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Supplementary Text

Section S1. Experimental data for walking on a loosely-tensioned rope

Figure S1 presents the experimental data for walking on a loosely-tensioned rope. The top 

plot shows the CoM x position (horizontally away from the rope) and z position (upward), each 

plotted against the y position (along the rope). The rope is deflected downward under the weight 

of the robot, which makes the mean z position increase as the robot moves from the center of the 

rope toward the higher attachment point. A back-and-forth movement is seen in the y direction 

as the robot takes each step, shifting its CoM from one foot to the other and back, as described 

in the trajectory of Fig. 5. The middle plot shows the evolution in time of the tracking error in 

the sagittal and frontal planes. We notice periodic disturbances in the frontal plane caused by 

the foot advancing to a point on the pulled-down rope, which is at a higher position relative to 

where the robot stands. The sagittal plane has a small tracking error compared to the frontal 

plane because there is no disturbance, since the steps are made in the frontal plane. The bottom 

plot shows the commanded propeller thrust signals with respect to time.

Section S2. Energy consumption and Cost of Transportation analysis

Although energy efficiency is not the focus of the LEO design, the Cost of Transportation 

(CoT) was analyzed to present the current limitations of such a hybrid locomotion system and 

to inform future researchers interested in this direction about potential challenges that have to 

be addressed.

While hovering, LEO consumes an average of 992 W, out of which 933 W are powering 

the propellers and 59 W are powering the on-board electronics and leg actuators. This power 

consumption is almost cut in half when LEO is walking on the ground, drawing an average 

of 544 W, which is split between 445 W for propellers and 99 W for electronics and legs. 

These power measurements were made by measuring the energy required to recharge LEO’s



battery after performing a walking or flying maneuver. Therefore, they include the overall power

consumption as well as the battery charge/discharge losses. With the relatively small batteries

used on LEO, the resulting flight endurance is about 100 seconds and the walking endurance

is about 3.5 minutes. The limiting factor is the 29 Wh capacity of the battery powering the

propellers.

In Fig. S2, the CoT for different animals, insects, and robotic systems as well as LEO during

its two main locomotion modes are plotted. When walking at a speed of 20 cm/s, the measured

CoT for LEO was 108. When flying at 1 m/s, the CoT was 48, and it decreased to 15.5 at

the flight speed of 3 m/s. The robots used for comparison have CoT values that are lower

than LEO’s, but they are lacking LEO’s multi-modal capabilities. The data used for the plot is

summarized in Table S2 and in (74).

Section S3. LEO’s nonlinear tracking controller: Exponential convergence
proof

The construction of the proof follows (77). The closed-loop dynamics is given by:
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Z t
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where !e = ↵̇ � ↵̇r is the composite error term that includes both the angular position and

rate errors. By introducing the term ẏ = kI!e, we can write Eq. 6 as a linear system with a
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where `(t) is regarded as an external time-varying term for Eq. 6.

We show that the system in Eq. 7 is contracting (i.e., exponentially converging to a sin-

gle trajectory globally from any initial condition (78)). We construct a positive definite ma-
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Note that (PA)sym is negative definite uniformly in time if the following conditions hold:

b < kk�1
I `�2 and b 2 (b1, b2), with b1 and b2 being the roots of det ((PA)sym) = 0. (8)

Combining these conditions with the condition for positive definiteness of matrix P , b needs

to be chosen as follows:
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We define the generalized virtual displacement vector as �z = [�!e, �y]
>, where �!e and �y

are infinitesimal displacements at fixed time. We compute the rate of change as follows:
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where �max is the maximum eigenvalue of the argument matrix.

From contraction analysis (Lemma 6 in (77)), all system trajectories converge exponentially

fast to a single trajectory �z ! 0 with a convergence rate of 2�max((PA)sym)
�min(P ) . In the presence

of a time-varying disturbance term ⌧ext with the bounded time derivative ⌧̇ext, we obtain the

following error bound from Lemma 7 in (77):
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where (P ) is the condition number of P . Here, we use the fact that k�!ek2  k�zk2 and that

the disturbance appears in the right-hand side of Eq. 7 as
⇥
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Using hierarchical combination (78) between the dynamics of !e and ↵̃, we prove the con-

vergence of ↵̃ to the following error ball:
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By comparing the previous equation with Eq. 4, the ⌘ function is defined accordingly. Note

here that �max ((PA)sym) < 0 as (PA)sym is negative definite under the conditions mentioned

in Eq. 8.

Section S4. Modeling of propeller forces and moments for LEO

Suppose the i-th propeller is exerting a thrust force fi at its location pi with respect to the body

frame B. The thrust can be modeled as fi = fiẑi = ci!2
i ẑi, where ci is a constant, !i is the spin

speed, and ẑi is a unit vector in the direction of the propeller thrust (79). At the same time, the

propeller is also exerting a moment ⌧i = (pi�pref)⇥fi±�ifi = fiµi on the body about a point

pref. For LEO, pref is either 1) the ground contact point in case LEO is walking on the ground,

or 2) the CoM location if LEO is flying. In both cases, we assume pref is on the sagittal plane,

that is, its body-y component is zero. The scalar �i is a constant capturing the drag moment

that becomes scaled by the applied thrust, whose sign is determined by the spin direction of the

propeller. If the propellers are vertically oriented, then �i is the only source of yaw moment;

however, if the propellers are tilted, the moment contribution of �i becomes negligible as the tilt

angle increases. The vector µi = (pi � pref) ⇥ ẑi ± �iẑi points in the direction of the moment,

but it is not necessarily a unit vector. We denote the collective moment from all propellers as

⌧ =
P4

i=1 ⌧i.

Note that pi and ẑi are functions of propeller placement only, and if the propellers remain 

fixed to the body, these vectors are also constant. Consequently, the propeller thrust force and 

moment become functions of the propeller speeds only. Therefore, once a solution of Eq. 5 

is found, it is transformed into Pulse-Width Modulation (PWM) signals and sent to propeller 

BLDC motors to physically control their speeds.



Section S5. Derivation of no-slip conditions for moment set definition

Consider again the Inverted Pendulum model (Fig. 3B). We investigate a representative case

where no rotation has been applied to the pendulum. Hence, the pendulum is vertical and its

angular velocity is zero. In addition, we assume the pendulum has a constant length. Under this

scenario, we seek the no-slip conditions derived in terms of ground reaction forces and propeller

thrusts.

Following the frame definitions in Fig. 3C, let us define the position coordinates of the

propellers with respect to the CoM in the body frame B as

p1 = [a, b, c]>, p2 = [a, �b, c]>, p3 = [�a, �b, c]>, p4 = [�a, b, c]>,

where a, b, c > 0. In addition, we let the coordinates of the unit direction vectors of the propeller

thrusts as
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Note that pk and ẑk (k = 1, 2, 3, 4) are defined with respect to the body basis whereas the ground

reaction force fr is defined with respect to the inertial basis. However, under the assumption of

the pendulum being vertical, these two bases are coincident.

Taking this into account and using Newton’s second law on both frontal and sagittal planes,

we obtain

m`↵̈(s)
= frx +

sin �p
2
(�f1 � f2 + f3 + f4)

m`↵̈(f)
= fry +

sin �p
2
(�f1 + f2 + f3 � f4)

0 = frz � mg + cos �(f1 + f2 + f3 + f4)



With the dynamics of ↵(s) and ↵(f) in Eq. 2 and by ignoring the propeller drag moment factor

�k given a relatively large tilt angle �, we also obtain
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Solving for the friction forces, we have
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The no-slip conditions arise from the linear static friction condition as

|frx|  ⌘sfrz, |fry|  ⌘sfrz, frz � 0.

By using our previous notation fz for the net vertical thrust (f1 + f2 + f3 + f4) cos �, the

vertical component of the reaction force is re-written in an obvious form as frz = mg � fz.

Note that the condition frz � 0 is satisfied during LEO’s walking as the net vertical propeller 

thrust we apply is less than the weight of LEO to prevent the loss of ground contact.

One may obtain the same results from a more general case of a rigid body pendulum whose 

equations of motion can be derived using the Lagrangian method. Since a rigid body has six 

degrees-of-freedom, a total of six second-order equations would be obtained. For the no-slip 

pendulum, three of the equations describe its rotational motion, and the remaining three are 

solved for the ground reaction forces, all of which have rather complex expressions. With our 

assumptions, however, the equations are substantially simplified, and the same expressions for 

fr can be obtained. Furthermore, a careful examination of these equations reveals that the 

stance foot does not slip when the net moment about the CoM is zero for the particular case of 

a point-mass pendulum.



Section S6. Solution of the optimized control allocation

To solve this optimization problem efficiently without a numerical solver, we reparameterize the

problem with a single parameter c = kuk1. Let B̃ be the Bwalk matrix with an additional row

of ones, such that B̃u =


⌧d

c

�
since all elements of u are nonnegative. The new optimization

formulation becomes:
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inequality:

c = max

(
fd

z

cos(�)
,

✓
fmin 4⇥1 � B̃�1


⌧d

0

�◆
↵ col4

⇣
B̃�1

⌘ )

Here, col4(B̃�1
) refers to the fourth column of B̃�1 and ↵ is the element-wise division. Note

that col4(B̃�1
) is strictly positive from the existence of a u+ > 0 such that Bwalku+

= 0, and

thus, the element-wise division operation does not change the direction of the inequality signs

in Eq. 9. After obtaining c, u is computed as u = B̃�1
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.

Section S7. Propeller tilt angle trade-off

As described in the section “Distributed propellers and motors,” the propellers are tilted inwards 

by the angle � = 25
� to increase LEO’s control authority during ground locomotion at the ex-

pense of hover efficiency. Figure S3 shows the effect of varying the tilt angle � on the hover 

efficiency as well as the maximum moment while on the ground. Here, the hover thrust effi-

ciency is defined as the net vertical thrust divided by the sum of propeller thrusts in hover. The 

moments are given for an upright configuration (↵i 
= �i 

= 0) and include the no-slip constraint



(with a friction coefficient of 0.84) as developed for T walk,no�slip. As seen in Fig. S3, the control

effectiveness at � = 25
� is enhanced substantially, while keeping the hover thrust losses low.

This angle could be adjusted or actively controlled to optimize LEO for a specific use case.
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Fig. S1. Experimental data for walking on a loosely-tensioned rope.
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a range of CoT achievable by combining the two locomotion modes of LEO.
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Component Reference Specifications
Leg motors (swing & exten-
sion)

MKS HBL599 73.1 g, 4.1 Nm, 2.1 RPS (0.08 s/60�)

Leg motors (ad/abduction) Hitec HSB-9381TH 78 g, 3.3 Nm, 1.2 RPS (0.14 s/60�)
Propeller motors Garila X2508 2200kv
Propellers HQ prop 6x4.5x3
Propeller motor controller Holybro Tekko32 35A 4-in-1 3-6S ESC
Microcontroller STM32F722RE 216 MHz ARM Cortex-M7, 256kB

SRAM, 512KB Flash
IMU ICM-20602 range: ±2000�/s, ±16 g, noise:

0.004�/s/
p
Hz, 100 µg/

p
Hz

VIO camera Intel Realsense T265 55 g, 163� FoV, on-board VIO processing
Embedded computer NanoPC-T4 2x2GHz + 4x1.5GHz, 4GB RAM, PCIe

SSD, USB 3.0, 802.11ac WiFi, 63 g
Battery for propellers Tattu R-line 6S 1300 mAh (29 Wh), 155 g, 95C discharge
Battery for legs & electronics HRB 2S 2700 mAh (20 Wh), 110 g, 10C discharge
Remote control receiver Graupner GR-12L 2.4 GHz digital RC receiver

Table S1: LEO’s components specifications.

Robots Mass
[kg]

Speed
[m/s] CoT

1. Stanford Dogoo 4.8 0.9 3.20
2. Minitaur 5 1.5 2.30
3. Salto-1P 0.1 3.6 6.60
4. Jerboa 2.5 1.52 2.50
5. MIT Cheetah 2 33 6.0 0.51
6. MIT Cheetah 3 45 N/A 0.45
7. StarIETH 23 0.7 2.57
8. ANYMAL 30 0.8 1.23
9. Cheetah Cub 1 1.4 9.80
10. XRL 23 1.54 2.57
11. DURUS 79.5 0.6 1.02

Table S2: Mass, speed, and Cost of Transportation for different walking/jumping robots.
(adapted from (75, 76).)


