cigroup. el t=k1:Il e P+ O(tAtY),

where At=t/P and the unitary property, exg{At)

B. Conserved quantities in numerical integration X exp(—iLAt)=1, leads directly to time reversibility. Note,

Hamilton’s equations cannot be solved, exactly, in gen_t.he error ip thg approximate evolution, in principle, increases
eral, and numerical integration schemes must be developelifearly with time, t. _
Briefly, a numerical integrator or a “map,” is a finite time Fortunately, the Trotter—Suzuki approach allows a for-
stepAt approximation to the true dynamical equations that ismal analysis that defines conditions under which more ap-
applied iterative to produce a discrete approximate trajectory?@@ling error bounds eX|s‘;[.lgAppIy|r?g the BCkBaker-
X (NAL) =% [X([n—1]At);At] wheren is an integer. For a Campbell-Hansdojfformula*°to the integrator yields
Hamiltonian system, one takés=1, 2N so that{X, X, n} B B
={P«,0x}. The approximate trajectory will share some but i+ Y, azke® it Y, AtZkiZ(k)}
not all of the properties of the exact trajectong(t) k=1 k=1 ’
=x[x(t—17);7]. Consider a“reversible” integrator. The (2.21
term, reversible indicates that the integrator possesses time P _ - - - -
reversal symmetry like the original equations. That is, a tra- || e'#At=e%PAt i“gal AtZkiE(k)} =¢! ‘“Z«l At
jectory evolved backwards from the final state leads to the k=1
same initial stateX,([n—1]JAt)=X,[X(nAt);—At]. Next, pecause the commutator of any two Liouville operators
consider a “symplectic” integrator. The term symplectic im- yields a third,
plies that the integratofof a Hamiltonian systejncan be
derived from a time-step-dependent Hamiltonian different Z®=G®.¥V, (2.22
from the original,H(p,q;At) #H(p,q) (see below for a pre-
cise definition of the symplectic propeJty his Hamiltonian,
H(p,q;At), is then, of course, preserved along the trajectory  CV= (L, +2L,,[ L1+ Lo]) =i LD, (2.23

generated by the integrator. If an integrator is to be reversible ) ) .
L~ ) . Thus, the integrator generates the solution to the continuous
and symplecticH(p,q;At) must be an even function dft

~ - o time equations of motion,
or H(p,q;At)=H(p,q; —At). Thus, a symplectic integrator
is not necessarily time reversiblf.e., a well defined _ ” 2K ()
H(p,q;At) need not be an even function aft]. Further- X(t):kzo ATGTX(D), (.24
more, since Hamiltonian systems obey Liouville’s theorem, a
symplectic integrator is phase space volume presefing.at intervals nAt, where n is an integer, G(O(X(t))
However, beyond one physical dimension, a system that issG(X(t)), andX(t) #x(t). In order to define error bounds,
phase space volume conserving, need not be sympléctic.consider the case that the original equations possess a con-
Finally, a reversible integrator need not be symplectic noiserved quantity,

ol LAt gAt _ it

and, for example,
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dH(x(t))

TZO’ (2.25
or

G(x)- VyH(x)=0, (2.26)

and determine the conditions under which E@s24) emit a
corresponding conservation lat(X(t);At) such that

H&(t);AD=HX(1)+APHY X(1)), (2.27

with no linear growth in time. Formally expanding the pro-

powers ofAt because the integrator is reversible,

posed conserved quantity in a Maclaurin series with even
-1
o=

H(x;m):go AtZH O (x), (2.29

and setting the time derivative &f(x(t);At) as defined by
Eq. (2.24) equal to zero,

> AtZEGM(x)-V,H(x;At) =0,
k=0

(2.29
yields the recursion relation,
n
>, G (x) - VAM(x)=0. (2.30
k=0

Equation(2.30 must be satisfied for ath if H(x;At) is to
exist. Note, then=0 term vanishes identically because
H(x)=H©O(x) and G©(x)=G(x) and the integrator is,
thus, second order. This expression, E530), for a general

set of equations of motion has not appeared previously to our

knowledge.
It is useful to see under what conditions, E2-30), can

be made to vanish. If each of the “perturbation dynamics”

GM(x) takes the form
GHx)=VH®(x)-g7(x), (2.3)

whereg™%(x) is an antisymmetric matrix with zero diagonal

Symplectic quaternion scheme 8653

constant absorbed into the conserved quantity/quantities. For
this latter caseg ! is the phase space metric tengeee
below).20-22

The above, general, analysis allows the choice of decom-
position, L= L,+ L, to be connected directly to properties
of the integrator. If the original equations are Hamiltonian,
then

x={p,a},
G(x)=VxH(x)-9‘1=G(p,q)={—VqH(p.q).VpH(p,q2;3

0 |

-1 0)°

Following Ref. 5, ifi L4 ,i £, are each derivable from Hamil-
tonians,

i£1=Vh1(x)-g~'=V,h1(p.q) - Vg— Vg1 (p, ) - Vp,

i£5=Veho(X)- g~ 1= Vpha(p. Q) - Vg— Vgha(p.a)- V,,  (2.39
H(X)=hy(x) +hy(x) =H(p,a) =hy(p,q) +hx(p,a),

then eachG™(x)=G®(p,q) is Hamiltonian, i.e., derived

from H®(x)=H®(p,q), H(p,q;At) is the Hamiltonian of

Eq. (2.24) and Eq.(2.30 is trivially satisfied. This occurs

because the commutator of any two Hamiltonian Liouville

operators yields a third, whose associated Hamiltonian is
given by the Poisson brackét;={h,,h,}, i.e.,

i L3=[1Lq,iL5],

4

i L3=Vehs(x) g1 V= Vohs(p,a) - Vq— Vghs(p,a) - Vp,
(2.36
ha(x)=V,hy(x)- g~ 1 Veha(x) =hs(p,a) ={h;,h,},

=V,h1(p,q) - Vyho(p,a) — Vghi1(p,q) - Voha(p,q).

Thus, for decompositions of the form of EQ.35), it is
straightforward, if tedious, to construct all the coefficients of

elements, then each perturbation dynamics has a consen/i€ Maclaurin series expansion Bf(p,q;At) from nested

tion law G®(x) - V,H®(x)=0. Furthermore, Eq(2.30 will
be satisfied

kZO VHM R (x)- g 1(x)- GH®(x)=0, (2.32

by symmetry. Note, upon coordinate change),g *(x)
transforms like a metric tensor

GY(y)=VHY(y)-[300g™ (x)I V(0]

=V,H () g 4(y), (2.33

where matrix J(X) =dy/dx. If in any coordinate system
g 1(x) is an antisymmetric matrix with zero diagonal ele-

Poisson brackets and the BCH expansidhFor example,
given the symmetric decomposition of EQ.20), it follows
from the first term of the BCH expansion and Eg.36) that

(2.37)

Note, if an asymmetric decomposition were taken,

(2.38

as opposed to the second-order symmetric decomposition of
Eqg. (2.20 andiL,,i £, were each derivable from Hamilto-
nians following Eq.(2.39, then the resulting first-order in-
tegrator would possess a conserved quantity but waoold

possess time reversal symmetH(p,q; At) # H(p,q; — At)

H®(p,g)=2{h,+2h,,{hy+h,}}.

el LAL= gl LAt L1AL i £ALL () A2),

ments, it retains this form in all coordinate systems. Furtheror e'“Ale %At 1 (see Ref. 5, Chap. 12

more, if, in any coordinate systerg, ! can be transformed
into a matrix of constants, then the phase space i&ff3t

The derivation described above is generalized from that
given in Ref. 5. Here, it is clear from the presentation the key

and the determinant of the metric in this special coordinateesult, Eq.(2.36), holds for any antisymmetric matrix of con-

system is defined to be unity, dgt'=1, with the required

stants with zero diagonal elemenfs?, not just the form of
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Eq. (2.34. In addition, Eq.(2.36 holds, if a transformation ap(t)  ap(t)

to any coordinate systeny,(x) whereg *(y)=g ! is a con- 7p(0)  79(0) 0 |

stant antisymmetric matrix with zero diagonal elements ex-  J(t)= , g_l—( ) (2.43
ists, aq(t)  aq(t) 0]

. » B p(0) 3q(0)
[1£1,i Lo]={[Vh1(X) - g~ (%) - Vi, [ Vxha(X) - g7 (%) - Vi ]}
. T Equation(2.42 is referred to as the symplectic property, i.e.,
={[Whu(y)-J(y)g™ ()3 (y)- W], wheng ! is of the form in Eq.(2.43. Satisfying Eq.(2.42
1N AT is sufficient for a set of equations to possess a conserved
[Wha(y)-Jy)g (037 (y) - W1} quantity given a flat phase space.

—I[V.h T LV1.[Vh gl.v It should be noted that the symplectic property is often
%) G- WILIWhs(y) -G = Rl employed to analyze numerical integrators of Hamiltonian
=Vyh3(y)~§*1-Vy systems. It is straightforward to compute an integrator’s
_ Jacobian matrixJ and implicitly determine if an integrate
— 1 T
= Whs(y) - J(y)g () I (y)- ¥y possess continuous time equations of Hamiltonian form and,
=Vh3(X)-g LX) - VL, (2.39 hence, a conserved quantity. The Liouville operator formal-
ism, from which the equations of motion given in Eg.24
ha(x) =Vyha(y) -E‘l‘Vyhz(y) arise naturally, has important advantages as Jacobian matri-
_ 1T ces of complex integrators are tedious to obtain, analytically.
= Wha(y)-I(y)g () (y) - Wha(y) Also, simply considering the Jacobian matrix, only, misses
=V,h;(X)-g~1(x)- V;ho(X). (2.40  the detailed connection to the equations of motion and the

) ) . . construction ofH(At) from Poisson brackets provided by
That is, for a system of equations of motion vy|th a flat phasgne evolution operator formalisitsee Ref. & For systems
space, an integrator can be formulated with a conservegity a flat phase space, the Liouville operator construction is
quantity following the procedure given above in any coordi-5iso possible as described above. Equat®a2 can be em-
nate system. Simply using Liouville operator decompositiongyjoyed to check integrators for conserved quantities when a
derived by splitting the conserved quantiy(x) in proper  g=i(x) is known or can be inferred provided phase space is
combination with the metric tensor of the coordinate systenjjat [the metric satisfies Eq2.39)].
of interest will yield integrators with conserved quantities by Next, phase space volume preservation is considered.

(2.39, is sufficient for phase space to be flat. elements and unit determinant. Thus, H8.42 implies
Next, consider a system of equations of motion that camhhase space volume preservation,

be written in the form described above,
X(1)=G(x(1))= Vi H(X(1))- g 1(x(1)), (2.41

whereg ™! is taken to be a constant antisymmetric that ha<!» equivalently,
zero diagonal elements amt(x(t)) is preserved. In general,
one can view the equations of motion as coordinate transfor-  dX(t)=[detJ(t)]dx(0)=dx(0), (2.49
mation fromx(0)— x[x(0);t] parametrized by.?°=?2Thus, .
the time derivative of the coordinates at timean be ex- Where ded(t) for the transformation. Phase space volume
pressed in terms of the time derivative of the equations apreservation also embodies Liouville’s theorem,
time zero. For the case in which phase space is flat,
g tx(t)=g"" M:[deu(t)]v -X(t)
dt X ’
G(x(0))=VyoH(x(0))-[g7 1], (2.46

dl
G(X(1))= Ty H(x(0))-[I(D)g T(1)] dlogidety(t)]

dt
= VaoHX(1)-[I(Hg (1],

) wherex=V,- X is called the compressibility of the dynamical
where J(t)=0x(t)/9x(0) and H[x(t)]=H[x(0)]. This  gystem. Interested readers are encouraged to see Refs. 23 and
naturally leads to 24 for a simple derivation of Eq2.46) starting from the

g NT(t)=g definition of J(t)=dx(t)/dx(0). Of course, a constant or
' unit Jacobian is a necessary but not sufficient condition for a

detJ(t)=1, (2.44

=k(t)= Vx(t)vx(t)H(X(t))' : 971: 0,

IO g y(0) 1Tt =g Yy(t)], (242 flat phase space to exist. All elementsgf' must be con-
stant.
so that the Eq(2.4]) is preserved. Equatiof2.42 demon- Now, consider a set of equations of motion that have a
strates theg™ ! role as a metric tensor of phase space andJacobian without explicit time dependence. That is, viewing
also, holds in a general coordinate syst&ix). For Hamil-  the equations of motion as a variable transformation, it is
tonian systems, possible to write
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dx(t)=dx(0){det[x(t)]} close to those of the true systdie., if they are preseptAs
— a specific example, consider a one-dimensional harmonic os-
detg™ ~(x(t)) cillator
=dxX(0) \/ 57—~
detg™~(x(0)) 2

p?  mo?g?

(0 [detg(x(0)) ” Hip.o)=5—-+——, (2.50
OV Getgx(0)” (247

integrated using a simple Trotter—Suzuki decomposition of
the form,i £,= —mw?q, i £,=p, to yield the velocity Verlet
dx(t) Vdetg(x(t))=dx(0) ydetg(x(0)), (248 algorithm”-?® which is symplectic. The conserved quantity/
through the use of Eq2.42), valid when phase space is flat. integrator Hamiltonian is
Equation (2.47) is generally valid. Equatiori2.48, again, wAt) 2]~ 12
illustrates theg(x(t)) role as the metric tensor of the phase p? 1—(—) }
space®~?? Here, the equations of motion are compressible F(p,q;At) = 2
and do not obey Liouville’s theorem or preserve the phase o 2m
space volumddx(0)+#dx(t)]. Nevertheless, they do pos-
sess an analogous measure conservation law(ZE4g).2>2* Mw?q?
Note, the measure conservation law holds for a general set of +
equations of motiof¥?*not only for flat phase spaces but the 2
identification of the metric tensor is not obvious. Finally, w2At2
measure conservation and a time step dependent conserved arcco% 1- )
qguantity together allow a well defined, if time step depen- % 2 (2.5
dent, statistical mechanical ensemble to be elucidated. |wAt]

Next, consider an integrator derived from the Liouville The integrator has closed orbits faAt/2<1 and yields a
operator foanaIism wbich preserves a time-step-independe@ood approximation to the true trajectorieswiftt<1 [i.e.,
measure, del(t) =det (1)), lim,, 5o (p,0; At) =H(p,q)].

= In summary, the properties of numerical integrators de-
d Iog{det‘l(x(t))}_vx.i:(), rived from Trotter decompositions have been discussed, in
dt detail. In particular, decompositions of equations of motion
defined by a conserved quantity and metric tensor, Eq.
> AtKGM(x)-V, log[detd(x)]-V,-GR(x)}=0, (2.49  (2.41, have been investigated, in detail. It has been shown
K that if a set of equations of motion possess a flat phase space,
~ ~ - then Trotter decomposing the conserved quantity in any co-
G- Y logldetd 0]~ & () =0, ordinate system, will yield an integrator that, itself, emits a
where Eq.(2.24 has been employed. This condition is suf- conserved quantity. This generalizes the results of Ref. 5,
ficient to guarantee that the integrator preserves the samghich strictly treats the Hamiltonian case in canonical vari-
measure as the original set of equations, Jéett))  ables. In addition, a generalized symplectic property has
=detJ(x(t)), becauseB@(x)=G(x). In addition, (1) a been derived for systems with a flat phase space(E42,
common transformation can be made to the coordinate syébat can be employed to check if an integrator possesses a

tem in which all the perturbationk are incompressible, conserved quantity. Finally, phase space volume conserva-

%=0, or all the equations cannot vanish simultaneously ifion has been shown to be a necessary but not sufficient

Eq. (2.49: (2) since an incompressible dynamics may beco_ndition for an integrator to possess a conserved quantity, as
Hamiltonian or possess a flat phase space, the common trar@-'ght' well, be expected.

formationmaylead to a set of variables in which all pertur-

bation terms are Hamiltonian or have a flat phase space.

Therefore, a measure preserving the integrator of a nonc. Numerical integration of rigid bodies

Hamiltonian set of equations can, in principle, exhibit long It is, now, straightforward to design a symplectic inte-

time stability via a conserved quantity of the fork(x; At) grator for NO_SQUISH, Eq.(2.18. This Hamiltonian[i.e.,

but is not guaranteed to do so. Lack of measure conservatiogq_ (2.18)], is decomposed into five sub-Hamiltonians
indicates that no such transformation can exist. Hence, mea-

sure conservation is a necessary but not sufficient condition  hk(P,d),  k=0,4, h4(p,q)=¢(q), (252

for conserved quantities to exist. and the explicit form for the first fourh,(p,q),k=0,3] are
Last, it is useful to observe thek(x;At) will, in general,  given in Eq. (2.18. The symplectic integrator scheme is

only be close td(x;At) for smallAt. Thus, the trajectories naturally formed by

of the numerical integrator will be meaningful approxima-

tions to the true trajectories only in this limit. However, the e

existence of the conserved quantity does guarantee that there X @i £2(9U2)gl £10tgi £(3U2) gl L3(0112)Mrotgl L4(AL2)

is a bound on the deviation of the integrator’s trajectory from (2’53

exact. In addition, the integrator can possess closed orbits iL,=Vyhi(p,q)- Vq—Vghe(p,a) -V, ’

LAt i L4(AUD[ gi £5(30/2)
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where 8t=At/m,y, exp{LAt)=exp(LAt)+O(At%), each 300 (@) Light Water Dimer
of the four evolution operators is, itself, Hamiltoniand can o 180
: . . T ik
be applied analytically. The integer parametay,; can be = 0y
employed to increase the accuracy of the computationally a 180 —
inexpensive portion involving free rotatidithat is, at little 300 100 200 200
computational cost, the accuracy of this part of the approxi- tps
mate evolution operator can be improyeNote, 60 (b Liquid W 7
. < 30 | iqui ater ¢
holp(1),a(H)]=0, exifiLot]=1, (2.54 % o WM’
and the approximate evolution precisely conserve W g [ v —— NO_SAUISH
-60 ‘ -
lq(1)]?=1, wy(t)=0. (2.55 0 2000 4000 6000
The action of the first three evolution operatdfy—(3), vps
takes the simple form FIG. 2. (a) Light water dimer (ny=0.1 amu) atT)=155K, At=0.3fs.
e/ Lkt = cog £,0t) g+ SiNn £, 8 Pyg The energy conservation measureDE(t)=[E(t)—E]/|E|, for

NO_SQUISH (solid line) and Ref. 12(dotted ling. (b) Liquid water at
(256  (Ty=295K, p=1glcnt (my=1.008 amu), At=3.0fs. NO SQUISH

1L, 0t~ — ;
e'"%p=cog {xot)p+sin({,ot) Pyp, (solid line) and Ref. 12(dotted ling.
where
R
gk_4| K P Pya, (2.59 case of measure conservation, that permits a conserved quan-

ity, H(x;At), to exist but does not guarantee existence as

and the fourth evolution operator translates the momenta b . R .
escribed above. Note, ibq is introduced, explicitly, the

the force . . . .
equations of motion can be written in the form of E8.41)
eiLadDp —p | EFM) (2.58 fpr which the phasg space is flae., a variable transformg- .
k—FkT o : : tion to a Hamiltonian system can been constructed; it is

NO_SQUISH. Thus, a Lioville operator decomposition
could be developed usinfw®,q} in conjunction with its
metric tensor as described in Sec. Il B. However, the decom-

Of course, sinceb(q), for realistic systems, contains internal
forces, one must construct

Ton=—3S"(q) V4(0), (2.59  position of Ref. 12, Eq(2.6), is not of this form.

generater™® from 7{}) by setting the first element of) to  D. Rigid bodies in biophysical systems

zero and solve for the forcks It is important to discuss the applicability of using rigid
F4=25q)r?. (2.60 body algorithms to simulate biophysical systems. First, stan-

_ dard force fields treat the water molecules as rigid bodies and
Note, the Maclaurin series expansiontd(p,q;At) for the  the methodology is, thus, perfectly adapted for these degrees
NO_SQUISH integrator could be obtained using the analysisf freedom?” Second, in a peptide or protein it is useful to
of the previous section. Also, the NSQUISH integrator treat groups involving hydrogens, GHCH,, NH,, OH,
could not be developed using a simple leap-frog or TayloNH, CH, and SH, as rigid moieties because X—H bonds and
series approach but requires the Trotter—Suzuki techniqugi—x—H bonds have the highest frequencies in the molecule.
Some implementation details of the NSQUISH scheme (The lower-frequency CO motions are permitted to “flex.”
are provided as a pseudocode in the AppentBee Refs. 3 The work presented in Refs. 28 and 29 clearly show that this
and 8 for a pedagogical overvigw. approach yields accurate results. That is, physically impor-

In order to illustrate the properties of the TrOtter—SUZUkitant distribution functions are not altered by treating
operator factorization method on a non-Hamiltonian systempydrogen-containing groups as rigid bodies.

we decompose Ed2.5) into four parts following Ref. 12:
i£1=4S(q)0 "]V,

i _[(Iyy—lzz) i_}_{(lzz_lyy) B ll. RESULTS
2 lyx @y@2 Wy I, e P The two rigid body methods were tested on three prob-
(1) 0 T0u—1,) g (2.6) lems, the_ water dimer, liquid water_a_nd a helical pe_ptide
iL3=| =% 0,0, _+[Lwywx — solvated in watefusingm,,;=1). The rigid water—water in-
lyy 22 ® teraction potential employed was TIP3P and the peptide—
_ o 1y d 10 peptide, peptide—w_ateEYinteractions were taken from the
|£4=I—w—+|—w—+|—w—, CHARMM22 force field:
)Xy Ty T2z Tz In Fig. 2(@), an energy conservation measure along a

and define an approximate evolution operator analogous twajectory is presented for the water dimer. NEBQUISH is
Eq. (2.53. Here,i L, are not Hamiltonian, the evolution is more accurate than Ref. 12 but both methods are stable at
not symplectic but phase space volume preserving, a specing times. In Fig. 2b), results are presented for liquid water

Downloaded 25 Jun 2008 to 131.215.225.137. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Symplectic quaternion scheme 8657

« 2[ (aNo_squisk IV. CONCLUSION

X 0 In response to the challenges inherent in utilizing novel

E‘T - massively parallel architectures for biophysical MD studies,
. the equations of motion governing coupled sets of rigid bod-

% 2 [ (0)SHAKE/RATILE ies have been reinvestigated. A rigid body Hamiltonian for

g 0 the unit quaternion, the minimal nonsingular representation

U;f 2 of rotation most commonly used in MD simulatiohsyas

derived along with a reversible, symplectic, integration
scheme(NO_SQUISH. Tests on model and realistic sys-
tems indicate that NOSQUISH is superior to nonsymplectic
FIG. 3. Helical peptide in liquid watefT)=300 K, At=3.0fs. (@) Energy  but area preserving methotfsequal to the nonreversible,
conservation measure for NGQUISH and (b) the SHAKE/RATTLE nonsymplectic(for practical implementationsand, hence,
method(Refs. 6 and J. less versatile SHAKE/RATTLE technigde, and far more
accurate than standard gear predictor corrector or Runge—
Kutta methods proposed for use with the unit quaternion 25
years agd:® Finally, a new theoretical analysis has been pre-
which exhibit similar trends. In general, the phase space volsénted that gives an explicit condition for an integrator to
ume preserving integrator performs well but not as well a©SSess a conserved quantity, an explicit expression for the
the symplectic NQSQUISH. conserved quantity of a symplectic integrator, the latter fol-

Next, a peptide WEAQAREALAKEAARA) in water onv@ng and in_ accord with Ref. 5, and_extension of the ex-
was studied using theiny_mp simulation packag® with plicit expression to general systems with flat phase space.
both the water molecules and all gHCH,, NH,, OH, NH,
and CH groups in the peptide treated as rigid moieties whiIeACKNOWLEDGMENTS
the CO groups were permitted to flex. Here, a comparison of ~ This work was supported by grants PRF-32139-AC,
NO_SQUISH to the SHAKE/RATTLE methdd demon- NSF-CHE-9625015, NSF-EIA-008130%.J.M), and IBM
strates the excellent performance of the new, reversible, syntall authors. The authors would like to thank Professor B. B.
plectic technique. Note, SHAKE/RATTLE is symplectic and Laird and Professor R. Skeel for helpful comments.
reversible only if the Lagrange multipliers are solved to full
convergence/determined exactly; otherwise, SHAKE/ APPENDIX: NO_SQUISH IMPLEMENTATION DETAILS
RATTLE is neither reversible nor symplecf.'i%Nonetheless, It is simple to implement the NOSQUISH method
NO_SQUISH and SHAKE/RATTLE perform well and the within a MD standard code using velocity Verlet to integrate
average energy conservation measure i<d® ° for both  degrees of freedommot involved in a rigid body. In this
methoddsee Fig. 3. This indicates that for the peptide/water work, SHAKE/RATTLE is used to treat linear rigid bodies/
system the error in the two integrators is dominated by porods, only. The other rigid bodies are divided into groups
tential coupling, not by the treatment of the rotational mo-determine by the number of atoms in the body
tion. (atms/body=natm_body). For example, if three groups are

In general, NOSQUISH can be employed in conjunc- defined with natmbodyf1]=3, natm_body{2]=4,
tion with HMC calculations while SHAKE/RATTLE cannot. natm_body{3]=5 then all HO, CH,, NH,, etc., moieties
It is faster than our specialized implementation of SHAKE/will be evolved together in the first group and so on. In the
RATTLE for small rigid bodies and it is significantly easier following {p,r} denote Cartesian momenta and position,
to implement efficiently for large bodies. Briefly, in our spe- {p_com[ _con}, denote center of mass momenta and posi-
cialized implementation of SHAKE for rigid bodies, we lin- tion, {q,p_qug denote quaternion momenta and position,
earize the SHAKE equations for the multipliers, solve thed_pody the position of an atom in the body fixed frame, dt
coupled equations via LWower/uppef decomposition(for  the time step, At, dti the small step, At/m,
nonplanar structurgsand directly for planar structures, and A A_transpose the matrices(q), AT(q), dotA_transpose
|ter§te until convergence of _the nonlinear equations I$he matrix dJAT(q)/dt=AT(p,q), S the matrix S(q), P_k
achieved. For large nonplanar rigid molecules of greater tha .
four atoms, linear constraints are used to “build” the addi- e constant m_atrlxl?k, i _the torques and the_four com-

) ' o " ponent torque introduced in the text. All Cartesian and center
tional atoms onto the rigid frame formed by four specially 4t 1255 vectors have three components while the quaternion
chosen basis atoms, a procedure that is not general and rathej,iains four. Finally, two arrays of indices, index{] and

awkward to implement, in practicesee, for instance, Refs. jngex rb[][] are employed that indirectly address the array
28 and 31 for discussions of SHAKE/RATTLE implementa- of cartesian momenta and positions.

tions). Finally, the standard Runge—Kutta or gear predictor

corrector integrators originally proposed for #i8edo not  routine integrat@

conserveg|?, and have been shown to exhibit poor energy no_squish.evolve_0_to_dt2();

conservation compared to Ref. 12 and other methodsloop over particles not contained in a nonlinear rigid body
elsewherd?12 plindex_vv[iatm]]+ =0.5dt* F[index_vv[iatm]];

0 100 200 300
t/ps
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rlindex_vov[iatm|]+ =

(plindex_vu[iatm]]*dt)/m[index_vv[iatm]];

end loop

shake);

get_forces);

no_squish evolve_dt2_to_dt();

Miller et al.

loop over number of atms/body in this group
loop over bodies in this group
plindex_rb[ib][iatm]]=m[index_rb[ib][iatm]]
X (p_confib]/M _confib]
+ dotA_transposigb |* d_bodyf ib ][ iatm]);
end loop over bodies in this group

loop over particles not contained in a nonlinear rigid body €nd loop over number of atms/body in this group

p[index_vv[iatm|]+ =0.5"dt* F[index_vv[iatm]];
end loop
rattle();
end routine
routine na_squish_evolve_0_to_dt2()
loop over the rigid body groups
create quaternion.and_com_forces(rigidigroup]);
p_qua=rigid[igroup].p_qua;
F _qua=rigid[igroup|.F _qua;
r _com=rigid[igroup].r _com;
p_com=rigid[igroup].p_com;
F_com=rigid[igroup|.F _com;
loop over bodies in this group
p_qudib]+=F_qudib]*dt*0.5;
p_confib]+=F_con{ib]*dt*0.5;
r_confib]+=(p_confib]*dt)/M _con{ib];
end loop over bodies in this group
no_squish free_rotor(rigid igroup]);
create Cartesianpositions(rigidiigroup]);
end loop over the rigid body groups
end routine

routine nQ_squish_evolve_dt2_to_dt()
loop over the rigid body groups
create quaternion.
p_qua=rigid[igroup].p_qua;
F _qua=rigid[igroup|.F _qua;
p_com=rigid[igroup].p_com;
F _com=rigid[igroup|.F _com;
loop over bodies in this group
p_qudib]+=F_qudib]*dt*0.5;
p_confib]+=F_con{ib]*dt*0.5;
end loop over bodies in this group
create Cartesianvelocities(rigidigroup]);
end loop over the rigid body groups
end routine

routine createCartesian positiongrigid)
create A_transposeand_S(rigid);
loop over bodies in this group
loop over bodies in this group

rlindex_rb[ib][iatm]]=r_con{ib]

+A_transposgb]*d_bodyib][iatm[;

end loop over bodies in this group
end loop over number of atms/body in this group
end routine

routine createCartesianvelocitiegrigid)
create dotA_transpose(rigid);

and _com_forces(rigidigroup]);

end routine

routine createquaternionand_com_forcegrigid)
loop over number of atms/body in group
loop over bodies in group
F_con{ib]+=F[index_rb[ib][iatm]];
end loop over bodies in this group
end loop over number of atms/body in this group
loop over number of atms/body in this group
loop over bodies in this group

F _space=F[index_rb[ib][iatm]]
—F_con{ib]* (m[index_rb[ib][iatm]]/M _contib]);
F _body=A[ib]* F_space;
73[ib]+ =d_bodyib][iatm]* (cross prod)* F _body;
end loop over bodies in this group
end loop over number of atms/body in this group
loop over bodies in this group
4=(0,73[ib]);
F_qudib]=2S*74;
end loop over bodies in this group
end routine

routine nq_squish_free_rotor(rigid)
loop overm_rot small time steps
no_squish_rotate(3dti/2);
no_squish_ rotate(2dti/2);
no_squish rotate(1dti);
no_squish rotate(2dti/2);
no_squish_rotate(3dti/2);
end loop ovem_rot small time steps
end routine

routine na_squish_rotatek,dt)
loop over bodies in this group
zeta dt=dt* (p_qudib]*P_k*q[ib])/(4l _k);

glib]=cos (zetadt)*q[ib]+sin (zeta.dt)* P_k*q[ib];

p_qudib]=cos (zetadt)* p_qudib]
+sin (zeta.dt)*P_k*p_qudib];
end loop over bodies in this group
end routine
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