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LONG-DISTANCE ENTANGLEMENT OF PURIFICATION AND REFLECTED ENTROPY IN
CONFORMAL FIELD THEORY – SUPPLEMENTAL MATERIAL

Summary. This supplemental material contains ana-
lytical and numerical methods for studying mutual in-
formation (MI), entanglement of purification (EoP) and
reflected entropy (RE) between two small, distant sub-
systems of the fermionic and spin Ising CFT, discretized
on a lattice.

Review of critical Ising model. The Hamiltonian of
the transverse Ising model is given by

Ĥ = �

NX

k=1

⇣
2J Ŝ

x
k Ŝ

x
k+1 + h Ŝ

z
k

⌘
, (S1)

with spin operators represented by Pauli matrices �↵
with ↵ 2 (x, y, z) by

Ŝ
↵
k ⌘ 1⌦(k�1)

⌦
�↵

2
⌦ 1⌦(N�k)

. (S2)

We also use the identification Ŝ
↵
N+1 ⌘ Ŝ

↵
1 . This spin

model can be converted to fermions by defining the 2N
Majorana operators �k via

�2k�1 = �z
⌦(k�1)

⌦ �x ⌦ 1⌦(N�k)
, (S3)

�2k = �z
⌦(k�1)

⌦ �y ⌦ 1⌦(N�k)
. (S4)

The Ising Hamiltonian then takes the form

ĤI =
i
2

 
�1 �2N P + J

N�1X

k=1

�2k �2k+1 +h

NX

k=1

�2k�1 �2k

!
. (S5)

Here P is the total parity operator �z
⌦N =Q

k(�i �2k�1 �2k). At the critical point J = h, the Hamil-
tonian thus simplifies to

Ĥ =
i

2

 
�1 �2N P +

2N�1X

k=1

�k �k+1

!
, (S6)

which leads for N ! 1 to the lattice model of the c = 1
2

CFT. The critical Ising Hamiltonian as displayed in the
main text (23) corresponds to J = h = 1.

Covariance matrix. For the critical ground state vec-
tor |0i which has a positive total parity, all correlations
are encoded in the Majorana covariance matrix

⌦j,k =
i

2
h0| [�j , �k] |0i , (S7)

which in the infinite system size limit takes the form

⌦j,k =

(
0 k = j

(�1)k�j�1
⇡(k�j) k 6= j

. (S8)
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FIG. S1. Subsystem setup of our analytical limits for fermions
(top) with an inherent ordering and spins (bottom) without
one. In both systems, we consider the subsystem AB consist-
ing of two single sites A and B separated by d/� sites.

The entropy of a Gaussian mixed state ⇢ with covariance
matrix ⌦ is given by

S(⇢) = �

X

±,i

1± �i

2
log

1± �i

2
, (S9)

where ±i�k are the eigenvalues of ⌦. We will consider
mixed states ⇢AB or ⇢AA0 , whose mixed state covariance
matrices ⌦AB or ⌦AA0 result from restricting (S8) to the
respective blocks.

Fermionic subsystem. We first compute reduced den-
sity matrices from the perspective of fermions, i.e., im-
posing an ordering between modes following from the
anti-commuting variables �i (see Fig. S1). A subsystem
consisting of 1 + 1 sites (w = �) separated by d/w = d/�

sites is then fully characterized by the restriction of the
covariance matrix in (S8) and explicitly given by

⌦fer
AB =

0

BBB@

�
2
⇡

�2
(2d/w+3)⇡

2
⇡

�2
(2d/w+1)⇡

2
(2d/w+1)⇡ �

2
⇡

2
(2d/w+3)⇡

2
⇡

1

CCCA

(S10)

which corresponds to a lowest-dimension (Majorana) op-
erator with scaling dimension � = 1/2. The associated
fermionic density operator is then

⇢
fer
AB ⇠

0

BB@

D
1
2⇡ ✏1/2

E

E
1
2⇡ ✏1/2 F

1

CCA (S11)

with respect to the basis (|##i, |"#i , |#"i , |""i) and using
D = 1

4 + 1
⇡ + 1

⇡2 , E = 1
4 �

1
⇡2 , and F = 1

4 �
1
⇡ + 1

⇡2 .
As in the main text, ✏� ⌘ (w/d)2� which here becomes
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✏1/2 = w/d. If we further restrict to a single site, we find
the covariance matrix and density operator

⌦fer
A =

✓
�

2
⇡

2
⇡

◆
⇢
fer
A =

✓
1
2 �

1
⇡

1
2 + 1

⇡

◆
, (S12)

where ⇢ferA is written with respect to the basis (|#i , |"i).

Spin subsystem. We can perform a similar calculation
in the original Ising spin system whose reduced density
matrices can be constructed from the fermionic covari-
ance matrix [68]. We need not repeat the single interval
case, as entanglement entropies of connected regions are
equivalent under a Jordan-Wigner transformation. How-
ever, we still need the reduced density matrix of a system
of 1 + 1 sites in the large d limit, which we find to be

⇢
spin
AB ⇠

0

BB@

D C✏1/8

E C✏1/8

C✏1/8 E

C✏1/8 F

1

CCA (S13)

with w/� = 1 for the setup of 1+1 sites. As we are consid-
ering the spin Ising CFT, the lowest-dimension primary
is the “order field” � with scaling dimension � = 1/8.
The constant C corresponds to the expectation value of
an operator nonlocal in fermions, and can be computed
from

C = lim
n!1

✓
2

⇡

◆n
n
1/4

4
detMn

, (S14)

where M
n is defined as the n⇥ n matrix

M
n
j,k =

(
(�1)k�j

2(k�j)+1 j  k

(�1)j�k+1

2(j�k)�1 j > k

. (S15)

Using this construction, one finds [73]

C =
e
3⇣0(�1)

223/12
⇡ 0.1612506 . (S16)

MI for fermions. We now begin computing entangle-
ment measures for the small subsystems whose reduced
density matrices we just obtained explicit expressions for.
The continuum limit corresponding to the Ising CFT is
obtained by keeping d/w (or, equivalently, ✏�) fixed and
taking �/w to 0. We will see that taking only a few lattice
sites is su�cient to describe the qualitative and approx-
imate quantitative behavior of the continuum limit. To
demonstrate this, we now show that the large distance
asymptotics of the MI (2) for the case of 1+1 sites yield
results close to the continuum formula (5). In order to
compute the MI, we need to determine the von Neumann
entropy of a single site SA = SB and of both sites SAB .
These entropies can be computed from the eigenvalues
of the covariance matrix ⌦ associated to the respective

Gaussian state ⇢. As an antisymmetric matrix, ⌦fer
AB has

pairs of purely imaginary eigenvalues ±i�k, from which
applying (S9) leads to

SA = �
⇡+2
2⇡ log ⇡+2

2⇡ �
⇡�2
2⇡ log ⇡�2

2⇡ ⇡ 0.474 (S17)

SAB =
nX

k=1

�
�

1+�k
2 log 1+�k

2 �
1��k

2 log 1��k
2

�
, (S18)

where the eigenvalues of ⌦fer
AB are to leading order

�1,2 =
1

⇡

⇣
2± 3

4✏
2
1/2 + . . .

⌘
. (S19)

We can similarly expand S1+1 ⌘ SAB at large d, which
results in a MI for w = � of

I
fer(A : B) ⇠

log ⇡+2
⇡�2

4⇡ ✏
2
1/2

= 0.120
�
w
d

�2
. (S20)

This reproduces the correct continuum power law of
fermionic MI, but yields a coe�cient lower than the con-
tinuum value (5) which also matches the large-distance
expansion of earlier results for Dirac fermions [74]

I(A : B) =
c

3
log

(d+ w)2

d (2w + d)
⇠

1

6

⇣
w

d

⌘2
, (S21)

for two blocks of general width w.

MI for spins. We compute EE for the spin system di-
rectly from the eigenvalue spectrum of the reduced den-
sity matrix (S13). Its four eigenvalues µj are

µ1,2 =
1

4
�

1

⇡
± C ✏1/8 , (S22a)

µ3,4 =
1

4
+

1

⇡
±

r
1

⇡2
+ C2 ✏21/8 , (S22b)

where C is given by (S16) and from which we can directly
compute the EE for AB via

S = �

X

j

µj logµj . (S23)

Note that in the following we will denote eigenvalues of
any density matrix by µj .
This analysis leads to the Ising model prediction for

spin MI at w = � and large separations d of the form

I
spin(A : B) ⇠ C

2

✓
4⇡2

⇡2 � 4
+
⇡

2
log

4 + 4⇡ + ⇡
2

4� 4⇡ + ⇡2

◆
✏
2
1/8

⇠ 0.298

r
w

d
, (S24)

Comparing this formula with the CFT analytics (5) for
� = 1/8, we see an exact match in the power-law behav-
ior. Furthermore, the prefactor in (S24) is only 3.6% o↵
from the continuum value ⇡ 0.309 predicted by (5).
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EoP for fermions. Analogous to the MI calculation for
free fermions, we now calculate the EoP in the fermionic
subsystem of two sites separated by d/� sites, express-
ing all calculations in terms of covariance matrices. We
purify ⌦AB in the limit d/� ! 1 as

⌦(0) =

0

BBBBBBBBBB@

�G L

G L

�G L

G L

�L �G

�L G

�L �G

�L G

1

CCCCCCCCCCA

(S25)

associated to systems (A,B,A
0
, B

0) with G = 2
⇡ and

L =
p
1�G2, whose EE SAA0 is zero and we thus have

limd!1 EP = 0, i.e., the EoP vanishes for large d/�, as
expected.

In order to find the asymptotic behavior of EP , we
need to study the variation of the symplectic eigenvalues
±i�i of ⌦AA0 when perturbing ⌦ according to

⌦ ⇠ ⌦(0) + ✏1/2 ⌦
(1) + 1

2✏
2
1/2 ⌦

(2) as ✏1/2 ! 0 . (S26)

The requirement of ⌦ representing a purification implies
⌦2 = �1, which induces the constraints

⌦(0)⌦(1) + ⌦(1)⌦(0) = 0 ,

2(⌦(1))2 + ⌦(0)⌦(2) + ⌦(2)⌦(0) = 0 .
(S27)

We further require that the restrictions ⌦(1)
AB and ⌦(2)

AB
matches the ones of (S10) expanded in ✏1/2, i.e.,

⌦(1)
AB=

0

BB@

�
1
⇡

�
1
⇡

1
⇡

1
⇡

1

CCA , ⌦(2)
AB=

0

BB@

3
⇡

1
⇡

�
1
⇡

�
3
⇡

1

CCA ,

(S28)

The equations (S27) and (S28) can be solved iteratively
up to some free variables. We first solve ⌦(1) in terms of
⌦(0) and then ⌦(2) in terms of ⌦(0) and ⌦(1).

In order to find asymptotics of the symplectic eigenval-
ues �i, we can use the fact that Tr(⌦2

AA0) = �2(�21 + �
2
2)

and Tr(⌦4
AA0) = 2(�41 + �

4
2) to solve for the asymptotics

of �i to be given by

�1 = �2 ⇠ 1� ↵tot ✏
2
1/2 as ✏1/2 ! 0 , (S29)

where ↵tot will depend on some of the free parameters
contained in ⌦(1) and ⌦(2). With this trick, one finds

↵tot =
x14a23 � x13x24 + ⇡

�2

2
+

G(x14 � x23)⇡�1

2L

+
(x14 � x23)2 + (x13 + x24)2

4L2
,

(S30)

where the variables xij represent unconstrained entries

in the block ⌦(1)
AB,A0B0 . In order to find the asymptotics

of EoP, we need to minimize ↵tot over these parameters
to find the smallest possible EE SAA0 . Due to the fact
that (S30) is quadratic in xij , we can calculate this valua
analytically as

↵tot =
1

8 + 2⇡2
⇡ 0.03605 . (S31)

Expanding SAA0 ⇠
P

i(log 2�
�i
2 ) through �i up to sec-

ond order in ✏1/2 based on (S29) allows us to also find the
o↵set analytically, namely we have

SAA0 = ✏
2
1/2

⇣
↵tot log(✏

�2
1/2 ) + ↵tot log

2e
↵tot

⌘
. (S32)

Combining this with the result from (S31) gives

E
fer
P ⇠

✓
1

8 + 2⇡2
log(✏�2

1/2 ) +
log 2e(8 + 2⇡2)

8 + 2⇡2

◆
✏
2
1/2

⇠

⇣
0.0361 log

�
d
w

�2
+ 0.181

⌘ �
w
d

�2
, (S33)

which agrees with the form (14) in the main text. Note
that the simplicity of Gaussian states allowed us to even
find the analytical form of the constant o↵set. The accu-
racy of this analytical prediction was tested numerically,
for which we presented the results in Fig. 2 in the main
text.

EoP for spins. In the limit of an infinite distance be-
tween the two single site subsystems, we purify (S13) by
the state | 

(0)
i with Schmidt decomposition

| 
(0)

i =
p

D |####i+
p

E(|"#"#i+ |#"#"i) +
p

F |""""i ,

(S34)

where the convention for factors ordering in the purifi-
cation is ABA

0
B

0. Note that in this analysis we assume
that a minimal purification from two to four spin degrees
of freedom su�ces and we will subsequently provide sup-
porting numerical evidence and an additional discussion.
Moving on, we supplement this purification with finite

distance corrections up to second order in ✏1/8 as

| i ⇠ | 
(0)

i+ ✏1/8 | 
(1)

i+ 1
2✏

2
1/8 | 

(2)
i . (S35)

We will optimize over | 
(1)

i and | 
(2)

i subject to the
normalization constraint h | i = 1 order by order in
✏1/8. We further require ⇢(1) = | 

(0)
i h 

(1)
|+ | 

(1)
i h 

(0)
|

and ⇢(2) = | 
(0)

i h 
(2)

| + | 
(2)

i h 
(0)

| + 2 | (1)
i h 

(1)
| to

satisfy

⇢
(1)
AB =

0

BB@

C

C

C

C

1

CCA and ⇢
(2)
AB = 0 , (S36)
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which follows from (S13). We expand the first order per-
turbation as

| 
(1)

i = C

16X

i=1

zi |�ii (S37)

where zi = xi + iyi and |�ii is the basis of HABA0B0 or-
dered as (|####i , |"###i , |#"##i , |""##i , . . . , |""""i). We
then need to implement the condition (22) in the main

text based on (S36) together with the normalization con-
straint (20a) in the main text. We solve these a�ne linear
constraints by the replacements x1 = x6 = x11 = x16 =

0, z5 = �

q
E
D z

⇤
2 , z9 = �

q
E
D z

⇤
3 , z13 = 1p

D
�

q
F
D z

⇤
4 ,

z15 =
q

F
E z

⇤
12, z10 = 1p

E
� z

⇤
7 , z14 = �

q
F
E z8. We can

then compute ↵tot according to (21) in the main text
as quadratic polynomial in terms of the remaining free
variables zi which leads to the rather involved expression

↵tot

C2
= (⇡�2)2y2

1
4⇡2 �

2
p
⇡2�4x3x8
2+⇡ �

2
p
⇡2�4x2x12
2+⇡ �

4(⇡�2)⇡x4

(2+⇡)2 �
4⇡x7p
⇡2�4

+
(⇡�2)(�

p
⇡2�4y6�

p
⇡2�4y11+(2+⇡)y16)y1

2⇡2

+
(⇡2�4)y2

6

4⇡2 +
(⇡2�4)y2

11

4⇡2 +
�
1
4 + 1

⇡2 + 1
⇡

�
y
2
16 +

(2+⇡)y6((⇡�2)y11�
p
⇡2�4y16)

2⇡2 �
(2+⇡)

p
⇡2�4y11y16

2⇡2

�
2
p
⇡2�4y3y8

2+⇡ �
2
p
⇡2�4y2y12

2+⇡ + (⇡�2)|z2|2
2+⇡ + (⇡�2)|z3|2

2+⇡ +
2(4+⇡2)|z4|2

(2+⇡)2 + 2|z7|
2 + |z8|

2 + |z12|
2 + 8⇡3

(⇡�2)(2+⇡)2 .

(S38)

In order to find the EoP, we need to minimize over the
zi to find the smallest possible value ↵tot, which can be
done analytically and leads to

↵tot =
4⇡4

C
2

⇡4 � 16
⇡ 0.12445 . (S39)

The non-vanishing ↵tot shows that the resulting EoP ob-
tained from (14) again has the form

E
spin
P ⇠

✓
4⇡4

C
2

⇡4 � 16
log(✏�2

1/8 ) + const

◆
✏
2
1/8

⇠

 
0.124 log

r
d

w
+ 0.440

!r
w

d
, (S40)

which, as in the fermion case, exhibits a leading-order
long-distance behavior enhanced with respect to that of
MI (S24) by a logarithm of the distance.

When it comes to the subleading long-distance behav-

ior encapsulated by
⇣P

j>0 ↵j(1 � log↵j)
⌘
, we would

need to extract the individual ↵j and optimize over the
remaining parameters. While it is plausible this can be
also done analytically, we determined the value quoted
above numerically, as discussed in the main text. Note
that for the free fermion case with w = � considered
above, we determined this term analytically in terms
of ↵tot.

RE for fermions. In the Gaussian case of free
fermions, our starting point is the following perturba-
tive expansion of the reduced density matrix ⇢AB of
a system of 1 + 1 fermions in the large d separation,

⇢AB ⇠ ⇢
(0)
A ⌦ ⇢

(0)
B + ✏1/2⇢

(1)
AB given by (S11). We sim-

ilarly construct the canonical purification of (S11) via
|
p
⇢ABi =

P
i

p
ei |eii ⌦ |eii = | 

(0)
i + ✏1/2 | 

(1)
i where

⇢AB |eii = ei |eii. Note that in contrast with fermionic
MI and EoP, we do not need to phrase our computation of
RE in terms of the covariance matrix formalism since we
can construct the canonical purification |

p
⇢ABiexactly

for the given form of the initial reduced density ma-
trix ⇢AB .
In this case, the first-order perturbation | 

(1)
i is sim-

ply given by

| 
(1)

i = 1
2⇡ (|�4i+ |�13i) , (S41)

with the same ordering of the basis |�ii as in the pre-
vious case. From the canonical purification’s density
matrix ⇢ := |

p
⇢ABi h

p
⇢AB | we consider a restriction

to subsystems AA
0 given by the reduced density matrix

⇢AA0 = trBB0(⇢) which has the perturbative expansion

⇢AA0 = ⇢
(0)
A ⌦ ⇢

(0)
A0 + ✏

2
1/2⇢

(2)
AA0 explicitly given by

⇢AA0 ⇠ ⇢
(0)
AA0 + 1

2✏
2
1/2⇢

(2)
AA0 =

0

BB@

G̃1 H̃

J̃

J̃

H̃ G̃2

1

CCA , (S42)

where G̃1 = ⇡+2
2⇡ �

✏21/2
4⇡2 , G̃2 = G̃1 �

2
⇡ , H̃ =

p
⇡2�4
2⇡ �

p
⇡2�4✏21/2

4⇡(⇡2�4) , and J̃ =
✏21/2
4⇡2 . We once again compute the

trace of the square of (S42) according to (21) in the main
text from which we obtain

↵tot =
1

2⇡2
⇡ 0.051 . (S43)

which also shows that the reflected entropy SR(⇢AB) =
SAA0(⇢) of the fermionic subsystem also exhibits a loga-
rithmic enhancement of the power law decay for w = �
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given by

S
fer
R (⇢AB) ⇠

✓
1

2⇡2
log ✏�2

1/2 +
1 + log(4⇡2)

2⇡2

◆
✏
2
1/2

⇠

 
0.051 log

✓
d

w

◆2

+ 0.237

!⇣
w

d

⌘2
, (S44)

where we also computed the constant term in (S44) from
the eigenvalues of (S42) according to (21) in the main
text.

RE for spins. For the Ising spin case, we now describe
the detailed computation of the reflected entropy RE for
w = � in the large d limit just as for fermions. The
reduced density matrix for a spin system of 1+1 sites in
the large d limit can again be computed according to (8),

i.e., ⇢AB ⇠ ⇢
(0)
A ⌦ ⇢

(0)
B + ✏1/8 ⇢

(1)
AB + . . ., yielding (S13).

We now construct the canonical purification of (S13)
via |

p
⇢ABi =

P
i

p
ei |eii ⌦ |eii = | 

(0)
i + ✏1/8 | 

(1)
i for

⇢AB |eii = ei |eii and where the eigenvalues ei are defined
in (S22a). In this case, the first order perturbation | 

(1)
i

is given by

| 
(1)

i = ⇡p
⇡2�4

(|�7i+ |�10i) + |�4i+ |�13i , (S45)

where the states |�ii = |�iiABA0B0 form an or-
thonormal basis for the purified Hilbert space HABA0B0

ordered as (|####i , |"###i , |#"##i , |""##i , . . . , |""""i).
From the canonical purification’s density matrix ⇢ :=
|
p
⇢ABi h

p
⇢AB | we consider a restriction to subsys-

tems AA
0 given by the reduced density matrix ⇢AA0 =

trBB0(⇢) which has the perturbative expansion ⇢AA0 =
trBB0(| (0)

i h 
(0)

|) + ✏
2
1/8(2trBB0(| (1)

i h 
(1)

|))/2 explic-
itly given by

⇢AA0 ⇠ ⇢
(0)
AA0 + 1

2✏
2
1/8⇢

(2)
AA0 =

0

BB@

Ã1 F̃

B̃ Ẽ

Ẽ B̃

F̃ Ã2

1

CCA , (S46)

where Ã1 = ⇡+2
2⇡ �

2(⇡2�2)C2✏21/8
⇡2�4 , Ã2 = Ã1 �

2
⇡ , B̃ =

2(⇡2�2)C2✏21/8
(⇡2�4) , Ẽ =

2⇡C2✏21/8p
⇡2�4

, F̃ =
p
⇡2�4
2⇡ �

2⇡(⇡2�2)C2✏21/8
(⇡2�4)3/2

,

where the coe�cient C is defined as in (S16). From here
we follow the strategy of the main text and compute the
trace of the the square of (S46) according to (21). In this
case, we find a value of ↵tot computed via (21) to be

↵tot =
4C2(⇡2

� 2)

⇡2 � 4
⇡ 0.139 . (S47)

As a consequence, the large d leading behaviour of the re-
flected entropy SR(⇢AB) := SAA0(⇢) exhibits a non trivial
logarithmic enhancement of the power law decay accord-
ing to (14) and where the constant contribution can be

computed from the eigenvalues of (S46) leading to a re-
flected entropy SR of the Ising subsystem for w = � of

S
spin
R (⇢AB) ⇠

✓
4C2

⇡
4

⇡4 � 16
log ✏�2

1/8 + const

◆
✏
2
1/8

⇠

 
0.139 log

r
d

w
+ 0.425

!r
w

d
. (S48)

The constant term is again determined numerically in the
main text.

Numerical approach and asymmetric purifica-

tions. Our numerical methods are based on [29, 70, 71],
which outline the construction of an e�cient algorithm
for local optimization over Gaussian states, based on
a gradient descent approach exploiting the natural Lie
group parametrization of the state manifolds. Our nu-
merical results are obtained using an adaptation of this
algorithm to the non-Gaussian case of interest.
To compute the EoP as given in (3), we minimise EE

S over the manifold M of purified state density matri-
ces. We first purify our initial mixed density matrix to
a 2N -dimensional pure ⇢1 via the Schmidt decomposi-
tion. Here, N =

P
X NX with NX denoting the physical

degrees of freedom in subsystem X. We parametrize el-
ements ⇢U 2 M by transformations U = 1 ⌦ eU with
eU 2 U(2NA0+NB0 ), so that ⇢U = U⇢1U

�1. The tensor
product signifies that U only acts non-trivially on de-
grees of freedom in A

0 and B
0. We then optimize by

performing iterative steps along directions in M which
locally minimize SAA0 [29,70],

Un+1 = Une
tKn . (S49)

Here, Kn =
P

µ F
µ(Un)⌅µ/||F||

2 and F
µ : M ! R is

the gradient descent vector field

F
µ(U) = �

@

@s
S(Ues⌅µ⇢1e

�s⌅µU
�1)|s=0 (S50)

with {⌅µ} as basis of u(2NA0+NB0 ). We choose U0 = 1
and we pick 0 < t < 1 in such a way that the value of
SAA0 decreases with successive steps.
The {⌅µ} span the tangent space at U = 1 and, due to

the left-invariance of the Riemannian metric on M, form
orthonormal bases for the tangent spaces at all other
points in M, too, where ⌅µ is identified with the tan-
gent vector to the curve �(s) = Ues⌅µ at �(0) [70].This
saves us having to re-evaluate the matrix representation
of the metric at each step, as we would have to if we had
chosen a coordinate parametrisation of M. While this
makes our algorithm more e�cient than a naive gradient
descent, the numerically accessible range is still highly
limited: sinceNA0+NB0 � NA+NB , the dimension ofM
is at least dimu(2NA0+NB0 ) = 22NA0+2NB0 � 1 and (S49)
requires exponentiation of at least 2(NA+NB)

⇥ 2(NA+NB)

matrices, with a typical step count of several hundred.
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NA0 +NB0

1 + 1 1 + 2 2 + 1 1 + 3 2 + 2 3 + 1
N

A
+

N
B 1

+
1

d = � 0.382 0.382 0.382 0.382 0.382 0.382

d = 2� 0.333 0.333 0.333 0.333 0.333 0.333

d = 3� 0.306 0.306 0.306 0.306 0.306 0.306

d = 4� 0.292 0.292 0.292 0.292 0.292 0.292

1
+

2

d = �

n.a.

0.412 0.438 0.412 0.412 0.440

d = 2� 0.368 0.412 0.368 0.368 0.415

d = 3� 0.345 0.394 0.345 0.345 0.398

d = 4� 0.335 0.385 0.335 0.335 0.389

TABLE S1. Numerical evidence for optimality of certain min-
imal purifications. The table shows the values of the opti-
mization for di↵erent choices of the system dimensions and of
d. The true EoP values (the minimum optimization values)
are highlighted in yellow, with the darker shade indicating the
lowest-dimensional purification for which the EoP is obtained.

This becomes extremely slow on a powerful desktop com-
puter for NA0+NB0 � 5. For the symmetric purifications
in the main text this corresponds with w > 2 �, which ex-
plains the regime we were able to explore.

Given this limitation on our numerical capabilities, it
is instructive to ask whether an optimization over mini-
mal purifications corresponding to NA0+NB0 = NA+NB

yields the true minimum of EE – not least because for
large systems this becomes the only numerically viable
choice. Note that NA0 and NB0 must be in general larger
than NA and NB , but there exist bounds derived in [26]
and later improved in [75]. A natural follow-up question
is whether among the choices of minimal purifications,
the intuitive choice of NA0 = NA and NB0 = NB suf-
fices to reach the true minimum defined as EoP. More
pertinently, we might ask whether it is even possible to
reach the true minimum with a minimal purification for
which NA0 6= NA and NB0 6= NB . In [70], a combina-
tion of numerical and analytical evidence was provided
to show that the answer to this question is in a�rmative
for Gaussian states. While limited by the greater nu-
merical challenge in the non-Gaussian case, we present
similar numerical evidence in Table S1 to show that the
same may be said for our model: the true minimum can
only be reached if NA0 � NA and NB0 � NB , which indi-
cates that the lowest-dimensional purification for which
the EoP can be obtained is the minimal purification with
NA0 = NA and NB0 = NB .
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