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Protected qubits such as the 0-π qubit, and bosonic qubits including cat qubits and Gottesman-Kitaev-
Preskill (GKP) qubits offer advantages for fault tolerance. Some of these protected qubits (e.g., 0-π qubit
and Kerr-cat qubit) are stabilized by Hamiltonians which have (near-)degenerate ground state manifolds
with large energy gaps to the excited state manifolds. Without dissipative stabilization mechanisms the
performance of such energy-gap-protected qubits can be limited by leakage to excited states. Here, we
propose a scheme for dissipatively stabilizing an energy-gap-protected qubit using colored (i.e., frequency-
selective) dissipation without inducing errors in the ground state manifold. Concretely we apply our
colored dissipation technique to Kerr-cat qubits and propose colored Kerr-cat qubits which are protected by
an engineered colored single-photon loss. When applied to the Kerr-cat qubits our scheme significantly
suppresses leakage-induced bit-flip errors (which we show are a limiting error mechanism) while only
using linear interactions. Beyond the benefits to the Kerr-cat qubit we also show that our frequency-
selective loss technique can be applied to a broader class of protected qubits.
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Introduction.—One standard approach for realizing fault-
tolerant quantum computation is to use the surface code [1]
(or its similar variants) with two-level systems such as
transmons [2,3] or trapped-ion qubits [4]. One promising
alternative approach is based on protected qubits [5].
Examples of protected qubits include the 0-π qubit [6–9],
and bosonic qubits [10,11] such as cat qubits [12,13] and
GKP qubits [14]. Such protected qubits can have an intrinsic
robustness against environmental errors because of the
structure of the wave functions and/or vanishing energy
dispersion. This physical level of error suppression can
reduce the hardware overhead for implementing fault-
tolerance techniques with protected qubits [15,16].
Certain protected qubits such as the 0-π qubits and Kerr-

cat qubits (a type of bosonic qubit) are stabilized by a
Hamiltonian. In this case of Hamiltonian protected qubits,
the computational basis states are given by (near-) degen-
erate ground states of a Hamiltonian with an energy gap to
the excited state manifolds. Importantly in the absence of
dissipative stabilization mechanisms, a leaked population
in the excited state manifolds (e.g., from incoherent
heating) cannot be returned to the code manifold. As we
will illustrate below, depending on the structure of the
excited states, such leakage can severely limit the perfor-
mance of energy-gap-protected qubits.
In this Letter, we present a solution to this problem by

adding colored (or frequency-selective) dissipation to
energy-gap-protected qubits. In particular, we show that
colored dissipation with a suitably engineered bath spectrum

can bring the excited states back to the code manifold while
not causing logical errors in the code manifold. To make the
discussion concrete, we first focus on Kerr-cat qubits and
show how they are limited by leakage-induced bit-flip errors.
We thenpropose coloredKerr-cat qubits, i.e.,Kerr-cat qubits
that are protected by colored single-photon loss. Specifically,
we propose to engineer the bath spectrum of the colored
loss channel by using multiple filter modes. See Fig. 1 for a

...

FIG. 1. Schematic representation of a coloredKerr-cat qubit, i.e.,
a Kerr-cat qubit protected by frequency-selective (colored) single-
photon loss. As shown in the inset, the harmonic filter modes are
designed such that the colored single-photon loss realizes the
desired cooling process (green arrow) while not inducing any
additional phase-flip errors in the cat qubit manifold (red arrow).
The black arrow in the schematic energy diagram represents the
tunneling process between the first excited states, which is
important for understanding the bit-flip rate of a Kerr-cat qubit.
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schematic diagram.We then provide a general formulation of
our colored dissipation technique and explain how it can be
applied to a wide class of energy-gap-protected qubits
besides Kerr-cat qubits.
Cat qubits.—Before proceeding, we briefly summarize

the idea behind cat qubits. Two-component cat qubits
[12,13,17–24] encode information into an oscillator mode
using the j � αi coherent states as their approximate
computational basis states. These qubits benefit from an
exponential suppression of bit-flip errors with jαj2 due to
the large phase space separation between j�αi with
jαj2 ≫ 1. This bias against bit-flip (X) errors can be
maintained during the execution of gates [15,25] allowing
us to focus on correcting the dominant phase-flip (Z) errors.
This can reduce the hardware overhead of error correction
compared with that of bare two-level qubits [15,16,25–31].
When studying cat qubits, we make use of the shifted-

Fock basis [16]: a subsystem decomposition which breaks
the Hilbert space of our harmonic modes into two sectors.
The sectors capture the encoded logical information and
gauge information about the system. The shifted Fock
basis states are spanned by the displaced Fock states
D̂ð�αÞjn̂ ¼ ni. As shown in Ref. [16], we can express
the annihilation operator in this basis as follows:

â ¼ Ẑ ⊗ ðâ0 þ αÞ þOðe−2jαj2Þ: ð1Þ

In this subsystem decomposition, Ẑ is a 2 × 2 Pauli Z
operator acting on a qubit sector which describes the cat
qubit logical information. The qubit sector of â is given by
Ẑ because single-photon loss changes the parity of the cat
qubit and hence causes a phase-flip (or Z) error on the
logical information in our basis convention. â0 is an
annihilation operator acting on a gauge sector which lowers
the cat qubit to the ground state manifold (where
â0†â0 ¼ 0). In what follows, we assume that α is real.
Kerr-cat qubits.—Kerr-cat qubits are an implementation

of two-component cat codes that stabilize the j�αi mani-
fold using a Hamiltonian with a Kerr nonlinearity and two-
photon drive ĤKC ¼ −Kðâ†2 − α2Þðâ2 − α2Þ. Rewriting
this Hamiltonian in the shifted Fock basis, we find

ĤKC ¼ −4Kα2Î ⊗ â0†â0 − KÎ ⊗ â0†2â02

− 2KαÎ ⊗ ðâ0†2â0 þ â0†â02Þ þOðe−2α2Þ: ð2Þ

In the limit of small excitations in the gauge sector (i.e.,
hâ0†â0i ≪ α), all but the first term in Eq. (2) can be
neglected, and the Kerr-cat Hamiltonian is approximately
reduced to that of a harmonic oscillator with an energy
spacing −4Kα2. This nonzero energy gap protects Kerr-cat
qubits against coherent perturbations by making them off
resonant. However, Kerr-cat qubits are not robust against
some incoherent perturbations (e.g., heating) due to the
absence of a dissipative stabilization mechanism.

Heating-induced bit-flip errors.—Heating of an oscil-
lator can be modeled by the dissipator κ1nthD½â†�. Since
the creation operator â† is approximately given by â† ≃
Ẑ ⊗ ðâ0† þ αÞ in the shifted-Fock basis, heating induces
phase flips and importantly leakage outside the code space
due to the â0† term in the gauge sector [see Fig. 2(a)] [32].
Indeed, in the first experimental realization of a Kerr-cat

qubit [24], significant heating occurred, and only a modest
noise bias factor of ∼40 was achieved. Thus, realizing the

(a)

(c)

(b)

FIG. 2. (a) Leakage accumulation over time in a Kerr-cat qubit
without any engineered dissipation (blue) and a colored Kerr-cat
qubit with three filter modes (orange) from the initial state jαi.
(b) Bit-flip error rate of a Kerr-cat qubit (blue) and a colored Kerr-
cat qubit with three filter modes (orange) as a function of the
average photon number α2 for nth ¼ 0.1 (solid) and 0.01 (dotted).
Gray lines represent the analytical prediction γX ¼ κ1nth=2 for
the regime χ1 ≫ κ1 þ κ1;eng. (c) Decay of the parity of a colored
Kerr-cat qubit starting from jþi with one (green), two (red), and
three (orange) filter modes. Xs represent numerical data and solid
lines represent analytical predictions. The black line shows the
baseline decay of the parity at a rate 2κ1ð1þ nthÞα2, i.e., twice
the phase-flip rate. In all three plots, we use the parameters
K ¼ 2π × 10 MHz and κ1 ¼ 2π × 1 kHz. In (a) and (c), we
further assume nth ¼ 0.1 and α2 ¼ 6. See the Supplemental
Material [33] for details.
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full potential of Kerr-cat qubits requires counteracting the
leakage caused by heating.
To be used as a biased-noise qubit, Kerr-cat qubits need

to have strongly suppressed bit-flip errors with α2. Previous
works [24,36] have suggested that Kerr-cat qubits can be
made robust to leakage-induced bit-flip errors by ensuring
that higher excited states reached through heating are below
the energy barrier so that that tunneling [37,38] between
them is suppressed. Although this argument is qualitatively
correct, we show that it does not apply to near term
experiments and fault-tolerant quantum computation pro-
posals where heating poses a limit on achievable bit-flip
times in both regimes.
In Fig. 2, we consider a set of experimentally relevant

parameters: K ¼ 2π × 10 MHz, κ1 ¼ 2π × 1 kHz (corre-
sponding to the lifetime of 1=κ1 ¼ 159 μs), and a thermal
population of nth ¼ 0.1 and nth ¼ 0.01 [39]. As indicated
by the blue line in Fig. 2(b), the bit-flip error rate γX of
a Kerr-cat qubit stays constant throughout the range
3 ≤ α2 ≲ 9, which is most experimentally relevant. This
contrasts with expectations for exponential suppression of
the bit-flip error rate γX with α2 used throughout the
literature for biased noise cat qubits.
To understand why the bit-flip error rate γX of a Kerr-cat

qubit does not improve as we increase α2 up to 9, we
need to consider the Oðe−2α2Þ contributions in Eq. (2).
In particular, we need to consider the terms in ĤKC of the
form χnX̂ ⊗ jn̂0 ¼ nihn̂0 ¼ nj. Here, χn can be understood
as the tunneling rate between the states j0i ⊗ jn̂0 ¼ ni and
j1i ⊗ jn̂0 ¼ ni (see the schematic in Fig. 1). In the
Supplemental Material [33], we show that the tunneling
rate χ1 in the first excited state manifold is perturbatively
given by

χ1 ≃ 16Kα4e−2α
2

; ð3Þ

which agrees with the exact numerical results for all α2 ≥ 3.
Although χ1 decreases exponentially in α2, the large
prefactor 16Kα4 can still make this χ1 (induced by the
Kerr-cat Hamiltonian ĤKC) limiting in practice.
We now explain why the bit-flip error rate γX [blue line

in Fig. 2(b)] plateaus in the range 3 ≤ α2 ≲ 9. Heating
excites the system to the first excited state manifold. Here it
persists for a time Δt ∼ 1=κ1 until it decays back to the cat
state manifold. During this period, if χ1 ≫ κ1, rapid
oscillations occur between the states j0i ⊗ jn̂0 ¼ 1i and
j1i ⊗ jn̂0 ¼ 1i. In this regime, a bit-flip error happens with
50% probability whenever heating creates an excitation. As
a result, the bit-flip error rate is given by half the heating
rate, i.e., γX ¼ κ1nth=2 in the regime of χ1 ≫ κ1. With our
parameters (yielding K=κ1 ¼ 104), χ1 ¼ 16Kα4e−2α

2

is at
least 10 times larger than κ1 for all 3 ≤ α2 ≤ 6.75 and
χ1 ¼ κ1 at α2 ¼ 8.08. This explains why the bit-flip error
rate γX is independent of α2 and given by κ1nth=2 in the

range 3 ≤ α2 ≲ 9. Above α2 ∼ 9 heating to higher excited
states becomes the important error mechanism because
tunneling between the first excited states is sufficiently
suppressed (see the Supplemental Material [33]). A similar
mechanism can limit other energy-gap-protected qubits if
the transition rates within the excited state manifold are
significant.
Colored Kerr-cat qubits.—As shown by our numerical

and analytical results, the heating-induced bit-flip errors
can be even more detrimental than previously anticipated.
Here, we propose to counteract the heating and leakage by
adding frequency-selective (i.e., colored [40,41]) single-
photon loss to Kerr-cat qubits, hence making them colored
Kerr-cat qubits. Our scheme fundamentally differs from
the previous proposals based on two-photon dissipation
[24,31,36] as we only require single-photon loss. Intrinsic
single-photon loss κ1D½â� is harmful for cat qubits because
the þαẐ ⊗ Î term in the shifted-Fock basis representation
of the annihilation operator â ≃ Ẑ ⊗ ðâ0 þ αÞ causes
phase-flip (or Z) errors in their ground state manifold
[12,23]. The other term (i.e., Ẑ ⊗ â0) is useful for sup-
pressing leakage as it brings the excited states back to the
code space via â0.
Our key idea is to engineer the frequency spectrum of the

bath of the extrinsic single-photon loss such that we can
take advantage of the beneficial decay term (Ẑ ⊗ â0) while
filtering out the parasitic term (þαẐ ⊗ Î) from the single-
photon loss â. Since only the extrinsic single-photon loss is
engineered with this technique, the intrinsic single-photon
loss rate κ1 should still be kept as small as possible.
To demonstrate how our scheme works, we introduce a

concrete setup where a Kerr-cat qubit is coupled to an
engineered bath through a set of harmonic filter modes with
nearest-neighbor hopping, forming a colored Kerr-cat qubit
(diagram in Fig. 1). Specifically, we consider the following
Lindblad equation in the rotating frame of a Kerr-cat qubit
(â with frequency ωa) and filter modes (f̂1;…; f̂M with
frequency ωf):

dρ̂ðtÞ
dt

¼ −i½Ĥ; ρ̂ðtÞ� þ κ1ð1þ nthÞD̂½â�ρ̂ðtÞ
þ κ1nthD̂½â†�ρ̂ðtÞ þ κfD½f̂M�ρ̂ðtÞ; ð4Þ

where the Hamiltonian Ĥ is given by

Ĥ ¼ ĤKC þ
�
gâf̂†1e

iΔt þ J
XM−1

j¼1

f̂jf̂
†
jþ1 þ H:c:

�
: ð5Þ

Here, Δ≡ ωf − ωa is the detuning between the filter

modes f̂1;…; f̂N and the mode â which hosts the Kerr-
cat qubit. Also, D½Â�ρ̂≡Âρ̂Â†−1

2
fÂ†Â;ρ̂g is the Lindblad

dissipator. Besides having the intrinsic loss and heating
processes, the Kerr-cat qubit can lose an excitation to the
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first filter mode at a rate g. Such an excitation is then
transported to the last filter mode at a hopping rate J where
it decays to a cold bath at a rate κf. It is important that this
bath and the filter modes have a temperature much lower
than the Kerr-cat qubit so as to not induce additional
heating (here nth;filter ¼ 0). In practice, strong pump tones
are necessary to realize Kerr-cat qubits while the filter
modes and their baths are passive and undriven. Thus it is
plausible that the filter modes would be colder than the
Kerr-cat qubits. We take κf ¼ 2J so that the filter modes act
as an ideal bandpass filter (centered at the frequency ωf and
with a bandwidth 4J) as N → ∞. See the Supplemental
Material [33] for more details.
Recall that in the shifted Fock basis, the Kerr-cat

Hamiltonian is approximately given by ĤKC ≃
−4Kα2Î ⊗ â0†â0. Transforming to the shifted-Fock basis,
and moving into the rotating frame of the â0 mode the
coupling term gâf̂†1e

iΔt becomes gðẐ ⊗ â0Þf̂†1eiðΔþ4Kα2Þtþ
gαðẐ ⊗ ÎÞf̂†1eiΔt. The first term realizes a desired cooling
effect through â0 whereas the second term causes undesired
phase-flip (Z) errors in the cat qubit manifold. By choosing
Δ ¼ −4Kα2 (or equivalently ωf ¼ ωa − 4Kα2), we can
make the desired first term resonant while making the
undesired second term off resonant. Furthermore, by
ensuring that the half bandwidth κf ¼ 2J is smaller than
the detuning jΔj, we can place the undesired second term
outside the filter passband and filter it out (see Fig. 1). In
particular, through adiabatic elimination (see the
Supplemental Material [33]), the induced phase-flip error
rate due to the second term is given by ð4g2α2=κfÞ ×
ðJ=ΔÞ2M in the Δ ≫ J limit and hence decreases exponen-
tially in the number of the filter modes M. On the other
hand, the resonant desired term realizes an engineered
cooling process κ1;engD½Ẑ ⊗ â0� with an effective cooling
rate κ1;eng ¼ 4g2=κf.
In Fig. 2, we study the performance of a bare Kerr-cat

qubit and colored Kerr-cat qubits with a varying number of
filter modes. For colored Kerr-cat qubits, we choose κf ¼
2J ¼ Δ=5 and g ¼ κf=5 to filter out the induced phase-flip
errors and guarantee the validity of the adiabatic elimina-
tion, respectively. We tune Δ ¼ −3.6Kα2 (vs Δ ¼ −4Kα2)
by accounting for higher order contributions to more
closely target the 0 ↔ 1 transition of the Kerr excited
states [33]. With these parameters, we get a large engi-
neered cooling rate of κ1;eng ¼ 2π × 1.15α2 MHz (e.g.,
κ1;eng ¼ 2π × 6.9 MHz at α2 ¼ 6). As indicated by the
orange line in Fig. 2(a), the leakage population of a Kerr-cat
qubit (of size α2 ¼ 6) can be made orders of magnitude
smaller by adding a frequency-selective single-photon loss
with three filter modes. Additionally, the idling bit-flip
error rate is reduced by at least 1 order of magnitude for all
α2 ≥ 6 [see Fig. 2(b)]. This is because the large engineered
cooling rate dramatically reduces the lifetime of excited

states (especially the first excited states) so that the
condition κ1 þ κ1;eng ≫ χ1 is satisfied at lower values of
α2 [42].
In Fig. 2(c) we show the parity as a function of time with

1, 2, and 3 filter modes and α2 ¼ 6. With only one or two
filter modes, the induced phase-flip rate is much larger than
the intrinsic phase-flip rate of ≈κ1ð1þ 2nthÞα2 (green and
red lines). With three filter modes, however, the induced
phase-flip rate is negligible, and the total phase-flip
probability is close to the intrinsic rate (orange line).
The simulated (Xs) parity decays are consistent with our
analytical prediction (solid lines) on the induced phase-flip
rate ð4g2α2=κfÞ × ðJ=ΔÞ2M in the Δ ≫ J limit. Hence,
Fig. 2(c) demonstrates that with a properly engineered
single-photon loss spectrum we can benefit from the
desired cooling effects without inducing additional
phase-flip errors.
General formulation.—We now present how our colored

dissipation technique can be generally applied to a wide
class of energy-gap-protected qubits. Specifically we con-
sider energy-gap-protected qubits whose Hamiltonian is
given by ĤPQ ¼ ΔÎ ⊗ j1ih1j. Here, j0i and j1i in the gauge
sector respectively correspond to the ground and first-
excited state manifolds of the qubit, and Δ is the energy
gap. The Hamiltonian including the filter is given by
Ĥ ¼ ĤPQ þ ½gĉf̂†1eiΔt þ J

P
M−1
j¼1 f̂jf̂

†
jþ1 þ H:c:�, where ĉ

is a coupling operator acting on the protected qubit. In the
subsystem decomposition this coupling operator generi-
cally takes the form ĉ ¼ P

i;j∈f0;1g ĉij ⊗ jiihjj. The limit of
interest is when jΔj ≫ J such that any induced dissipation
can be selective on the j1i → j0i decay. Similarly as above,
adiabatic elimination of the filter modes yields a Lindblad
term ð4g2=κfÞD½ĉ01⊗ j0ih1j� realizing the desired j1i→ j0i
decay. Crucially the incoherent errors induced on the
ground state manifold are exponentially suppressed with
the number of filter modes. Specifically these errors are
described by the Lindblad term ð4g2=κfÞ × ðJ=ΔÞ2MD½ĉ00�
upon adiabatic elimination of the gauge mode as well as the
filter modes. Thus if one uses sufficiently many filter
modes with jΔj ≫ J and ĉ has an appreciable matrix
element for ĉ01 one can realize dissipative confinement
to the ground state manifold without inducing incoherent
errors on the logical information even when ĉ00 is nontrivial
and acts as a logical error in the ground state manifold [43].
Discussion and outlook.—An interesting future direction

is to apply our colored dissipation scheme to other energy-
gap-protected qubits. An example is the Hamiltonian-
stabilized finite-energy GKP qubit where a gap opens up
relative to the infinite-energy case [14,44–47]. In this case
the subsystem decomposition would be given by a finite
energy version of the modular bosonic subsystem decom-
position [48]. The 0-π qubit similarly [6–9] would be an
interesting case with near degenerate ground states ena-
bling frequency-selective loss. The use of colored loss can
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also be extended to the application of gates. We consider
this for Kerr-cat qubits in the Supplemental Material [33].
In practice the optimal choice of the filter may not be a

bandpass filter centered around the gap frequency (as in
Fig. 1). Other filter geometries such as wider bandpass
filters with the frequency ω − Δ near the edge of the
passband or low pass filters may allow for higher dis-
sipation rates while still rejecting signals at ω and are
interesting areas for future work. These filters can be
implemented experimentally in superconducting circuits
using quantum metamaterials [49].
In the context of Kerr-cat qubits our proposal takes

advantage of the energy structure of the gauge mode as
opposed to the parity symmetry of two-photon dissipation
(κ2D½â2 − α2� [24,25,31,36]) such that it only requires
single-photon loss. In particular, this means nonlinear
interactions are not needed to implement the dissipation
potentially enabling larger engineered cooling rates.
Additionally unlike two-photon dissipation, our engi-

neered cooling process κ1;engD½Ẑ ⊗ â0� comes with a
phase-flip Ẑ in the qubit sector. This phase-flip is not
problematic because it is only triggered in the excited state
manifold. Moreover, some leakage processes such as
those associated with heating (â†) and the Z gate [ĤZ ¼
ϵZðâ† þ âÞ] come with a phase-flip in the qubit sector.
There having the phase flip in the cooling process is a
feature because the phase flip from the leakage process is
canceled out when the system is brought back to the ground
state manifold via the colored dissipation. Nonadiabatic
gate errors can also be directly suppressed by the frequency
selectivity of the filter if the leakage processes they are
associated with are off resonant from the filter. We remark
that there is a complementary approach for suppressing bit-
flip error rates by reducing the effective tunneling rates
χ1; χ2; � � �, which can be done by adding a linear drive to the
Kerr-cat Hamiltonian. These interesting areas for future
work are discussed in the Supplemental Material [33].
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