A Caltech Library Service

High-dimensional near-critical percolation and the torus plateau

Hutchcroft, Tom and Michta, Emmanuel and Slade, Gordon (2021) High-dimensional near-critical percolation and the torus plateau. . (Unpublished)

[img] PDF - Submitted Version
See Usage Policy.


Use this Persistent URL to link to this item:


We consider percolation on Z^d and on the d-dimensional discrete torus, in dimensions d ≥ 11 for the nearest-neighbour model and in dimensions d > 6 for spread-out models. For ℤ^d, we employ a wide range of techniques and previous results to prove that there exist positive constants c and C such that the slightly subcritical two-point function and one-arm probabilities satisfy ℙ_(p_c − ε) (0↔x) ≤ C/(‖x‖^(d−2)) e^(−cε^(1/2)‖x‖) and c/r^2 e^(−Cε^((1/2)r( ≤ ℙ_(p_c − ε)(0↔∂[−r,r]^d) ≤ C/r^2 e^(−cε^((1/2)r)). Using this, we prove that throughout the critical window the torus two-point function has a "plateau," meaning that it decays for small x as ‖x‖^(−(d−2)) but for large x is essentially constant and of order V^(−2/3) where V is the volume of the torus. The plateau for the two-point function leads immediately to a proof of the torus triangle condition, which is known to have many implications for the critical behaviour on the torus, and also leads to a proof that the critical values on the torus and on ℤ^d are separated by a multiple of V^(−1/3). The torus triangle condition and the size of the separation of critical points have been proved previously, but our proofs are different and are direct consequences of the bound on the ℤ^d two-point function. In particular, we use results derived from the lace expansion on ℤ^d, but in contrast to previous work on high-dimensional torus percolation we do not need or use a separate torus lace expansion.

Item Type:Report or Paper (Discussion Paper)
Related URLs:
URLURL TypeDescription Paper
Hutchcroft, Tom0000-0003-0061-593X
Michta, Emmanuel0000-0001-7222-0422
Slade, Gordon0000-0001-9389-9497
Additional Information:This work was carried out primarily while TH was a Senior Research Associate at the University of Cambridge, during which time he was supported by ERC starting grant 804166 (SPRS). The work of EM and GS was supported in part by NSERC of Canada.
Funding AgencyGrant Number
European Research Council (ERC)804166
Natural Sciences and Engineering Research Council of Canada (NSERC)UNSPECIFIED
Subject Keywords:percolation; lace expansion; two-point function; one-arm exponent; triangle condition; torus plateau
Classification Code:MSC2010 Classifications: 05C80, 60K35, 82B27, 82B43
Record Number:CaltechAUTHORS:20210924-202253573
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:111041
Deposited By: George Porter
Deposited On:27 Sep 2021 16:29
Last Modified:27 Sep 2021 16:29

Repository Staff Only: item control page