A Caltech Library Service

Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry

Surdu, Mihnea and Pospisilova, Veronika and Xiao, Mao and Wang, Mingyi and Mentler, Bernhard and Simon, Mario and Stolzenburg, Dominik and Hoyle, Christopher R. and Bell, David M. and Lee, Chuan Ping and Lamkaddam, Houssni and Lopez-Hilfiker, Felipe and Ahonen, Lauri R. and Amorim, Antonio and Baccarini, Andrea and Chen, Dexian and Dada, Lubna and Duplissy, Jonathan and Finkenzeller, Henning and He, Xu-Cheng and Hofbauer, Victoria and Kim, Changhyuk and Kürten, Andreas and Kvashnin, Aleksandr and Lehtipalo, Katrianne and Makhmutov, Vladimir and Molteni, Ugo and Nie, Wei and Onnela, Antti and Petäjä, Tuukka and Quéléver, Lauriane L. J. and Tauber, Christian and Tomé, António and Wagner, Robert and Yan, Chao and Prevot, Andre S. H. and Dommen, Josef and Donahue, Neil M. and Hansel, Armin and Curtius, Joachim and Winkler, Paul M. and Kulmala, Markku and Volkamer, Rainer and Flagan, Richard C. and Kirkby, Jasper and Worsnop, Douglas R. and Slowik, Jay G. and Wang, Dongyu S. and Baltensperger, Urs and el Haddad, Imad (2021) Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science: Atmospheres, 1 (6). pp. 434-448. ISSN 2634-3606. PMCID PMC8459645. doi:10.1039/d1ea00050k.

[img] PDF - Published Version
Creative Commons Attribution Non-commercial.

[img] PDF - Supplemental Material
Creative Commons Attribution Non-commercial.


Use this Persistent URL to link to this item:


Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D_p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and β-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m⁻³ in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.

Item Type:Article
Related URLs:
URLURL TypeDescription CentralArticle
Surdu, Mihnea0000-0003-1815-2750
Pospisilova, Veronika0000-0003-2559-2252
Bell, David M.0000-0002-3958-2138
Lee, Chuan Ping0000-0003-0051-8179
Baccarini, Andrea0000-0003-4614-247X
Duplissy, Jonathan0000-0001-8819-0264
Kim, Changhyuk0000-0002-8744-4880
Donahue, Neil M.0000-0003-3054-2364
Kulmala, Markku0000-0003-3464-7825
Flagan, Richard C.0000-0001-5690-770X
el Haddad, Imad0000-0002-2461-7238
Additional Information:© 2021 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Submitted 26 Jun 2021; Accepted 10 Aug 2021; First published 23 Aug 2021. We thank the European Organization for Nuclear Research (CERN) for supporting CLOUD with important technical and financial resources. We would also like to thank P. Carrie, L.-P. De Menezes, F. Josa, I. Krasin, O. S. Maksumov, I. Krasin, R. Sitals and A. Wasem for their contribution to the experiment. This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 895875 (“NPF-PANDA”), no. 764991 (“CLOUD-MOTION H2020-MSCA-ITN-2017”), Swiss National Science Foundation (grant numbers 200021_169090, 200020_172602 and 20FI20_172622), the US National Science Foundation (NSF-AGS-1649147, NSF-AGS-1801574, NSF-AGS-1801897, NSF-AGS-1531284 NSF 1602086, NSF 1801329), the Wallace Research Foundation, the NASA graduate fellowship (NASA-NNX16AP36H), the Portuguese Foundation for Science and Technology (CERN/FIS-COM/0014/2017) as well as the ERC Consolidator Grant “NANODYNAMITE” (No. 616075). We acknowledge the following projects: ACCC Flagship funded by the Academy of Finland (grant no. 337549), Academy professorship funded by the Academy of Finland (grant no. 302958), Academy of Finland projects no. 1325656, 316114 and 325647, “Quantifying carbon sink, CarbonSink+ and their interaction with air quality” INAR project funded by Jane and Aatos Erkko Foundation, European Research Council (ERC) project ATM-GTP Contract No. 742206. Author contributions: V. P., M. X., M. W., B. M., M. Sim., D. S., C. R. H., F. L.-H., L. R. A., A. A., A. B., L. D., J. Dup., C. K., J. K., K. L., V. M., B. M., U. M., W. N., L. L. J. Q., C. T., A. T., P. M. W. collected the data. V. P., M. X., M. W., B. M., M. Sim., D. S., C. R. H., F. L.-H., A. B., U. B., D. C., L. D., J. Dup., H. F., R. C. F., X.-C. H., V. H., C. K., J. K., A. Kür., A. Kvas., K. L., V. M., B. M., U. M., T. P., L. L. J. Q., A. T., R. W., P. M. W., C. Y., I. E.-H. prepared the CLOUD facility or measuring instruments. M. Sur., V. P., M. X., M. W., B. M., M. Sim., D. S., C. K., U. M. analyzed the data. M. Sur., V. P., M. X., M. W., D. S., D. M. B., C. P. L., H. L., H. F., U. M., J. K., M. Sim., D. R. W., A. S. H., J. Dup, J. Dom., N. M. D., A. H., J. C., M. K., R. C. F., R. V., J. G. S., D. S. W., U. B., I. E.-H. contributed to the scientific discussion and interpretation of results. M. Sur., V. P., J. Dom., D. S. W., U. B., I. E.-H. participated in writing the manuscript. There are no conflicts to declare.
Funding AgencyGrant Number
Marie Curie Fellowship895875
Marie Curie Fellowship764991
Swiss National Science Foundation (SNSF)200021_169090
Swiss National Science Foundation (SNSF)200020_172602
Swiss National Science Foundation (SNSF)20FI20_172622
Wallace Research FoundationUNSPECIFIED
NASA Graduate FellowshipNNX16AP36H
Fundação para a Ciência e a Tecnologia (FCT)CERN/FIS-COM/0014/2017
European Research Council (ERC)616075
Academy of Finland337549
Academy of Finland302958
Academy of Finland1325656
Academy of Finland316114
Academy of Finland325647
Jane and Aatos Erkko FoundationUNSPECIFIED
European Research Council (ERC)742206
Issue or Number:6
PubMed Central ID:PMC8459645
Record Number:CaltechAUTHORS:20210930-154410478
Persistent URL:
Official Citation:Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environ. Sci.: Atmos., 2021, 1, 434-448; DOI: 10.1039/d1ea00050k
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:111112
Deposited By: Tony Diaz
Deposited On:04 Oct 2021 18:09
Last Modified:07 Oct 2021 16:13

Repository Staff Only: item control page