Low mechanical loss TiO$_2$-doped GeO$_2$ coatings for reduced thermal noise in Gravitational Wave Interferometers

Supplemental Material

Gabriele Vajente, Le Yang, Aaron Davenport, Mariana Fazio, Alena Ananyeva, Liyuan Zhang, Garlynn Billingsley, Kiran Prasai, Ashot Markosyan, Riccardo Bassiri, Martin M. Fejer, Martin Chicoine, François Schiettecatte, and Carmen S. Menoni

1LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 USA
2Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
3Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
4Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
5Département de Physique, Université de Montréal, Montréal, Québec, Canada

(Dated: July 28, 2021)

EFFECTIVE MEDIUM APPROACH

The elastic properties of the materials composing the multilayer coatings determine the Brownian noise incurred by the GW detectors where the mirrors are used. Although every single layer can be treated as composed of a homogeneous isotropic material, the layered structure of the stack breaks the symmetry. The multilayer stack cannot be described with simple averages of the single material properties, and the combination of the materials’ Young’s modulus, Poisson ratio and loss angles that enter in the Brownian noise estimates is different from the combination that determine the decay time of the mode ring-downs in the Gentle Nodal Suspension measurements. Here we briefly describe a unified approach to model both ring-down measurements and Brownian noise, based on an effective medium computation [17]. A detailed description of the method and the derivation of all the equations reported here is available in reference [15].

In an isotropic medium, the response to a stress is the same in all direction, and the symmetry implies that it is possible to express the elastic stiffness tensor in terms of only two moduli, for example the Young’s modulus Y and Poisson ratio ν or alternatively the bulk and shear moduli K and μ. This is not true for a layered material, but for elastic fields that vary slowly on the scale of the layers themselves the elastic properties of the multilayer can be described by an effective medium of lower symmetry, the components of whose stiffness tensor are computed from appropriately weighted averages of the elastic moduli of the layers [17].

Assuming a structure composed of two different alternating materials with total thicknesses d_A and d_B, we define the average of an elastic quantity as

$$\bar{g} = \langle g \rangle = \frac{d_A}{d_A + d_B} g_A + \frac{d_B}{d_A + d_B} g_B \quad (1)$$

The essence of the effective medium approach is to rearrange the constitutive elastic equations for all layers in forms that do not contain products of quantities that are discontinuous at the boundaries. In that form it is possible to carry out the averaging of equation 1 and write effective constitutive equations for the entire stack. The in-plane strains S_{xx}, S_{yy} and S_{xy} are continuous across the layer boundaries, as are the surface normal stresses T_{zz}, T_{xz} and T_{yz}. Those quantities are the basis of the effective medium averaging. Reference [15] carries out the computations and provides expressions for the elastic stiffness tensor of a layered material in terms of the single material properties. This effective tensor can then be used to compute the elastic response of the film.

When the stack is deposited on a significantly thicker substrate, like the Advanced LIGO+ mirrors or the 1-mm-thick disks used for the ring-down measurements, one can compute the elastic fields in the substrate independently, and use them as boundary conditions for the thin film fields [56]. One can then compute the elastic energy density in the film, using the effective medium stiffness tensor, according to

$$u = \frac{1}{2} \sum_i T_i S_i \quad (2)$$

where the summation is over all six components of the strain and stress tensors given in the Voight notation. We are primarily interested in the power dissipated in the film due to internal friction. This can be computed from the rate at which work is done on an deformed elastic body [55]. For a sinusoidal time dependence of frequency $f = \omega/2\pi$ this is

$$p_{\text{diss}} = -\frac{\omega}{2} \text{Im} \left[\frac{1}{2} \sum_i T_i^* S_i \right] \quad (3)$$

The result depends on the case being considered, since the elastic fields are determined by the substrate. When we compute the Brownian noise, we follow Levin’s approach [12], by applying a virtual force F_0 on the front surface of the mirror, distributed like the intensity of
the interferometer Gaussian probe beam, and compute the stress and strain fields for the substrate, as done by Harry et al. in [56]. Ignoring the light penetration into the coating, the Brownian noise is then directly related to the power dissipated by [12]:

\[
S(f) = \frac{4k_B T}{\pi f} \frac{p_{\text{diss}}}{2 \pi f F_0^2}
\]

The power dissipated in the stack when subject to virtual force can be computed using the effective medium stiffness tensor, to obtain the following expression that relates the Brownian noise power spectral density to the elastic properties of the materials composing the layers:

\[
S(f) = \frac{2k_B T}{\pi^2 f^2 d^2} \left\{ \frac{1}{3} \left[1 - \frac{2\nu}{(1 - \nu)^2} Y_{\phi_K} \right] + \frac{2}{3} \left[1 - \frac{\nu^2}{(1 - \nu)(1 - \nu)^2} Y_{\phi_\mu} \right] \left(1 + \nu \right) \left(1 - 2\nu \right) \frac{\nu}{Y_S} + \frac{2}{3} \left\{ \left(1 + \nu \right) \left(1 - 2\nu \right) \frac{\nu}{Y_\mu} \right\} \right\}
\]

It is apparent from this expression that the bulk \(\phi_K \) and shear \(\phi_\mu \) loss angles of the materials are averaged in a non-trivial way, that includes both the elastic moduli and their reciprocal. In the limit of equal bulk and shear loss angles, this expression reduces to the simplified form presented in equation 1 of this letter. The results provided by equation 5 have been compared with other models [14, 62] and found to give the same results within a few percents.

In the case of the mode ring-downs of the disks used in the Gentle Nodal Suspension, the surface of the disk is stress free but the in-plane shears and dilations are not zero and mode dependent. This difference with respect to the Brownian noise computation hints at the fact that the dissipated power will contain a different combination of the loss angles and elastic moduli. Instead of trying to compute the elastic field in the substrate for each resonant mode approximation unchanged by the presence of the thin film, all that is needed is one finite element simulation of the bare disk with the proper thickness, and then the total elastic energy in the resonator [53, 65]. It also allows a simple and computational efficient way to compute the dilution factors from the substrate strains obtained by finite element simulations, which are to very good approximation unchanged by the presence of the thin film, so all that is needed is one finite element simulation of the bare disk with the proper thickness, and then the energies in the film can be computed by straightforward numerical integration of the strains following equation 6. This method allows also to take into account the presence of an annular edge area not covered by the film. It could also allow modeling a non-uniform film.

THIN FILM DEPOSITION AND ANNEALING

For the initial parameter exploration, thin films of TiO\(_2\)-GeO\(_2\) with Ti cation concentration of 0%, 27%, and 44%, defined as Ti/(Ti+Ge), were deposited by ion beam sputtering using a biased target deposition system [46], that allowed a convenient tuning of the deposition param-
The thin films were also deposited on 75-mm-diameter, 1-mm-thick silica disks, to measure the elastic properties of the material. The un-coated substrates were polished on all surfaces (the two main circular surfaces as well as the barrel) to a standard optical grade, and annealed at 900°C for 10 hours, to obtain high quality factors of the substrate [35, 36], typically in the 0.5−1×10^8 range. The 75 mm-diameter substrates were held in place in the deposition chamber by a spring-loaded retaining ring, that covered a annular region of 0.5 mm along the entire edge of the sample. This region is therefore not covered by the thin film.

Once the optimal deposition parameters were found, additional films were deposited using a commercial Spector Ion Beam Sputtering system [26]. The deposition of TiO_2:GeO_2 used a metal target, while that of SiO_2 used an oxide target. The process conditions were adjusted to obtain the same optical properties as in the single layers described above.

All films were fully characterized as deposited, and then subjected to heat treatment cycles at various temperatures and of various durations. All annealing cycles were performed in air, by first ramping up the temperature at 100°C per hour, then holding at the target temperature for the desired duration, and finally ramping down at 100°C per hour. When not heated, all samples were stored in vacuum sealed container to avoid water absorption from the atmosphere.

SAMPLE CHARACTERIZATION

The thickness and refractive index of the TiO_2:GeO_2 thin films were obtained from spectroscopic ellipsometry, as shown in figure 1. A Horiba UVISEL ellipsometer was used with an incidence angle of 60° C in the spectral range of 0.59 eV to 6.5 eV. The fitting of ellipsometric data was performed with the DeltaPsi software.

At the laser wavelength of 1064 nm, the transmission of the as-deposited 40-layer structure was 190 ppm and the optical absorption was 46.4 ppm. The absorption loss reduced to 3.1 ppm after annealing at 600°C for 10 h.

The structure evolution of the mixture films with annealing was characterized by grazing incidence X-ray diffraction using a Bruker D8 thin film diffractometer operated at an incident angle of 0.5°. The measurement angle 2θ was varied between 10° and 80°. The results show that all mixture films are amorphous upon annealing at 600°C. Figure 2 shows the spectra of the 27% and 44% TiO_2:GeO_2 thin films annealed at 600°C and 700°C for 10 hours. The thin films are amorphous after 600°C annealing and show incipient crystallization, identified by the peak at 25.3° from crystalline anatase TiO_2 phase [63], when annealed at 700°C. Annealing to 800°C for 10 hours revealed a full crystallization in the 44% mixture.

Mixed TiO_2:GeO_2 thin films of thickness between 200 and 500 nm were deposited on fused silica and silicon substrates for structural and optical characterizations. Homogeneous oxide mixtures were formed by co-sputtering Ge and Ti targets with Ar^+ ions in a reactive oxygen atmosphere. In this process, the selected dopant concentrations were obtained by adjusting the length of the pulses biasing the Ti and Ge targets. In addition, the oxygen partial pressure was adjusted to achieve nearly stoichiometric thin films with high optical quality.
FIG. 3. RBS spectrum (dots) acquired on the sample containing 44% Ti/(Ti+Ge). The spectrum is fitted (black line) with a sum of simulations of single layers containing only the indicated elements. The inset zooms on the region where the lower energy edge of the Ar contribution is visible, between 1150 and 1230 MeV. (It is present at higher energies, but indistinguishable from the large Ti contribution.) A small background signal (5 counts) is visible below 1150 MeV in the inset. It is likely due to multiple scattering but could not be accounted for by the simulation. Since it is also present where the Ar contribution is, the Ar contribution to the spectrum was fitted about 5 counts below the experimental signal. Such background increases non-linearly with decreasing energy and is responsible for a 200 counts discrepancy at 400 keV (left of the main figure) between the experimental spectrum and the simulation.

It was also confirmed that the 44% samples did not show signs of crystallization upon annealing at 600°C for 108 hours.

Rutherford Backscattering spectrometry (RBS) was carried out at the Tandetron accelerator at Université de Montréal. Films deposited on crystalline silicon substrates during the same runs as the main samples were measured using He beams with energies of 2.035 MeV and 3.06 MeV. Prior to these analyses, the spectrum of a sample featuring a few known trace elements at the surface was acquired to determine the detector calibration. The acquired spectra were then compared to a simulation carried out using SIMNRA [64] to determine each element fraction and the areal atomic density of the layer. Figure 3 shows the spectrum for the sample containing 44% Ti/(Ti+Ge). Within the sensitivity of the technique, all layers are found to be homogeneous, and do not feature a concentration depth profile. The fraction of the detected element in each sample analyzed this way can be found in table I. The Ti and Ge content could be determined with a precision of about 0.5%, while that of oxygen is about 2% because the O peak sits on top of the Si substrate contribution. Given these uncertainties, the samples are found to be stoichiometric. The uncertainty on the areal density is about 3% and is the main contributor to the uncertainty on the mass density, which is ±100 kg/m³.

RING-DOWN MEASUREMENTS

The resonant modes of the 75-mm-diameter and 1-mm-thick samples were measured in a Gentle Nodal Suspension [51, 52]. The disks are supported in the center on a spherical silicon surface, and are held in position due to gravity and static friction. This allows for a very low recoil loss at the suspension point and very repeatable measurements for modes with a node at the center of the disk. The frequency f_i and decay time τ_i of about 20 modes are measured multiple times for each sample, before deposition of the thin film, after deposition and after each annealing step. The top panel of figure 4 shows an example of the mode quality factors Q_i, defined as the number of cycles of oscillation that it takes for the mode...
amplitude to be reduced by $1/e$:

$$Q_i = \pi f_i \tau_i$$ \hspace{1cm} (7)

From the difference between the Q values measured on the bare disk and on the coated disk, one can compute the excess loss angle due to the film.

$$\delta \phi_i = \frac{1}{Q_{i,\text{coated}}} - (1 - D_i) \frac{1}{Q_{i,\text{bare}}}$$ \hspace{1cm} (8)

where D_i is the dilution factor for the i-th mode, defined as the ratio of the elastic energy stored on average in the film divided by the elastic energy stored on average in the entire resonator, film plus substrate. The $\delta \phi_i$ can then be fitted to models of the material loss angles.

The bottom panel of figure 4 shows the shift in the resonant frequency for all modes, due to the additional stiffness and inertia induced by the thin film. By fitting the frequency shifts to finite element models computed with COMSOL, it is possible to estimate the Young’s modulus and the Poisson ratio of the film material from the experimental data. The slope of the dependency of the frequency shifts versus frequency is related mostly to the Young’s modulus, while the spread along the linear relation is related mostly to the Poisson ratio.

Figure 5 shows the evolution of the loss angle (averaged over all measured modes, and assuming equal bulk and shear angles) and the Young’s modulus as a function of the annealing steps. There is a clear increasing trend in the Young’s modulus when the film is annealed at higher temperatures, a probable indication of crystallization. The observed trends in mechanical loss and Young’s modulus with Ti concentration and annealing are being investigated with atomic structure measurements and modeling.

We note that the analysis of the measurements with different loss angles shows that the TiO$_2$:GeO$_2$ shear loss angle is compatible with a constant, frequency independent value. In the resonant modes that are measurable with the Gentle Nodal Suspension, the elastic energy in the film is dominated by shear, with the bulk contribution being typically about a factor 5 smaller. This justifies the approximation of equal and frequency independent loss angles we used in our initial parameter exploration.

TABLE I. RBS measurement results for three representative mixed TiO$_2$:GeO$_2$ films. The sample in the last row was measured after annealing in air at 600°C. The most notable change is the reduction of the Ar content.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Thickness [nm]</th>
<th>Atomic thickness $[\times10^{15}$ at/cm$^2]$</th>
<th>Density [kg/m3]</th>
<th>Element Concentration</th>
<th>Ti/(Ti+Ge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>as deposited</td>
<td>480</td>
<td>3297</td>
<td>3370</td>
<td>O [%] Ar [%] Ti [%] Ge [%]</td>
<td></td>
</tr>
<tr>
<td>as deposited</td>
<td>321</td>
<td>2325</td>
<td>3720</td>
<td>66.7 0.0 9.4 23.8 44.9 9.4 23.8 28.4</td>
<td></td>
</tr>
<tr>
<td>annealed at 600°C</td>
<td>314</td>
<td>2265</td>
<td>3690</td>
<td>67.4 0.3 14.3 18.0 44.3</td>
<td>28.4</td>
</tr>
</tbody>
</table>

For each sample, we measured the resonant frequency shifts δf_i for every mode, and the quality factors $Q_{i,0}$ for the bare disk and the coated substrate $Q_{i,c}$ after annealing. The thickness and density of the films are measured independently with ellipsometry and RBS, as explained above. The material in the single layer is described by its unknown parameters: the Young’s modulus Y, the Poisson ratio ν and the frequency dependent bulk and shear loss angles ϕ_K and ϕ_μ. We developed a model of the coated substrate, that can be used to compute the excess loss angle measured in the coated substrate as a function of the material parameters. This model is based on finite element simulations of the bare substrate, per-
The loss angles are described with three different models: constant, linearly dependent on frequency, or following a power law:

\[
\phi_i = \begin{cases}
\phi_{\text{const.}} \\
\phi_{10\text{kHz}} \left(1 + m \frac{f - 10\text{kHz}}{10\text{kHz}} \right) \\
\phi_{10\text{kHz}} \left(\frac{f}{10\text{kHz}} \right)^m
\end{cases}
\]

(9)

Additionally, we either allow for different bulk and shear loss angles, or we force the two angles to be equal. This gives us a total of six models. The sampled posterior probability distribution can be marginalized over all model parameters to obtain the Bayes factor of each of the six model, that is related to the probability of each model given the data. This allows us to determine the model that is favored by the measurements.

The most probable model that describes the internal energy dissipation of the TiO2:GeO2 film is a power law frequency dependency, with different bulk and shear loss angles. The power law predicts a steep frequency dependence of the bulk loss angle. The second most probable model is a linear frequency dependency. In the linear
case the slope is constrained to avoid negative loss angle at low frequency. Therefore the linear model cannot describe a frequency dependence as steep as the power law. Nevertheless, both models predict that the bulk loss angle is significantly lower than the shear angle at lower frequencies. The top panels of figure 6 and figure 7 shows the predicted loss angles for both models. The SiO$_2$ film measurements are best described by equal bulk and shear loss angles, frequency independent, also shown in figures 6 and 7.

The analysis we carried out for the measurements described in this letter is similar to what has been described in reference [53], with two important differences: first, the Young’s modulus and Poisson’s ratios are modeled together with the loss angles, so the posterior probability distribution of the loss angles takes into account the correlation with the elastic moduli uncertainties; second, the model includes an uncoated edge along the disk border, with a size that can be either be fixed to the measured value, or allowed to vary as part of the Bayesian fit.

The sampled posterior probability distributions of the model parameters can then be used to compute the Brownian noise for a given design of the input and end test mass coatings, using equation 5. Each sample is a set of parameter values, that gives a level of Brownian noise for each frequency. Repeating the computation for all samples in the MCMC output allows us to directly compute the posterior distribution probability of Brownian noise, given the model and the measured data. The bottom panel of figure 6 shows the predicted Brownian noise for the TiO$_2$-GeO$_2$ power law model, that is the most probable model given the data. The bottom panel of figure 7 shows the predicted noise for the second most probable model for TiO$_2$-GeO$_2$, that is the linear model. In both cases the predicted noise is compatible with the Advanced LIGO+ requirements within the confidence levels.

16. See supplemental material at [url will be inserted by publisher].
18. M Granata, A Amato, L Balzarini, M Canepa, J Degallaix, D Forest, V Dolique, L Mereni, C Michel, L Pinard, B Sassolas, J Teillon, and G Cagnoli. Amorphous optical coatings of present gravitational-wave interferometers. *Classical and Quantum Gravity*, 37(9):095004, apr 2020.
21. A Amato et al. Optical and mechanical properties of ion-beam-sputtered Nb$_2$O$_5$ and TiO$_2$-Nb$_2$O$_5$ thin films for gravitational-wave interferometers and an improved measurement of coating thermal noise in Advanced LIGO. *Accepted in Phys. Rev. D*, 2021.

* vajente@caltech.edu

Alex Amato, Silvana Terreni, Massimo Granata, Christophe Michel, Benoit Sassolas, Laurent Pinard, Maurizio Canepa, and Gianpietro Cagnoli. Observation of a Correlation Between Internal friction and Urbach Energy in Amorphous Oxides Thin Films. Scientific Reports, 10(1):1670, Feb 2020.

Alexei Alexandrovski, Martin Fejer, A Markosian, and

[66] Comsol multiphysics.