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ABSTRACT

We investigate the morphology of the stellar distribution in a sample of Milky Way (MW) like galaxies

in the TNG50 simulation. Using a local in shell iterative method (LSIM) as the main approach, we

explicitly show evidence of twisting (in about 52% of halos) and stretching (in 48% of them) in the real

space. This is matched with the re-orientation observed in the eigenvectors of the inertia tensor and

gives us a clear picture of having a re-oriented stellar distribution. We make a comparison between the

shape profile of dark matter (DM) halo and stellar distribution and quite remarkably see that their

radial profiles are fairly close, especially at small galactocentric radii where the stellar disk is located.

This implies that the DM halo is somewhat aligned with stars in response to the baryonic potential.

The level of alignment mostly decreases away from the center. We study the impact of substructures

in the orbital circularity parameter. It is demonstrated that in some cases, far away substructures are

counter-rotating compared with the central stars and may flip the sign of total angular momentum

and thus the orbital circularity parameter. Truncating them above 150 kpc, however, retains the disky

structure of the galaxy as per initial selection. Including the impact of substructures in the shape of

stars, we explicitly show that their contribution is subdominant. Overlaying our theoretical results to

the observational constraints from previous literature, we establish fair agreement.
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1. INTRODUCTION

According to the standard paradigm of galaxy forma-

tion, galaxies are formed hierarchically and in multiple

phases, where the early formation phase involves the col-

lapse of gas and in-situ star formation, while the latter

phase includes the accretion and merger of many smaller
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structures forming the stellar distribution (SD) (White

& Rees 1978; Searle & Zinn 1978; Blumenthal et al. 1984;

White & Frenk 1991; Navarro et al. 1997; Forbes et al.

1997; Oser et al. 2010; Beasley et al. 2018). Such ac-

creted structures, lead to the formation of tidal debris

in different stages of the phase mixing. Consequently,

the stellar distribution is expected to retain information

regarding to the assembly history of the galaxy and can

be treated as a direct tracer of the galaxy morphology

and evolution.
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Observations of the Milky Way (MW), reveal that

MW has encountered multiple phases of accretions as

a build up of its stellar distribution (Ibata et al. 1994;

Helmi & White 1999; Helmi et al. 2018; Mackereth &

Bovy 2020; Naidu et al. 2020). Such accreted structures

complicate observational measurements of the morphol-

ogy of galaxies. Indeed, there have been many exten-

sive endeavors to measure the shape of the stellar halo

in the MW galaxy in real space (Vivas & Zinn 2006;

Ivezić et al. 2008; Bell et al. 2008; Watkins et al. 2009;

Sesar et al. 2010; Deason et al. 2011; Sesar et al. 2013;

Belokurov et al. 2014; Faccioli et al. 2014; Iorio & Be-

lokurov 2019; Kado-Fong et al. 2020) using different stel-

lar types, such as blue horizontal branch (BHB) and

blue straggler (BS) stars (Deason et al. 2011), main se-

quence turnoff (MSTO) stars (Bell et al. 2008) and RR

Lyrae stars (RRLS) (Sesar et al. 2013; Iorio & Belokurov

2019), as tracers. Or in velocity space, in terms of the

velocity anisotropy (Myeong et al. 2019; Bird et al. 2020;

Iorio & Belokurov 2020). However, owing to the afore-

mentioned complexities as well as the very non-trivial

selection functions for the surveys, , not all of such ob-

servational studies lead to the same final results.

As a result, there have been many attempts to model

the galaxy morphology traced either by the DM or SH

halos, theoretically. In the last decade, there have been

many improvements in the study of the morphology of

galaxies using hydrodynamical simulations like EAGLE

(Schaye et al. 2015; Crain et al. 2015; Trayford et al.

2019; Font et al. 2020), AURIGA (Monachesi et al. 2016;

Grand et al. 2018; Hani et al. 2019), NIHAO-UHD (Buck

et al. 2018, 2020) and FIRE-2 (Garrison-Kimmel et al.

2018; El-Badry et al. 2018; Orr et al. 2019; Sanderson et

al. 2020; Santistevan et al. 2020). Added to the above

list, there have been also quite some investigations us-

ing the Illustris simulation (Vogelsberger et al. 2014a,b;

Genel et al. 2014; Sijacki et al. 2015) and IllustrisTNG

simulations (Naiman et al. 2018; Pillepich et al. 2018;

Springel et al. 2018; Nelson et al. 2018; Marinacci et al.

2018; Vogelsberger et al. 2020; Merritt et al. 2020).

Perhaps the best advantage of using cosmological hy-

drodynamical simulations is the capability to disentan-

gle between the contribution of the central halo and the

substructures on the stellar morphology, to get rid of

the selection biases and to quantify the impact of using

different tracers to probe stellar halo shape. It is very

common to either use the dark matter (DM) or stel-

lar distribution (SD) as different tracers in probing the

galaxy morphology.

The latter one, i.e. stellar distribution, is also known

in the literature as the stellar halo. However there are

some ambiguities between the theoretically inferred as

the stellar halo and its observational selection. While

from the theoretical perspective SH can be defined

mostly using the kinematics of stars and the orbital cir-

cularity parameter (with a little spatial cut of 5 kpc

to eliminate the stars part of bulge) (Monachesi et al.

2019),

observationally it is defined in slightly different way,

e.g. stars that are not within a couple of kpc of the disk

plane etc. Although in this paper we are providing a

theoretical study of the stellar morphology, to avoid any

confusions for the observers, we wish to use the “stellar

distribution”, (SD), rather than the “stellar halo”.

In Emami et al. (2020), we used the TNG50 simulation

(Pillepich et al. 2019; Nelson et al. 2019), the highest res-

olution from the series of IllustrisTNG simulations, and

investigated the shape of a sample of MW like galax-

ies using the DM as the tracer. We explicitly showed

that the DM halo in TNG galaxies is consistent with a

triaxial shape and provided evidence for both gradual

and abrupt rotations of the DM halo. Since DM gives

us an indirect estimate of the galaxy morphology, it is

essential to calculate the galaxy morphology using the

SD and compare that with the estimated shape from

the DM halo. This is rather essential as measuring the

level of rotation in the DM is extremely hard, if not im-

possible. On the contrary, modeling galaxy morphology

using the stellar distribution potentially enables us to

check how we could measure them using spectroscopic

surveys in our Galaxy.

Motivated by this, in the current paper, we analyze

the galaxy shape using the SD. We analyse the shape

both from the statistical perspective as well as individual

halos. In the latter case, we make some classifications for

the shape of the stellar distribution, putting them into

two main classes: twisted and twisted-stretched galax-

ies. We report some levels of gradual or rather abrupt

rotations for different galaxies in our sample. In addi-

tion, we make a comparison between the morphology

of the DM halos (Emami et al. 2020), and the current

analysis, for which we use the results of our various al-

gorithms. Although the details of such comparison de-

pend on the method we use, our analysis explicitly shows

that in some sense DM halo and stellar distribution are

fairly similar. We study the impact of gravitationally

self-bound substructures on the shape of stellar distri-

bution and very remarkably demonstrate that in most

cases, their impact is subdominant. Finally, we over-

lay our theoretical results on top of recent observational

measurements and establish a rather fair agreement be-

tween the two.

The paper is structured as follows. In Sec. 2, we review

the simulation setup and the sample selection. Sec. 3
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presents several different methods to compute the SD

shape. Sec. 4 focuses on analysing the shape profiles. In

Sec. 5, we explicitly compare the shape of the DM and

stellar halo. Sec. 6, we study the impact of the substruc-

tures in the shape analysis. In Sec. 7, we make the com-

parison between our theoretical results and the obser-

vational outcome from previous literature. We present

few technical details on the halo classes in Appendix B.

2. SAMPLE OF MW LIKE GALAXIES IN TNG

SIMULATION

Below, we present a short summary about the TNG50

simulation (Pillepich et al. 2019; Nelson et al. 2019) as

well as our sample selections in a similar way to Emami

et al. (2020).

2.1. TNG50 Simulation

TNG50 is the highest resolution of the IllustrisTNG

cosmological hydrodynamical simulations (Pillepich et

al. 2019; Nelson et al. 2019). Table 1 describes the pa-

rameters of the model and its mass and gravitational

force resolution. The simulation contains different com-

ponents, such as the DM, gas, stars, supermassive black

holes (SMBHs) and magnetic fields which are self con-

sistently evolved with time in a periodic box. More

explicitly, starting from z = 127 and using the Zel-

dovich approximation to generate the initial condition,

the system was evolved in time using the AREPO code

(Springel 2010) and by solving a set of coupled differ-

ential equations for magnetohydrodynamics (MHD) and

self-gravity. The latter is treated numerically by using

a tree-particle-mesh algorithm (Springel 2010). In the

last column of each row, we present the softeninglength

for DM/stars. It is taken as 0.39 comoving kpc/h for

redshifts above unity and gets lower down to 0.195 co-

moving kpc/h at lower redshifts.

The cosmological parameters are chosen from Planck

Collaboration et al. (2016), with the values, Ωb =

0.0486, Ωm = Ωdm + Ωb = 0.3089, ΩΛ = 0.6911,

h = 0.6774, H0 = 100hkms−1Mpc−1, σ8 = 0.8159 and

ns = 0.9667.

On the other hand, the unresolved astrophysical pro-

cesses which are used in IllustrisTNG, like star forma-

tion, stellar feedback and SMBH formation, growth and

the feedback are similar to Illustris simulations with

the main differences in: (i) the feedback and growth

of SMBH, where in IllustrisTNG BH driven winds are

produced through an AGN feedback model. (ii) In the

galactic winds, where unlike the Illustris, the wind parti-

cles are isotropic as they are assigned an initial velocity

pointed in a random directions. (iii) In the stellar evolu-

tion and the gas chemical enrichment, in which the stel-

lar evolution is tracked through 3 main stellar phases:

from the asymptotic giant branch (AGB) stars (in the

mass range 1-8 M�); or through the core-collapse super-

novae (SNII) and from the supernovae type Ia (SNIa)

(both in the range 8-100 M�). See Weinberger et al.

(2017); Pillepich et al. (2018) for more details on the

IllustrisTNG model.

2.2. MW like galaxies in TNG50

As it is described below, throughout our analysis in

this paper, we study a sample of 25 Milky Way (MW)

like galaxies with the following common features. On

one hand , we propose the DM part of subhalo masses to

be restricted in the mass range (1−1.6)×1012M�, con-

sistent with recent estimates of the MW mass (Posti &

Helmi 2019). This brings us a total number of 71 galax-

ies in the above mass range. On the other hand, we re-

quire them all to have disk-like, rotationally-supported

morphologies. It was confirmed observationally that,

Milky Way galaxy shows a manifestly disk-like morphol-

ogy (Schinnerer et al. 2013). Below, we summarize our

algorithm, following Abadi et al. (2003); El-Badry et al.

(2018), to identify the disk-like galaxies.

2.2.1. Orbital circularity parameter

As already mentioned above, throughout our analysis,

we are only interested in the rotationally supported MW

like galaxies. The rotational support is measured using

the orbital circularity parameter, ε, which describes the

level of the alignment between the angular momentum

of the individual stars and the net specific angular mo-

mentum of the galaxy:

jnet ≡
Jtot

M
=

∑
imiri × vi∑

imi
, (1)

where i refers to the star particles and the sum is per-

formed for all star particles belonging to the simulated

galaxy. Pointing the z axis along with the jnet direction,

we compute the inner product of the angular momentum

of individual stars and z axis, jz,i = ji · ẑ. The orbital

circularity parameter is then defined as:

εi ≡
jz,i
jc(Ei)

, jc(Ei) = rcvc =
√
GM(≤ rc)rc. (2)

where jc(Ei) describes the specific angular momentum

of the i-th stellar particle rotating in a circular orbit,

which is specified with the radius rc and energy Ei (see

Emami et al. (2020) for more details).

Based on our theoretical identification, disk stars are

determined as those with εi ≥ 0.7. Furthermore, we

limit our sample to cases where more than 40% of the

stars that are in a radial distance less than 10 kpc from

the center are disky. This criterion brings us down to a

sample of 25 MW like galaxies.
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Table 1. The physical parameters of the TNG50 simulation, including the simulation volume, the box side length, the number
of gas and DM particles, the baryon and DM mass and finally the z = 0 Plummer gravitational softening for the DM and stellar
components.

Name Volume [(Mpc)3] Lbox[Mpc/h] NGAS NDM mbaryon [105M�] mDM [105M�] εDM,stars [kpc/h]

TNG50 51.73 35 21603 21603 0.85 4.5 0.39→ 0.195

TNG50-Dark 51.73 35 − 21603 − 5.38 0.39→ 0.195

2.3. Galaxy classification based on the b-value

As already mentioned above, in our analysis, we have

used the orbital circularity parameter ε to determine

the MW-like galaxies with large fraction of stars in the

disk. Here we infer the galaxy morphology using a some-

what less used quantity, called the b-value, and compare

the final results with the above results, see (Emami et

al. 2020) for more details. Following the approach of

Schulze et al. (2020), the b-value is defined as:

b = log10

(
j∗

kpc km/s

)
− 2

3
log10

(
M∗
M�

)
. (3)

where j∗ refers to the specific angular momentum of

stars while M∗ describes the total stellar mass of the

galaxy. Based on the above b-value estimate, galax-

ies can be classified in 3 main categories as disks (with

b ≥ −4.35), intermediates (with −4.73 ≤ b ≤ −4.35)

and spheroidal (with b < −4.73). Figure 1 presents the

b-value vs the halo stellar mass for the full sample of 71

galaxies in the mass range (1-1.6) ×1012M� where dif-

ferent galaxy types are marked differently in the figure.

Overlaid on the plot, we also show the MW-like galaxies

selected from the orbital circularity parameter. Interest-

ingly, all of the inferred as MW-like galaxies are disky,

i.e. with b ≥ −4.35, but not every disky galaxy looks

like the MW as inferred from ε criteria. Below, we keep

our previous galaxy classification and limit our current

study to MW-like galaxies. In a future work, we aim to

compute the shape of disky galaxies in a broader view

and compare them with the sample of MW-like galaxies.

2.4. Mass density map

We begin our analysis by presenting the surface num-

ber density, Σ, map of stellar distribution in a sub-

sample of MW like galaxies. Figure 2 presents the pro-

jected number density map from a subset of 4 MW like

galaxies in our galaxy sample. In different rows, we refer

to various galaxies while in different columns we zoom-in

further down to the central part of the halo. From the

figure, it is evident that stellar distribution have very

complex profiles and substructures. Owing to this, we

have to use different algorithms for computing the shape

and compare their final outcomes with each other.

3. MAIN ALGORITHM IN THE SHAPE ANALYSIS

Having introduced a sample of 25 MW like galaxies,

below we make a comprehensive study about the mor-

phology of the stellar distribution as a direct tracer of

the galaxy morphology.

Below we introduce two different algorithms to infer

the shape of the SD in depth. We leave the details of

the comparison between them to the Appendix A.

Depending on the details of the computations, our

shape finder algorithms could be divided in two main

classes. In both categories, we infer the shape using it-

erative methods. In the first approach, we compute the

shape using a local shell iterative method (LSIM), while

in the second method, we analyse the SD shape using an

enclosed volume iterative method (EVIM). In Emami et

al. (2020), we inferred the DM halo shape using EVIM

as the primary method. Here on the other hand, we

take LSIM as the main approach. One main reason for

this is that star particles are much less abundant than

DM particles. This means that the shape is dominated

by the few closest shells and the outer layers contribute

much less in the final results. Therefore, EVIM is not

able to follow the stellar shapes in much detail locally.

This however was not a problem for the DM particles

and EVIM was very useful method to give us the aver-

aged shape yet with many details of what is going on at

every radius and in terms of the rotation of halo.

Having selected LSIM as the main method, we only

describe it in what follows and defer the presentation of

the EVIM method in Appendix A.

3.1. Local shell iterative method (LSIM)

Here we illustrate the LSIM. In this method, we split

the range between the radii risph = 2 kpc and resph =

100 kpc in N = 100 logarithmic radial thin shells and

compute the reduced inertia tensor as:

Iij ≡
(

1

M?

)
×

Npart∑
n=1

mnxn,ixn,j
R2

n(rsph)
, i, j = 1, 2, 3. (4)

where we have M? ≡
∑Npart

n=1 mn and Npart describes

the total number of star particles inside the thin shell.

Furthermore, xn,i refers to the i-th coordinate of n-th
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Figure 1. (Left) The b-value vs the stellar mass for the full sample of galaxies with halo mass in the range (1-1.6) ×1012M� in
TNG50. Yellow-stars refer to the distribution of the orbital circularity parameter for the MW-like galaxies in our sample.(Right)
The distribution of the orbital circularity parameter, ε, for the disky and MW-like halos in our sample. Different halos are
shaded using different colors.

particle. Finally, Rn(rsph) describes the elliptical radius

of n-th particle, defined as:

R2
n(rsph) ≡ x2

n

a2(rsph)
+

y2
n

b2(rsph)
+

z2
n

c2(rsph)
, (5)

where (a, b, c) are referring to the axis lengths of the el-

lipsoid in which hereafter we skip the explicit radius de-

pendence of these functions for brevity. As already men-

tioned above, in this approach, we compute the shape

at some thin shells, where 0.75 ≤ R2
n ≤ 1. At every ra-

dius, we iteratively calculate Iij in the above shells with

a = b = c = rsph in the first iteration. We then use the

eigenvalues and eigenvectors of the diagonalized inertia

tensor to deform the above shell. In addition, in order

to control the deformed ellipsoid, we could either take

the interior volume or the semi-major axis fixed. This

requires different rescaling of the axis lengths as given

by a =
√
λ1, b =

√
λ2 and c =

√
λ3. In the former case,

the enclosed volume is kept fixed under the following

transformations:

a =
rsph

(abc)1/3

√
λ1,

b =
rsph

(abc)1/3

√
λ2,

c =
rsph

(abc)1/3

√
λ3. (6)

Here λi, (i = 1, 2, 3) describes the eigenvalues of the re-

duced inertia tensor. While in the latter approach, the

semi-major is unchanged if:

a =
rsph√
λmax

√
λ1,

b =
rsph√
λmax

√
λ2,

c =
rsph√
λmax

√
λ3. (7)

where λmax ≡ Max[λi, i = (1, 2, 3)]

In what follows, we adopt the former choice, to get

as close as possible to the EVIM. We briefly comment

on the latter approach as well. Using the eigenvectors

of the inertia tensor as the basis, at every iteration, we

rotate all of stars to the frame of principals, as the co-

ordinate frame defined by the three eigenvectors, and

we make sure that they present a right handed set of

coordinates. In order to get statistically reliable re-

sults we require to have at least 1000 stars in a given

shell (Zemp et al. 2011). At all radii, the halo shape

is computed as the ratio of the minor to major axis,

s = a/c, as well as the ratio of the intermediate to the

major axis, q = b/c. We terminate the iteration pro-

cess once the residual of the shape parameters, (s, q),

after each iteration gets converged to some level defined

by Max

[
((s− sold)/s)

2
, ((q − qold)/q)

2

]
≤ 10−3 with

Max referring to the maximum value between the above

two quantities. In the following, we only present the

points for which the above algorithm has converged.

4. SHAPE PROFILE ANALYSIS

Having presented different algorithms for analysing

the shape of the stellar distribution, below we analyse

the shape at two different levels; from a statistical and

individual perspective.
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Figure 2. Logarithm of the projected (mass) density map (in units of kpc−2) of stellar distribution (SD) for a sample of 4 MW
like galaxies from our galaxy sample in TNG50. Every row presents one galaxy with an ID number. From the left to the right,
we zoom-in more on the central part of the halo. We have chosen stars with |ε| ≤ 1.

4.1. Shape Analysis: ensemble based approach

Starting from the ensemble approach, in Figure 3, we

present the radial profile of the median and 16(84) per-

centiles for shape parameters (s, q, T ) in both of the

LSIM and EVIM, where T ≡ 1−(b/c)2

1−(a/c)2 refers to the tri-

axiality parameter. From the figure, it is evident that

both versions of LSIM lead to similar radial profiles for

the shape parameters. On the other hand, EVIM gives

us a flatter radial curve, especially toward the outskirts

of the halo. In addition, while the results of the EVIM

for (q, T ) are in close proximity to the ones from LSIM,

it predicts smaller values for the radial profile of s pa-

rameter compared with the LSIM. This is understood

as in the LSIM, less populated outer shells have larger s

parameter, since the halo is getting rounder in the out-

skirts. On the contrary, the EVIM cannot capture such

variation as the inner population of stars somewhat pre-

dominant the results in shape estimation. On the other
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Figure 3. Median and 16(84) percentiles of shape parameters (s, q, T ) using 3 different algorithms. We studied the shape
using two different versions of LSIM and using EVIM. In LSIM(Volume), we compute the shape in local shells with an enclosed
volume fixed while in LSIM(Semi-Major), we keep the semi-major axis fixed.

hand, since the q parameter has a more constant profile,

with less variation, both techniques give similar results.

Another interesting aspect of Figure 3 is that the me-

dian and percentiles of the triaxiality parameter point

to an oblate/triaxial stellar distribution. In more de-

tail, the inferred T profile from both versions of LSIM is

oblate in the central part of galaxy and becomes triaxial

in the outskirts. This is in contrast to the T profile from

the EVIM which is more triaxial in the central part of

the galaxy and gets converted to an oblate shape at the

outskirts.

Table 2 presents the median and 16(84) percentiles of

the shape parameters (s, q, T ) for the above three al-

gorithms where the median/percentiles have been com-

puted in the range 2 ≤ r/kpc ≤ 40. It is worth pointing

out that the median/percentiles depend on the upper

cutoff of the radius. We have chosen the above cutoff

such that most of galaxies have enough converged points

in the shape analysis (see the individual shape analysis

for more detail). Being mindful of the dependency of

the above values on the upper limit of radius, it is in-

teresting that statistically (up to 40 kpc), the s from

the LSIM with fixed semi-major is closer to the EVIM.

However, the q is closer between both versions of LSIM

than the EVIM.

The above ensemble based analysis gives us a good

sense about the collective behavior of the MW like galax-

ies in our sample. However, to get a more detailed sense

about the morphology of different stellar distributions,

in the following, we turn our attention to the shape anal-

ysis at the level of individual galaxies.

4.2. Shape Analysis: Individual galaxy approach

Having presented the stellar distribution shape at the

statistical level, below we analyse the shape for individ-

ual galaxies. The main goal is to make a classification

of different stellar distribution types based on the shape

of the stellar distribution. As already mentioned above,

Table 2. Median and 16(84)th percentiles of stellar dis-
tribution shape parameters computed from LSIM(Volume),
LSIM (Semi-Major) and EVIM. These values are computed
in the range 2 ≤ r/kpc ≤ 40.

Method s q T

LSIM(Volume) 0.31+0.188
−0.103 0.93+0.039

−0.084 0.19+0.215
−0.113

LSIM(Semi-Major) 0.24+0.109
−0.070 0.92+0.046

−0.102 0.18+0.214
−0.105

EVIM 0.22+0.036
−0.038 0.90+0.046

−0.050 0.19+0.092
−0.089

we use LSIM(Volume) as the main algorithm. However,

to make a fair comparison between the above three al-

gorithms, we present the radial profile of the shape pa-

rameters for a few galaxies using all of these methods

and compare them in depth. We then make a galaxy

classification using LSIM(Volume).

Figure 4 compares the radial profile of the shape pa-

rameters inferred from the above algorithms. From the

figure, it is evident that the results of LSIM(Volume)

and LSIM(Semi-Major) are very similar. The inferred

shape parameters from EVIM, on the contrary, are very

smooth and rarely change after the radius of about 20

kpc. This indicates that in EVIM, the shape of outer

layers are mostly biased by the interior layers and is a

direct consequence of the fact that the stellar density

drops sharply towards the outer part of the galaxies.

Owing to this, hereafter we skip presenting the results

from EVIM. In addition, as the results from different

versions of LSIM are fairly close, we just present the re-

sults from LSIM(Volume) as the main method. Having

compared the outcome of different shape finder algo-

rithms, below we focus on the stellar distribution shape
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Figure 4. Comparison between the radial profile of the shape parameters using three different algorithm LSIM(Volume),
LSIM(Semi-Major) and EVIM.

from individual galaxies and use this to classify stellar

distributions in our galaxy sample.

Following the approach of Emami et al. (2020), we put

SDs in two main classes, (i) Twisted, and (ii) Twisted-

Stretched galaxies. It is shown in Appendix B that

galaxies belong to the aforementioned categories be-

have differently in terms of the radial profile of their

eigenvectors. More specifically, while the twisted galax-

ies present a rather gradual rotation, twisted-stretched

galaxies may experience both of a gradual and an abrupt

rotation radially.

Below we describe each of these classes in some depth

and we present one example from each class. More detail

about the entire galaxy sample are found in appendix B.

4.2.1. Twisted galaxies

galaxies belonging to this category show some levels

of gradual rotations in their radial profiles. To quan-

tify the twists, we shall compute the angles between

the sorted eigenvectors, (min, inter, max), with different

fixed vectors in the 3D such as L
‖
tot, which refers to the

total angular momentum of stars, and three basis of the

Cartesian coordinate system in the TNG box, i.e. î, ĵ

and k̂. The amount of the total rotation differs from

one halo to another. There are 13 galaxies in this cat-

egory. The radial profile of such galaxies are presented

in appendix B.

In the analysis of the angle of different eigenvectors

with the TNG basis and total angular momentum, we

have mapped the angles from [0, 2π] to the one from [0,

π] mainly because cos θ is complete in this interval and

as the arccos θ is taken in this half plane. Such selection

may lead to some bounces when the angles get to their

boundaries, either below zero or above 180 deg. For

example in galaxy 6, with the ID number 488530, the

angle between maximum eigenvector and î approaches
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to zero at 3 kpc and bounce off. It is not completely

clear whether the angle would go below zero or if this is

truly bouncing off. Nevertheless, such behavior would

not change the galaxy classification for this because this

galaxy has already experienced enough of the gradual

rotation to be identified as a twisted galaxy.

4.2.2. Twisted-Stretched galaxies

As the second class, here we describe the Twisted-

Stretched galaxies. In brief, such galaxies may demon-

strate both a gradual (owing to the galaxy twist) as well

as abrupt rotations (because of the galaxy stretching) in

their radial profiles. galaxies in this class may also be

cases for which it is rather hard to distinguish whether

the large rotation is owing to the twist or stretching

or both simultaneously. Here stretching occurs when

the ordering between different eigenvalues changes at

some radii. Consequently, the angles of the correspond-

ing eigenvectors with different fixed vectors is expected

to change by 90 deg owing to the orthogonality of differ-

ent eigenvectors. However, since the galaxy itself is also

rotating, in some galaxies, these two rotations get mixed

and it is difficult to fully distinguish them. For exam-

ple, galaxy 23, with the ID number 530330, is one such

galaxy. In this galaxy, around the crossing radii, at the

radius of 10 kpc, the angles of the associated eigenvec-

tors to the intermediate and maximum eigenvalues do

not change by 90 deg. It well might be that the galaxy

is also rotating in the opposite direction and thus the

net rotation is less than 90 deg but it is hard to confirm

this. Owing to this, we classify galaxy 23 as twisted-

stretched. There are in total 12 galaxies in this class.

Having introduced different classes of galaxies, in Figure

5, we present one example for each of the above classes.

The first example refers to a twisted galaxy in which

the galaxy experiences a gradual rotation from the in-

ner to the outer part of the galaxy. The second example,

on the other hand, describes a twisted-stretched galaxy

with more abrupt change of axis.

4.3. Impact of the threshold ε on the shape analysis

So far we computed the stellar distribution shape us-

ing “all” of stars out to 100 kpc. In an interest to

connect the SD to the commonly refereed as the stel-

lar halo (from the theoretical grounds), defined in terms

of a cut in the orbital circularity parameter, below we

briefly examine the impact of choosing stars with dif-

ferent ε thresholds in the shape of SD. We restrict our

current study to the impact of ε on shape parameters

and skip considering its effect on the directionality of

the eigenvectors. Monachesi et al. (2019) defined the

stellar halo based on stars with ε ≤ 0.7. Here we ex-

plore the impact of changing the cutoff in ε in the range

ε ≤ [0.6, 0.7, 0.8, 1.0] in the stellar morphology. More

explicitly, each time we mask out all stars that have ε

above the aforementioned thresholds and compute the

shape accordingly.

Figure 6 presents the radial profile of the median and

16(84) percentiles of shape parameters, (s, q, T ) for the

above thresholds.

Quite interestingly, increasing the upper limit in ε de-

creases the profile of median(percentiles) of s at smaller

radii, where disk stars are mostly located. This is to be

expected, as increasing the threshold of ε, we add more

rotationally supported stars which are part of the stel-

lar disk. Subsequently, the shape becomes progressively

more oblate. Owing to this, different lines with various

ε do not converge at very small radii. On the contrary,

this does not significantly affect the radial profile of me-

dian(percentiles) of q. Consequently, the radial profile

of percentiles of T only slightly shifts down.

Table 3 summarizes the median and percentiles of the

shape parameters for the above thresholds. In our anal-

ysis, we limit the radial range to 2 ≤ r/kpc ≤ 40. From

the table it is inferred that increasing the threshold in ε

(i) decreases the median of all of the shape parameters.

(ii) However the amount of suppression in s is larger

than the changes in q. This is understood as increasing

the threshold in ε makes the galaxy more oblate and

thus further decreases the median of the s.

Table 3. Median and 16(84)th percentiles of SD shape pa-
rameters as a function of the threshold in ε. These values
are computed in the range 2 ≤ r/kpc ≤ 40.

Threshold s q T

ε ≤ 0.6 0.641+0.118
−0.132 0.942+0.034

−0.059 0.204+0.181
−0.115

ε ≤ 0.7 0.595+0.126
−0.146 0.941+0.033

−0.074 0.195+0.173
−0.112

ε ≤ 0.8 0.537+0.121
−0.153 0.934+0.037

−0.122 0.191+0.206
−0.110

ε ≤ 1.0 0.308+0.188
−0.103 0.926+0.039

−0.084 0.189+0.215
−0.113

4.4. Different visualizations of the stellar distribution

Having presented the shape profile for individual

galaxies, here we make different visualizations for typical

galaxies in the above two classes of stellar distributions.
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Figure 5. The radial profile of the Axes/r as well as the angle of min-inter-max eigenvectors with few fixed vectors in space.
(upper) an example of twisted galaxy. (Bottom-panel) an example of twisted-stretched galaxy.
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Figure 6. Impact of changing the threshold of the ε, on the radial profile of the median and 16(84) percentiles of shape
parameters.

In Figures 7-8, we present the 2D projected surface

density for one example of the twisted and twisted-

stretched galaxies, respectively. In each figure, we

present the surface density at few different radii. In

each radius, we use the results of the shape analysis, af-

ter the convergence, and make an image using the stars

corresponding to this radius. From the figures, it is ev-

ident that the galaxy is rotating, in Figure 7, while it is

stretching, in Figure 8.

Moving to 3D, in Figures 9-10, we present the trajec-

tory of the 3D eigenvectors of the inertia tensor for the

same twisted and twisted-stretched galaxies as above.

Evidently, while the twisted galaxy shows a rather grad-

ual rotation in a wider range of locations, the twisted-

stretched galaxy experiences a more abrupt change of

angles in its radial profiles. That is to say that maybe

the most visible difference between these galaxies comes

back to the abruptness of the transition of angle. Fi-

nally, it is crucial to note that if the axis ratio of the

axes that are re-orienting is not close to unity, then we’re

certainly not dealing with a stretching but a twisting.

5. COMPARISON BETWEEN THE SHAPE OF

THE DM AND THE SD

Having computed the shape of the stellar distribution

in detail, here we make some comparisons between the

eigenvectors of the inertia tensor associated with the DM

halo, inferred from Emami et al. (2020), and the results

of this work for the SD. In Emami et al. (2020) we used

the EVIM as the main algorithm, while here we mainly

use the LSIM. Therefore, we do the comparison sepa-

rately using both of these approaches. As we point out

in what follows, this enables us to look at the corre-

lations both in the enclosed sense, from the EVIM, as

well as locally, LSIM. Our expectation is that the EVIM

method gives us smoother profiles while the LSIM pro-
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Figure 7. 2D projection of the surface density of the mass in 3D thin shells (in units of 105 ×M� kpc−2 for a twisted SD.
Evidently the galaxy is re-orienting at different radii. We have computed the projection along a fixed direction in space, z
direction in the TNG coordinate.

vides more radially varying correlations. To make the

comparison, we take the following steps:

(i) Make the same radial bins for both DM and SD

and compute the shape for each using both of EVIM

and LSIM separately.

(ii) Mask over the radii and only look at the radii in

which both of these algorithms have converged.

(iii) Compute the angles between VDM and VSD,

which refer to the eigenvectors of the DM and SD, re-

spectively. Since we have 3 sets of orthogonal vectors,

we end up having 9 different angles. Sorting the eigen-



12 R. Emami et. al.

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 2.0 (kpc)

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 3.6 (kpc)

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 4.6 (kpc)

2.0 2.2 2.4 2.6 2.8

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 5.4 (kpc)

1.8 2.0 2.2 2.4 2.6

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 6.0 (kpc)

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 6.5 (kpc)

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 7.4 (kpc)

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 14.4 (kpc)

0.6 0.8 1.0 1.2 1.4 1.6 1.8

20 10 0 10 20
y(kpc)

20

10

0

10

20

z(
kp

c)

r = 19.8 (kpc)

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Twisted-Stretched, ID:506720

Figure 8. 2D projection of the surface density (in units of 105×M� kpc−2 for a twisted-stretched SD. Starting from an oblate
shape in 3D initially, the galaxy is stretching and becoming more spherical at larger radii. We have computed the projection
along the x direction in the TNG coordinate.

vectors in terms of min, inter and max eigenvalues, we get the following array of angles at every location:

Θ =

[
θmi−mi, θmi−in, θmi−ma, θin−mi, θin−in,

θin−ma, θma−mi, θma−in, θma−ma

]
. (8)
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Figure 9. Three dimensional orientation of the reduced inertia tensor for a twisted galaxy. There is a smooth rotation in the
orientation of different eigenvectors radially.

where we have used (mi, in, ma) in replace to (min,

inter, max) for the sake of brevity. In addition, the first

index refers to DM while the second one describes the

SD.

As we have sorted the eigenvectors according to their

corresponding eigenvalues, a good test for the similar-

ity of the DM and SD would be to check the magni-

tude of mi-mi, in-in and ma-ma angles. The smaller

these values are, more similar the orientation of the DM

halo and SD would be. Owing to this, in what follows,

we make a special emphasis on the magnitude of these

angles. In figures 11 and 12, we present all 9 of the

above angles from the EVIM and LSIM, respectively. To

make the above 3 angles more manifest, we have plotted

them with slightly thicker lines and with the following

color sets; mi-mi (dashed, red), in-in (orange), ma-ma

(dashed, blue). Below we describe few common features

of these comparisons.

(1) First and foremost, comparing Figure 11 with Fig-

ure 12, it is evident that while the mi-mi angle is fairly

small and stable, the radial profile of in-in and ma-ma

are a lot more fluctuating in LSIM than in EVIM. That

makes sense as in LSIM the intermediate and maxi-

mum eigenvalues are swinging a lot and sometimes it
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Figure 10. Three dimensional orientation of the reduced inertia tensor for a twisted-stretched galaxy. There is a quick rotation
in the orientation of different eigenvectors radially.

is very hard to distinguish them from each other. How-

ever, since their corresponding eigenvectors are orthog-

onal to each other, wherever these lines swing around

each other, the angle profile gets dominated by noise.

So care must be taken when we compare these profiles

with LSIM.

(2) The fact that mi-mi is fairly small in both of these

methods is very intriguing demonstrating that the sym-

metric axes of DM and SD are fairly matched. This is

because the min eigenvectors in both cases are pointing

toward the total angular momentum of the system. This

observation confirms that in most cases, the symmetry

axis of DM and SD are almost aligned with each other.

At smaller radii this seems to be very natural and might

be due to the interaction of the DM halo with the stellar

disk. Owing to this interaction the DM halo is getting

aligned with the total angular momentum of the stars.

In some cases such alignment remains the same at larger

radii. Others show some levels of misalignment farther

out from the center, though. For instance, galaxy 3, 8

and 9 are such cases.

The alignment between mi-mi and to the angular mo-

mentum of the disky stars is in great agreement with

the results from the previous literature.
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Bailin et al. (2005) explored the alignment of the DM

halo and the stellar disk in a suite of seven cosmological

hydrodynamical simulations. They found the inner part

of the halo, r < 0.1Rvir, is aligned with the disk such

that the DM minor axis is well aligned with the stellar

disk axis. In contrast, the outer part of the halo, r >

0.1Rvir, is unaffected by the stellar disk.

Tenneti et al. (2014) analysed the shape and align-

ment of the DM halo and stars for a wide ranges of the

subhalo masses, 1010−6×1014M�/h, in MassiveBlack-II

(MBII) simulation. They reported a fair level of align-

ment between the aforementioned components, with a

mean misalignment angle decreasing in the range 30-10

deg when increasing the mass in the above range.

Shao et al. (2016) studied the alignment in a sample of

the central galaxies and the DM halo from EAGLE sim-

ulation and reported some levels of alignments between

them, especially in the inner part of the halo (within 10

kpc from the center). They reported a median misalign-

ment angle of about 33 deg between the central galaxy

and the DM halo.

Prada et al. (2019) studied the radial profile of the

alignment between the DM halo and the stellar disk in

a sample of 30 MW like galaxies from Auriga simulation

and found a very high level of alignment between these

vectors in most galaxies in their sample and at various

radii. Additionally, they reported a significant change

in the alignment in some cases implying some levels of

twists.

(3) From Figure 11, it is evident that in most cases,

the radial profile of in-in and ma-ma are fairly small close

to the center. However, in more than half of galaxies,

the angle starts enhancing farther out from the center

and gets to its maximum value at larger radii. This

means that beyond the typical size of the disk, about

10 kpc, DM and SH profiles are getting misaligned in

the plane perpendicular to the total angular momentum.

Although very oscillatory, the same conclusion may be

drawn for Figure 12 as well. The main reason for this is

that, anytime that the inter and max eigenvalues cross

each other, the curve of in-in and ma-ma gets enhanced

and the other two angles in-ma and ma-in decrease. This

indicates that it could be very challenging to identify

the inter and max eigenvectors that are matched from

DM to SD when the swing occurs. Being mindful of

this technical difficulty, it is fair to say that by a broad

majority, the radial profile of the eigenvectors of DM

and SD in the stellar disk plane are rather close. They

may get however misaligned beyond the disk scale.

(4) In summary, it seems that the profile of the DM

and SD are fairly similar within the stellar disk. In the

plane of the disk, their eigenvectors get misaligned while

they remain mostly aligned perpendicular to the stellar

disk.

Finally, to get a 3D intuition regarding to the similar-

ity of the DM and SD profiles, in Figure 13, we present

the 3D trajectory of the eigenvectors of a twisted galaxy

at few different locations. Solid lines describe the DM

profile, while the dashed lines refer to the SH. It is evi-

dently seen that both of EVIM and LSIM predict similar

profiles for the eigenvectors of the DM and SH. Conse-

quently, the min, inter and max eigenvectors from these

two approaches are fairly close. This is however not hold

entirely and at the last radii, the galaxy experiences an-

other rotation in which the inter and max eigenvectors

become perpendicular to each other.

6. CONNECTION TO SUBSTRUCTURE

So far we only investigated the impact of central galax-

ies in our analysis. Below we generalize our considera-

tion and analyze the impact of different substructures,

by using FoF group catalogue, in galaxy morphologies.

We particularly study the impact of substructures on

the orbital circularity parameter and the shape of SH.

6.1. Impact of FoF substructures on ε

Here we study the impact of substructures in the or-

bital circularity parameter, ε. As it turns out, the po-

sition of substructures are essential in determining the

radial distribution of ε. Stellar particles located very

far away from the galactic center may have a dominant

impact on the total angular momentum of the stellar dis-

tribution while having no effects on the angular momen-

tum of the disk. Subsequently, depending on the their

orbital motions, in some cases they may counter-rotate

with respect to the disk particles, located at r ≤ 10 kpc,

and thus shift the radial distribution of ε slightly or even

convert it from disk- to a bulge-like galaxy. Below we

present some examples in which including substructures

may shift the radial distribution of ε. Since, by selec-

tion, the central galaxy in all of these examples remains

MW like, i.e. demonstrates a well-defined disk, to avoid

any confusions about the morphology of galaxy group,

we put a mask over the distance of particles and disre-

gard stellar particles beyond 150 kpc in computing the

total angular momentum and thus in ε. As we show,

such a mask removes counter-rotating particles and the

final ε distribution remains disky, i.e. peaks near unity.

Figure 14 presents the radial distribution of ε for a

subset of 5 galaxies representative of our galaxy sam-

ples. In every example, the left panel presents the distri-

bution for central particles without any substructures.

The middle column shows ε in the presence of all of

substructures and with no radial truncation. The right
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Figure 11. Comparison between the radial profile of the angles of different eigenvectors of DM halo and SD using the EVIM.
The eigenvectors are ordered as (min, inter, max), which are shown as (mi, in, ma) for brevity. There are in total 9 different
angles. The DM halo and SD are more similar if the min-min, inter-inter and max-max angles are minimal and the rest of them
are maximal.

panel presents ε with substructures that are truncated

above r = 150 kpc. From the figure, it manifests that

substructures with no radial mask may easily shift the

orbital circularity parameter to the left and convert it

from disk- to a bulge-like galaxy.

6.2. Impact of FoF substructures on the shape

In this section, we investigate the impact of FoF sub-

structures on the shape of the stellar distribution, for

which we take into account all of the stellar substruc-

tures while computing the shape. Figure 15 presents the

radial profile of the shape parameters (s, q, T ) for the

central subhalo and the FoF group halo. It is evidently

seen that the profile of the median and percentiles are

fairly close to each other. Furthermore, to get an intu-

ition on how individual galaxies look like, in Figure 16,

we draw the Axes/r ratio for two typical galaxies in the

entire sample. Here the left columns refer to the central

galaxy while the right column shows the Axes/r for the

FoF group stars. While the profile of the galaxy from

the first row shows slightly different behavior, the one

from the second row is completely similar from the cen-

tral to FoF group galaxy. The same applies to the rest

of galaxies (not shown) where in some of them there are

some small changes in the inner part of the galaxy or at

the outskirts of the galaxy.

7. CONNECTION TO OBSERVATIONS FROM THE

LITERATURE
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Figure 12. Comparison between the radial profile of the angles of different eigenvectors of DM halo and SD using the LSIM.
See the caption of Figure 11 for more details.

Having computed the shape of SD theoretically, below

we take the first step of comparing this with the observa-

tional results from the previous literature. While in our

analysis we remove the impact of the FoF group stars, we

skip modelling and removing the stellar streams. Such

analysis requires finding reliable models for the stellar

streams from the disk and halo which is beyond the

scope of this paper. We defer a comprehensive analy-

sis of the stellar stream to a future work.

As discussed in Bland-Hawthorn & Gerhard (2016)

and references therein, measuring the first-order shape

and structure of the galaxy is extremely challenging in

its own right, let alone additional higher-order effects

such as twisting or stretching. As a result, here we in-

stead focus on the shape parameters (s, q) and leave a

detailed analysis of twisting and stretching to a future

work.

From the observations, we may measure the stellar

density profile of MW halo. There have been several

studies trying to estimate the stellar density as a func-

tion of radius (Vivas & Zinn 2006; Ivezić et al. 2008;

Belokurov et al. 2014). Subtracting populations of stars

which belong to large substructures (see e.g. Bell et al.

2008; Belokurov et al. 2014) we end up with a smooth

stellar distribution component (although more recent

work such as Naidu et al. (2020) has brought even this

into question). The inferred density profile can be fitted

to various profiles, including a single power-low (SPL),

a broken power-low (BPL), or an Einasto Profile. These

can also take axisymmetric, r2 = (x2 + y2 + z2/q2), or

triaxial, r2 = (x2 + y2/q2 + z2/s2), shapes with shape
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Figure 13. Three dimensional orientation of the reduced inertia tensor from the DM and SD for one twisted galaxy.

parameters s, q analogue to our shape parameters. Note

that since our results point us to a very mild triaxial

shape, we expect that comparisons to axisymmetric fits

should still remain reasonable.

Using a maximum likelihood approach, Deason et al.

(2011) modeled the density profile of blue horizontal

branch (BHB) and blue straggler (BS) stars and applied

it to photometric catalogue of Sloan Digital Sky Survey

(SDSS) data release 8 (DR8). As they showed, it pro-

vides a robust measurement for the shape of MW stellar

distribution. As a part of their analysis, they provided

the fit to a SPL profile with a triaxial shape and con-

stant shape parameters. Rewriting this in terms of our

shape parameters, we get s = 0.5+0.02
−0.01 and q = 0.71+0.03

−0.03

covering a radial range (4-40) kpc. Since this measure-

ment is extended up to 40 kpc, to closely compare our

results with that of SDSS, we shall repeat the computa-

tion for the median and 16(84) percentiles of (s, q) up to

this radius. In addition, to fully account for the impact

of changing the threshold of ε in the stellar distribution,

we compute the median(percentiles) of the shape for few

thresholds of ε.

Bell et al. (2008) used a sample of main sequence

turnoff (MSTO) stars from Sloan Digital Sky Survey

(SDSS) DR5 and explored the overall structure of the

stellar distribution in MW. They fitted an oblate and tri-
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Figure 14. Radial profile of ε for stars in the central (left), FoF group with no-truncation (middle) and FoF stars truncated
above 150 kpc(right) panels. Counter-rotating farther out substructures may dominantly flip the sign of total angular momentum
and thus seem to convert the disky structures. They must therefore be removed when we analyze the radial profile of the ε.
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Figure 16. The radial profile of the Axes/r ratio for two typical galaxies in our sample with (left) and without (right) including
the substructures. It is seen that FOF group stars do not change the Axes/r ratio significantly.
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axial BPL to data and found a best fit for 0.5 ≤ s ≤ 0.8

with a mild triaxial parameter q ≥ 0.8. Their best fit

for s from axisymmetric and triaxial was very similar

indicating that the results of mild triaxial fit is not very

far from the axisymmetric results.

Sesar et al. (2013) used RR Lyrae stars (RRLS) chosen

from a recalibrated LINEAR data set and fitted an ax-

isymmetric density profile to data. They found a slightly

larger flattening parameter s = 0.63± 0.05 than Deason

et al. (2011). This result is compatible with the results

of other observational teams using RRLS (Watkins et

al. 2009; Sesar et al. 2010; Faccioli et al. 2014)

Figure 17 summarizes the above constraints on the

shape parameters of the stellar distribution. Circles

with different colors describe different observational re-

sults. Blue-triangles refer to the median and error-bars

of (s,q) for individual galaxies in the radial range be-

tween (4-40) kpc with ε ≤ 1.0. The above radial range

is chosen to be matched with the observational range of

interests Deason et al. (2011). It is seen that a fraction

of galaxies in our sample may give rise to (s,q) to be fully

compatible with the observational results. Red-yellow-

black diamonds display the median and error-bars of

(s,q) for the full galaxies from our sample in the afore-

mentioned radial range and with the ε ≤ (0.6, 0.8, 1.0),

respectively. It is intriguing that extending the ε shifts

median of s to lower values.

8. SUMMARY AND CONCLUSION

In this paper, we studied the morphology of stellar dis-

tributions in a sample of 25 MW like galaxies in TNG50

of the IllustrisTNG project. We explored the stellar

distribution shape using two different algorithms. In

the first approach, we computed the shape using an en-

closed volume iterative method (EVIM) and in the sec-

ond (main) approach, we analysed the shape using a

local in shell iterative method (LSIM).

Below we summarize the main points of the paper,

• We explicitly showed that while EVIM leads to a

smooth shape profile, LSIM gives us more information

about the substructures. Owing to this and as the re-

cent observations Naidu et al. (2020) have shown that

the MW is truly made of many substructures, the local

based approach is more favored here and we have thus

used LSIM as the main approach in this work.

• We inferred the shape both at the statistical level

as well as for individual level and classified the galax-

ies in two different categories. Twisted galaxies present

a gradual rotation throughout the galaxy. There are

in total 13 galaxies in this category. Twisted-Stretched

galaxies, on the other hand, present more abrupt radial

rotation. There are 12 galaxies in this class. We vi-
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Figure 17. Observational constraints on the shape param-
eters of stellar distribution. Purple, green and brown circles
refer to various observational results, as indicated in the leg-
end. It should be noted that in Sesar et al. (2013), q = 1 is an
assumption rather than a measurement. Blue-triangles de-
note the median and error-bars of (s,q) for individual galax-
ies in the radial range between (4-40) kpc with ε ≤ 1.0. The
above radial range is chosen to be matched with the obser-
vational range of interests Deason et al. (2011). Red-yellow-
black diamonds display the median and error-bars of (s,q) for
the full galaxies from our sample in the aforementioned radial
range and with the ε ≤ (0.6, 0.8, 1.0), respectively.Although
we are mainly focused on the SD with ε ≤ 1.0, we also show
how different ε may contribute in shifting the (s,q) in this
plane.

sualized the galaxies in both of the above samples and

showed that the galaxy is rotating/stretching, respec-

tively.

•We studied the impact of the threshold on the orbital

circularity parameter, ε, in defining the stellar distribu-

tion in the final inferred shape and explicitly showed

that adding more stars, from the disk, make the galaxy

more oblate.

• We made a comparison between the DM (Emami

et al. 2020) and SH shapes using both of EVIM and

LSIM for which we computed the 3× 3 matrix of angles

between the min, inter and max eigenvectors in these

two methods. The smaller the min-min, inter-inter and

max-max angles are, closer the shape of DM and SH

would be.

• Quite remarkably, based on the EVIM, closer to the

center, the angle profiles between the DM and SH are

fairly small demonstrating that these two profiles are

responding to the baryonic gravitational potential from

the stellar disk. However, in some cases, these profiles

deviate from each other farther out from the center.
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• The inferred angle profile from LSIM, on the other

hand, suggest a more oscillating profile. This makes

sense as the inferred eigenvalues from LSIM are closer,

in the response to the local variations. Therefore, their

corresponding eigenvectors reorient more rapidly; ow-

ing to the orthogonality at different locations. However,

in most cases, it is explicitly seen that while different

eigenvalues swing around each other, say inter and max

eigenvalues, the angle between inter-inter and inter-max

enhances but inter-max and max-inter decreases. This

may imply that the galaxies are close but it was rather

hard to exactly track the inter and max eigenvectors

very close to the swing location.

• We incorporated the impact of the substructures in

the orbital circularity parameter and the shape of stel-

lar distribution. Where in the former case, we explic-

itly showed that in some cases the substructures located

farther out from the center might counter rotate with

respect to the stars close by and thus including them

with no cutoff, may change the distribution of ε. Owing

to this, it is customary to make a radial cutoff, 150 kpc,

and eliminate stars that are farther out from the center

while computing the ε. Computing the shape profile us-

ing the filtered set of, we showed that the shape of FoF

group stars are fairly similar to the central stars.

• Finally, we overlaid our theoretical predictions for

the shape parameters on the top of the data from the

previous literature. While the shape measurements from

our simulations and the observations are not very differ-

ent, overall, there are differences in detail that might be

due to the fact that different observations have taken

different tracers and approaches. It is therefore intrigu-

ing to make some mock data and make the comparisons

with the data more explicitly. This is however left to a

future work.

DATA AVAILABILITY

The data which are directly related to this publica-

tion and figures are available on reasonable request from

the corresponding author. The IllustrisTNG simulations

themselves are publicly available at www.tng-project.

org/data (Nelson et al. 2019). The TNG50 simulation

will be made public in the future as well.
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APPENDIX

A. SHAPE FINDER ALGORITHMS

As already specified in the main text, we have taken the LSIM as the main method. This is however intriguing to

compute the shape using slightly different method and compare their final results to LSIM. Below, we introduce the

EVIM method and also make a fair comparison between the shape from different versions of the LSIM and EVIM.

A.1. Enclosed volume iterative method(EVIM)

Generally speaking, EVIM is very similar to LSIM with the main difference that at every radius, we replace the

thin shell with an enclosed ellipsoid. More specifically, we take the elliptical radius in Eq. (5) to be less than unity

meaning that at every radius we consider all of start interior to that radii. This may lead to some biases as the number

of stars drops significantly from the inner part of the halo to its outer part. Therefore, we get an averaged shape, in

which the detailed information about the stellar distribution would be lost at larger radii. Indeed, the shape seems to

be simple in most cases with little averaged changes in the radial profile of different angles. This indicates that the

average method for stars does not give us very accurate shape. Owing to this, we skip showing the full details of the

results with this approach and instead just present this as a complementary approach.

www.tng-project.org/data
www.tng-project.org/data
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Fig. 3 compares the median and percentiles of the shape parameters inferred using LSIM and EVIM. It is evident

that EVIM underestimates the s shape compared with LSIM.

B. GALAXY CLASSIFICATION

As already specified in the main body of paper, we may put the stellar distribution shape in 2 main categories:

twisted galaxies and twisted-stretched galaxies. While we present very few cases in the text, to make the picture

clearer, here we present the radial profile of Axes/r ratio, angle of the min-inter-max eigenvectors with few fixed

vectors and also the radial profile of the shape parameters (s, q) for the entire of 25 galaxies in our sample. Also, to

have an unambiguous association of angles at initial points, we demand that all of angles are initially less than 90 deg.

B.1. Twisted galaxies

First, we present the population of twisted galaxies. There are in total 13 twisted galaxies in our sample. Figures

18 and 19 present this class of galaxies. We have truncated the radial profile up to where there are some collection of

points for which the shape finder algorithm does not converge. For example, while the presented galaxies in Figure 18

are converged around(above) 50 kpc, galaxies associated with Figure 19 are mostly converged until 30 kpc continuously

and have gaps in between for larger radii. Owing to this, we truncate their shape profile at around 25-30 kpc.

B.2. Twisted-Stretched galaxies

Next, we display twisted-stretched galaxies, as defined in the main text. There are in total 12 galaxies in this class.

Figures 20 and 21 present the galaxies in this class. In a manner similar to the twisted galaxies, here we truncate the

radial profile until where we see some gaps in the collection of the converged points.

It is essential to notice that in some cases, such as galaxies with ID 506720 and 529365, the galaxy remains completely

oblate, q ' 1, toward large radii. This is associated with a full degeneracy between the intermediate and maximum

eigenvalues, a circle in the plane of inter-max eigenvalues. Such symmetry makes it extremely hard to track the

radial profile of the angle of the inter and max. In addition, owing to the orthogonality of different eigenvectors, the

inferred as the rotation for these galaxies might be crud. Since in most cases the galaxy remains almost oblate up

to very large distances, almost the edge of the stellar distribution, we may not focus on the outer radii to make the

classification. Owing to this, we put such galaxies in the twisted-stretched class. It would be intriguing to track the

galaxy morphology with the redshift and see how the radial profile of the angles change. This is however beyond the

scope of the current work and is left to a future study.
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Figure 18. The radial profile of Axes/r, angles and shape parameters for the twisted galaxies.
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Figure 19. The radial profile of Axes/r, angles and shape parameters for the twisted galaxies.
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Twisted-Stretched Galaxies(1)
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Figure 20. The radial profile of Axes/r, angles and shape parameters for the twisted-stretched galaxies.
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Twisted-Stretched Galaxies(2)
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Figure 21. The radial profile of Axes/r, angles and shape parameters for the twisted-stretched galaxies.
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Monachesi, A., Gómez, F. A., Grand, R. J. J., et al. 2016,

MNRAS, 459, L46
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