Putting MicroED to the test: an unabridged account of the evaluation of 30 diverse pharma compounds

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
MicroEDLab.com, 1623 Central Ave. Ste. 18, Cheyenne, Wyoming 82001, USA.

Supporting Information

Table of Contents

1. Materials and Methods ...2
2. Room Temperature TEM Screening Procedure ..3
3. Room Temperature Screening Crystal Structures and Refinement Information4
4. Cryogenic TEM Screening Procedure ..17
5. Crystal Structure and Refinement Information of Cryogenically Cooled Samples......18
6. Additional Screening and Recrystallization of Samples30
7. Crystal Structure and Refinement Information of Additional Samples................31
8. Transmission Electron Microscope Images of Crystals43
10. Comparison of MicroED Data to X-ray Structures52
11. Automated Data Processing Procedure ..52
12. Automated Data Processing Python Code ...53
13. References ...64
1. Materials and Methods

Samples prepared according to previously disclosed procedures outlined in Supporting Table 1 below. Data was collected on a Thermo Fisher Talos F200C transmission electron microscope operating with an accelerating voltage of 200keV, corresponding to an electron wavelength of 0.0251 Å. Electron diffraction data was collected using a Thermo Fisher CetaD camera. Screening the TEM grid for microcrystals was performed at 2600x magnification in imaging mode. Crystals selected for data collection were isolated by a selected area aperture. Data was collected by taking images of the diffraction patterns generated by a continuously rotating crystal integrated continuously at a rate of 3 seconds per frame. This rotation was performed at a rate of 0.3° per second with a minimum and maximum tilt range of −65° to +65°. Crystals selected for data collection were isolated by a selected area aperture to reduce the background noise contributions and calibrated to eucentric height to stay in the aperture over the entire tilt range. Samples collected at cryogenic conditions were placed onto a Gatan 626 cryo holder. Slow cooling the sample includes inserting room temperature Gatan 626 cryo holder and cooling to cryogenic temperatures after insertion into the TEM. Plunge frozen samples were frozen in liquid nitrogen, placed onto a liquid nitrogen cooled Gatan 626 cryo holder, and inserted and maintained at cryogenic temperature for the duration of data collection on the electron microscope. All diffraction data was processed using the XDS suite of programs as controlled by a custom Python automation script. Structure were solved ab initio by direct methods in SHELXT or SHELXD and refined with SHELXL using ShelXle. Thermal parameters were refined anisotropically for all non-hydrogen atoms. Hydrogen atoms were assigned using the riding model.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Purification by Crystallization</th>
<th>Compound Source and References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Medicinal Chemistry⁸</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medicinal Chemistry⁸,⁹</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Medicinal Chemistry⁸</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Medicinal Chemistry⁸,⁹</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>Process Chemistry¹⁰</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>Medicinal Chemistry⁸,⁹,¹¹–¹⁵</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Process Chemistry¹⁰</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>Process Chemistry¹⁰</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Process Chemistry¹⁰</td>
</tr>
<tr>
<td>10</td>
<td>Yes</td>
<td>Process Chemistry¹⁰</td>
</tr>
<tr>
<td>11</td>
<td>No*</td>
<td>Medicinal Chemistry¹¹,¹³</td>
</tr>
<tr>
<td>12</td>
<td>No</td>
<td>Medicinal Chemistry⁸,⁹,¹¹–¹⁵</td>
</tr>
<tr>
<td>13</td>
<td>No*</td>
<td>Medicinal Chemistry¹¹,¹⁴</td>
</tr>
<tr>
<td>14</td>
<td>Yes*</td>
<td>Process Chemistry³</td>
</tr>
<tr>
<td>15</td>
<td>Yes*</td>
<td>Process Chemistry¹⁶</td>
</tr>
<tr>
<td>Figure 5a</td>
<td>No</td>
<td>Medicinal Chemistry¹²–¹⁹</td>
</tr>
<tr>
<td>Figure 5b</td>
<td>No</td>
<td>PROTACs²⁰</td>
</tr>
</tbody>
</table>

Supporting Table 1. Source of thirty pharmaceutical compounds analyzed in this study. * = samples were recrystallized for the purpose of obtaining a crystal structure.
2. Room Temperature TEM Screening Procedure

Milligram to sub-milligram quantities of dry powder were placed into a dram vial as received and manually ground with a glass pipette. A pure carbon 200 mesh Cu grid or lacey carbon Cu grid was placed inside of the vial and gently shaken together with the powder to “dry load” the grid (1, Supporting Figure 1). The grid was removed with Dumont straight self-closing tweezers and the tweezers were gently tapped against a lab bench while holding the grid to shake off excess powder. This sample was clipped into a single tilt holder and inserted into a well-aligned Thermo Fisher Scientific Talos F200C transmission electron microscopy operating at an accelerating voltage of 200keV.

After achieving suitable pressure, the column valves were opened and the grid was manually scanned at 2600x magnification in imaging mode (2). To screen for crystallinity, an incident diffraction pattern was recorded by isolating a region of the particle using a selected area aperture (3) and entering parallel-illuminated diffraction mode utilizing the low dose software on the Thermo Fisher microscope user interface.

A single image of the diffraction pattern was taken on a Thermo Fisher Scientific Ceta-D camera (4). If user inspection of the diffraction pattern suggested that the particle was monocrystalline and provided <1.2 Å resolution diffraction, the eucentric height of the sample was finely adjusted in imaging mode to ensure the crystal would remain within the selected area aperture throughout a tilt series with a maximum tilt range of ± 65° (5). Upon returning to diffraction mode at eucentric height, a continuously rotating electron diffraction movie was collected (6). The stage was rotated at a rate of 0.3° s⁻¹ and a detector distance of 960mm. The Ceta-D CMOS 4k x 4k camera was operated using

![Supporting Figure 1. Representative data collection workflow.](image-url)
rolling shutter mode and continuously integrated at a rate of 3 seconds per frame with binning by 2 to produce 2k x 2k images. Diffraction movies were saved as SER files. Movies were saved with a standardized naming format and processed using the automated data workflow (See Supporting Information 9 and 10) while additional movies were collected. These processed movies were manually re-indexed to different space groups and/or merged with other datasets as needed until preliminary solutions were obtained.

Screening was halted if no diffraction was observed after 30 minutes, the sample visibly lost resolution over the course of a single movie, or a preliminary solution with >90% of expected atoms was obtained.

3. Room Temperature Screening Crystal Structures

3.1 (2R,3S)-N-(4-(2,6-dimethoxyphenyl)-5-(5-methylpyridin-3-yl)-4H-1,2,4-triazol-3-yl)-3-(5-methylpyrimidin-2-yl)butane-2-sulfonamide (SI-1).
Initial direct methods solution of **SI-1** (top) with electron density map (F_{obs}) contoured at 1.41 e Å$^{-3}$ and ORTEP diagram of refined **SI-1** (bottom). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-1.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>$C_{25}H_{29}N_7O_4S$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>523.61</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>294(2) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 9.3100(10)$</td>
</tr>
<tr>
<td></td>
<td>$b = 20.490(2)$</td>
</tr>
<tr>
<td></td>
<td>$c = 12.650(4)$</td>
</tr>
<tr>
<td></td>
<td>$\beta = 108.42$</td>
</tr>
<tr>
<td>Volume</td>
<td>2289.5(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1$</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.515 Mg/m3</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>100</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>6341</td>
</tr>
<tr>
<td>Reflections with $I > 2\sigma(I)$</td>
<td>3849</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.90 Å</td>
</tr>
<tr>
<td>Completeness</td>
<td>81.4%</td>
</tr>
<tr>
<td>Index ranges</td>
<td>$10 \leq h \leq -10, 23 \leq k \leq -24, 13 \leq l \leq -13$</td>
</tr>
</tbody>
</table>

Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure solution program</td>
<td>SHELXT (Uson & Sheldrick, 1999)</td>
</tr>
<tr>
<td>Primary solution method</td>
<td>Direct methods</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Geometric positions</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>SHELXL-2018/3 (Sheldrick, 2018)</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6341 / 1069 / 668</td>
</tr>
<tr>
<td>Treatment of hydrogen atoms</td>
<td>Riding</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.243</td>
</tr>
<tr>
<td>Final R indices [$I>2s(I)$]</td>
<td>$R1 = 0.1228$, $wR2 = 0.2924$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R1 = 0.1678$, $wR2 = 0.3187$</td>
</tr>
<tr>
<td>Type of weighting scheme used</td>
<td>Sigma</td>
</tr>
<tr>
<td>Weighting scheme used</td>
<td>$w = 1/s^2(Fo^2)$</td>
</tr>
<tr>
<td>Max shift/error</td>
<td>0.044</td>
</tr>
<tr>
<td>Average shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.19 and -0.12 eÅ⁻³</td>
</tr>
</tbody>
</table>

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
3.2 (2R,3S)-3-(5-methoxypyridin-2-yl)butane-2-sulfonamide (SI-2).

Initial direct methods solution of SI-2 (left) with electron density map (F_{obs}) contoured at 1.03 e Å^{-3} and ORTEP diagram of refined SI-2 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{25}H_{29}N_{7}O_{4}S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>523.61</td>
</tr>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>294(2) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 22.830(4)</td>
</tr>
<tr>
<td></td>
<td>b = 6.810(10)</td>
</tr>
<tr>
<td></td>
<td>c = 6.980(2)</td>
</tr>
<tr>
<td>Volume</td>
<td>1085.2(4)</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_{1}2_{1}2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.495 Mg/m^3</td>
</tr>
<tr>
<td>F(000)</td>
<td>103</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>3816</td>
</tr>
<tr>
<td>Reflections with I > 2σ(f)</td>
<td>870</td>
</tr>
</tbody>
</table>
Resolution 0.95 Å
Completeness 82.9%
Index ranges $7 \leq h \leq -7, 25 \leq k \leq -25, 7 \leq l \leq -7$

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)
Primary solution method Direct methods
Secondary solution method Difference Fourier map
Hydrogen placement Geometric positions
Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)
Refinement method Full matrix least-squares on F^2
Data / restraints / parameters 1360 / 135 / 146
Treatment of hydrogen atoms Riding
Goodness-of-fit on F^2 1.480
Final R indices [$I>2s(I)$] $R1 = 0.1347, wR2 = 0.3138$
R indices (all data) $R1 = 0.1779, wR2 = 0.3349$
Type of weighting scheme used Sigma
Weighting scheme used $w=1/s^2(Fo^2)$
Max shift/error 0.051
Average shift/error 0.009
Largest diff. peak and hole 0.20 and -0.18 e.A$^{-3}$

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
3.3 (2S,3R)-N-(4-(2,6-dimethoxyphenyl)-5-(methylpyridin-3-yl)-4H-1,2,4-triazol-3-yl)-3-(5-methylpyrimidin-2-yl)butane-2-sulfonamide (SI-3).

Initial direct methods solution of SI-3 (left) with electron density map (F_{obs}) contoured at 1.03 e Å^{-3} and ORTEP diagram of refined SI-3 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-3.

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C_{25}H_{29}N_{7}O_{4}S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>523.61</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Type of instrument</th>
<th>Talos F200C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>294(2) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.3100(10)</td>
</tr>
<tr>
<td></td>
<td>b = 20.450(2)</td>
</tr>
<tr>
<td></td>
<td>c = 12.680(4)</td>
</tr>
<tr>
<td></td>
<td>β = 108.40</td>
</tr>
<tr>
<td>Volume</td>
<td>2290.7(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2\textsubscript{1}</td>
</tr>
</tbody>
</table>

Density (calculated) 1.518 Mg/m³
F(000) 100
Measured reflections 5615
Reflections with I > 2σ(I) 3218
Resolution 0.90 Å
Completeness 85.5%
Index ranges 10 ≤ h ≤ -10, 21 ≤ k ≤ -21, 14 ≤ l ≤ -14

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)
Primary solution method Direct methods
Secondary solution method Difference Fourier map
Hydrogen placement Geometric positions
Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)
Refinement method Full matrix least-squares on F²
Data / restraints / parameters 5615 / 677 / 668
Treatment of hydrogen atoms Riding
Goodness-of-fit on F² 1.226
Final R indices [I>2s(I)]
R1 = 0.1294, wR2 = 0.3063
R indices (all data) R1 = 0.1777, wR2 = 0.3408
Type of weighting scheme used Sigma
Weighting scheme used w=1/s²(Fo²)
Max shift/error 0.016
Average shift/error 0.000
Largest diff. peak and hole 0.20 and -0.14 e.Å⁻³

Special Refinement Details

Refinement of F² against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2s(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3.4 (2S,3R)-3-(5-methoxypyridin-2-yl)butane-2-sulfonamide (SI-4)

Initial direct methods solution of SI-4 (left) with electron density map (F_{obs}) contoured at 1.03 e Å$^{-3}$ and ORTEP diagram of refined SI-4 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-4.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${10}$H${16}$N$_2$O$_3$S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>244.31</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>294(2) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 6.840(2)</td>
</tr>
<tr>
<td></td>
<td>b = 22.820(4)</td>
</tr>
<tr>
<td></td>
<td>c = 6.9800(10)</td>
</tr>
<tr>
<td>Volume</td>
<td>1089.5(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
</tbody>
</table>
Crystal system: Orthorhombic

Space group: P2₁2₁2₁

Density (calculated): 1.489 Mg/m³

F(000): 103

Measured reflections: 1212

Reflections with I > 2σ(I): 649

Resolution: 0.95 Å

Completeness: 89.4%

Index ranges: 24 ≤ h ≤ -24, 7 ≤ k ≤ -7, 7 ≤ l ≤ -7

Structure Solution and Refinement

Structure solution program: SHELXT (Uson & Sheldrick, 1999)

Primary solution method: Direct methods

Secondary solution method: Difference Fourier map

Hydrogen placement: Geometric positions

Structure refinement program: SHELXL-2018/3 (Sheldrick, 2018)

Refinement method: Full matrix least-squares on F²

Data / restraints / parameters: 1212 / 136 / 134

Treatment of hydrogen atoms: Riding

Goodness-of-fit on F²: 1.414

Final R indices [I>2s(I)]: R1 = 0.1706, wR2 = 0.3583

R indices (all data): R1 = 0.2370, wR2 = 0.3910

Type of weighting scheme used: Sigma

Weighting scheme used: w=1/s²(Fo²)

Max shift/error: 0.030

Average shift/error: 0.000

Largest diff. peak and hole: 0.18 and -0.18 e.Å⁻³

Special Refinement Details
Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3.5 (R)-6'-chloro-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-naphthalene]-7-carboxylic acid ((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methansulfonate (SI-5)

Initial direct methods solution of SI-5 (left) with electron density map (F_{obs}) contoured at 1.03 e Å$^{-3}$ and ORTEP diagram of refined SI-5 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-5.

- **Empirical formula**: $C_{29}H_{34}NO_7SCl$
- **Formula weight**: 574.07

Data Collection

- **Type of instrument**: Talos F200C
- **Wavelength**: 0.0215 Å
- **Data collection temperature**: 294(2) K
- **Unit cell dimensions**
 - $a = 10.5200(10)$ Å
 - $b = 10.220(2)$ Å
\[
\begin{align*}
c &= 12.660(4) \\
\beta &= 110.33 \\
Volume &= 1276.4(5) \\
Z &= 2 \\
Crystal system &= Monoclinic \\
Space group &= P2_1 \\
Density (calculated) &= 1.494 \text{ Mg/m}^3 \\
F(000) &= 99 \\
Measured reflections &= 2438 \\
Reflections with I > 2\sigma(I) &= 1379 \\
Resolution &= 1.0 \text{ Å} \\
Completeness &= 95.7\% \\
Index ranges &= 9 \leq h \leq -9, 10 \leq k \leq -10, 12 \leq l \leq -12
\end{align*}
\]

Structure Solution and Refinement

Structure solution program: SHELXT (Uson & Sheldrick, 1999)
Primary solution method: Direct methods
Secondary solution method: Difference Fourier map
Hydrogen placement: Geometric positions
Structure refinement program: SHELXL-2018/3 (Sheldrick, 2018)
Refinement method: Full matrix least-squares on F²
Data / restraints / parameters: 2438 / 612 / 357
Treatment of hydrogen atoms: Riding
Goodness-of-fit on F²: 1.239
Final R indices [I>2s(I)]: R1 = 0.1198, wR2 = 0.2721
R indices (all data): R1 = 0.1823, wR2 = 0.3103
Type of weighting scheme used: Sigma
Weighting scheme used: \(w=1/s^2(Fo^2) \)
Max shift/error: 0.061
Average shift/error: 0.001
Largest diff. peak and hole: 0.13 and -0.13 e.Å⁻³
Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Significant disorder of the CSA moiety prevents assignment of absolute stereochemistry.

3.6 (2S,3R)-3-(5-methylpyrazin-2-yl)butane-2-sulfonamide (SI-6)

Initial direct methods solution of SI-6 (left) with electron density map (F_{obs}) contoured at 1.41 e Å$^{-3}$ and ORTEP diagram of refined SI-6 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-6.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C9H${15}$N$_3$O$_2$S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>229.30</td>
</tr>
</tbody>
</table>

Data Collection
Type of instrument
Talos F200C

Wavelength
0.0215 Å

Data collection temperature
294(2) K

Unit cell dimensions
a = 7.4500(10)
b = 8.130(2)
c = 16.240(4)

Volume
983.6(4)

Z
4

Crystal system
Orthorhombic

Space group
P2_12_12_1

Density (calculated)
1.548 Mg/m³

F(000)
46

Measured reflections
1652

Reflections with I > 2σ(I)
975

Resolution
0.80 Å

Completeness
82.6%

Index ranges
8 ≤ h ≤ -8, 9 ≤ k ≤ -9, 19 ≤ l ≤ -19

Structure Solution and Refinement

Structure solution program
SHELXT (Usón & Sheldrick, 1999)

Primary solution method
Direct methods

Secondary solution method
Difference Fourier map

Hydrogen placement
Geometric positions

Structure refinement program
SHELXL-2018/3 (Sheldrick, 2018)

Refinement method
Full matrix least-squares on F²

Data / restraints / parameters
1652 / 127 / 137

Treatment of hydrogen atoms
Riding

Goodness-of-fit on F²
1.267

Final R indices [I>2s(I)]
R1 = 0.1808, wR2 = 0.4048

R indices (all data)
R1 = 0.2167, wR2 = 0.4398

Type of weighting scheme used
Sigma
Weighting scheme used \(w = 1/s^2(F_o^2) \)

Max shift/error 0.079

Average shift/error 0.001

Largest diff. peak and hole 0.21 and -0.38 e.Å\(^3\)

Special Refinement Details

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on \(F^2 \), conventional R-factors (R) are based on F, with F set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2s(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4. Cryogenic TEM Screening

Milligram to sub-milligram quantities of dry powder were placed into a dram vial as received and manually ground with a glass pipette. A pure carbon 200 mesh Cu grid or lacey carbon Cu grid was placed inside of the vial and gently shaken together with the powder to “dry load” the grid. The grid was removed with Dumont straight self-closing tweezers and the tweezers were gently tapped against a lab bench while holding the grid to shake off excess powder. This sample was clipped into a Gatan 626 cryo holder at room temperature and inserted into a well-aligned Thermo Fisher Scientific Talos F200C transmission electron microscopy operating at an accelerating voltage of 200keV. After successful insertion, the cryo holder was cooled with liquid nitrogen until reaching a stable temperature of \(\sim -177 \) °C. After achieving stable temperature and low vacuum pressure, incident diffraction screening and movie collection were performed as described in **Supporting Information Section 2**. Screening was halted after 3 hours, or if a preliminary solution with >90% of expected atoms was obtained.
5. Crystal Structure and Refinement Information of Cryogenically Cooled Samples

5.1 (R)-6'-chloro-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-naphthalene]-7-carboxylic acid ((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methansulfonate (SI-5.1)

Initial direct methods solution of SI-5 (left) with electron density map (F_{obs}) contoured at 1.03 e Å$^{-3}$ and ORTEP diagram of refined SI-5 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-5.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>$C_{29}H_{34}NO_7SCl$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>574.07</td>
</tr>
<tr>
<td>Data Collection</td>
<td></td>
</tr>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>294(2) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>10.4700(10)</td>
</tr>
<tr>
<td>b</td>
<td>10.260(2)</td>
</tr>
<tr>
<td>c</td>
<td>12.440(4)</td>
</tr>
<tr>
<td>β</td>
<td>109.92</td>
</tr>
<tr>
<td>Volume</td>
<td>1256.4(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2$_1$</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.523 Mg/m3</td>
</tr>
</tbody>
</table>
F(000) 99
 Measured reflections 2474
 Reflections with $I > 2\sigma(I)$ 1787
 Resolution 1.0 Å
 Completeness 92.6%
 Index ranges $10 \leq h \leq -10$, $10 \leq k \leq -10$, $12 \leq l \leq -12$

Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Structure solution program</th>
<th>SHELXD (Uson & Sheldrick, 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary solution method</td>
<td>Direct methods</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Geometric positions</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>SHELXL-2018/3 (Sheldrick, 2018)</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2474 / 703 / 354</td>
</tr>
<tr>
<td>Treatment of hydrogen atoms</td>
<td>Riding</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.143</td>
</tr>
<tr>
<td>Final R indices [I>2s(I)]</td>
<td>$R_1 = 0.1127$, $wR_2 = 0.2643$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.1456$, $wR_2 = 0.2863$</td>
</tr>
<tr>
<td>Type of weighting scheme used</td>
<td>Sigma</td>
</tr>
<tr>
<td>Weighting scheme used</td>
<td>$w=1/s^2(Fo^2)$</td>
</tr>
<tr>
<td>Max shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Average shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.17 and -0.16 e.Å$^{-3}$</td>
</tr>
</tbody>
</table>

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account
individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Initial direct methods solution of SI-7 (top) with electron density map (F_{obs}) contoured at 1.01 e Å$^{-3}$ and ORTEP diagram of refined SI-7 (bottom). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-7.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${32}$H${39}$N$_2$O$_5$SCl</td>
</tr>
<tr>
<td>Formula weight</td>
<td>599.16</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>96(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.3400(10)</td>
</tr>
<tr>
<td></td>
<td>b = 11.340(2)</td>
</tr>
<tr>
<td></td>
<td>c = 12.500(4)</td>
</tr>
<tr>
<td></td>
<td>α = 73.74</td>
</tr>
<tr>
<td></td>
<td>β = 69.36</td>
</tr>
<tr>
<td></td>
<td>γ = 71.13</td>
</tr>
<tr>
<td>Volume</td>
<td>1398.2(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P$_{1}$</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.423 Mg/m3</td>
</tr>
<tr>
<td>F(000)</td>
<td>243</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>6522</td>
</tr>
<tr>
<td>Reflections with $I > 2\sigma(I)$</td>
<td>3782</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.90 Å</td>
</tr>
<tr>
<td>Completeness</td>
<td>82.5%</td>
</tr>
<tr>
<td>Index ranges</td>
<td>$12 \leq h \leq -12, 12 \leq k \leq -12, 13 \leq l \leq -13$</td>
</tr>
</tbody>
</table>
Structure Solution and Refinement

Structure solution program
- SHELX (Uson & Sheldrick, 1999)

Primary solution method
- Direct methods

Secondary solution method
- Difference Fourier map

Hydrogen placement
- Geometric positions

Structure refinement program
- SHELXL-2018/3 (Sheldrick, 2018)

Refinement method
- Full matrix least-squares on F²

Data / restraints / parameters
- 6522 / 1253 / 740

Treatment of hydrogen atoms
- Riding

Goodness-of-fit on F²
- 1.242

Final R indices [I>2s(I)]
- R1 = 0.1465, wR2 = 0.3107

R indices (all data)
- R1 = 0.1954, wR2 = 0.3439

Type of weighting scheme used
- Sigma

Weighting scheme used
- \(w = 1/s^2(F_0^2) \)

Max shift/error
- 0.083

Average shift/error
- 0.000

Largest diff. peak and hole
- 0.25 and -0.26 eÅ⁻³

Special Refinement Details

Refinement of F² against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2s(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
5.3 (S)-6′-chloro-3′,4,4′,5-tetrahydro-2H,2′H-spiro[benzo[b][1,4]oxazepine-3,1′-naphthalene]-7-carboxylic acid ((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methansulfonate (SI-8)

Initial direct methods solution of SI-8 (top) with electron density map (F_{obs}) contoured at 1.03 e Å^{-3} and ORTEP diagram of refined SI-8 (bottom). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-8.

Empirical formula
C_{29}H_{34}NO_{7}SCl

Formula weight
576.08

Data Collection

<table>
<thead>
<tr>
<th>Type of instrument</th>
<th>Talos F200C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>96(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 10.6900(10)</td>
<td></td>
</tr>
<tr>
<td>b = 10.220(2)</td>
<td></td>
</tr>
<tr>
<td>c = 12.680(4)</td>
<td></td>
</tr>
</tbody>
</table>
\[\beta = 111.22 \]

Volume \[1291.4(5) \]

\(Z \) \[2 \]

Crystal system \(\text{Monoclinic} \)

Space group \(P2_1 \)

Density (calculated) \[1.482 \text{ Mg/m}^3 \]

\(F(000) \) \[99 \]

Measured reflections \[3824 \]

Reflections with \(I > 2\sigma(I) \) \[2409 \]

Resolution \[0.85 \text{ Å} \]

Completeness \[85.2\% \]

Index ranges \[12 \leq h \leq -12, 11 \leq k \leq -11, 14 \leq l \leq -14 \]

Structure Solution and Refinement

- Structure solution program: SHELXT (Uson & Sheldrick, 1999)
- Primary solution method: Direct methods
- Secondary solution method: Difference Fourier map
- Hydrogen placement: Geometric positions
- Structure refinement program: SHELXL-2018/3 (Sheldrick, 2018)
- Refinement method: Full matrix least-squares on \(F^2 \)
- Data / restraints / parameters: 3824 / 377 / 354
- Treatment of hydrogen atoms: Riding
- Goodness-of-fit on \(F^2 \) \[1.244 \]
- Final R indices \([I>2\sigma(I)]\) \[R1 = 0.1415, wR2 = 0.3278 \]
- R indices (all data) \[R1 = 0.1794, wR2 = 0.3523 \]
- Type of weighting scheme used: Sigma
- Weighting scheme used \[w=1/s^2(Fo^2) \]
- Max shift/error \[0.044 \]
- Average shift/error \[0.002 \]
- Largest diff. peak and hole \[0.15 \text{ and } -0.16 \text{ e.Å}^{-3} \]
Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

$5.4\,(S)$-6'-chloro-5'-(((1R,2R)-2-((S)-1-hydroxyallyl)cyclobutyl)methyl)-N-(((2R,3S)-3-methylhex-5-en-2-yl)sulfonyl)-3',4',5'-tetrahydro-2H,2'H-spiro[benzo[B][1,4] oxazepine-3,1'-naphthalene]-7-carboxamide (SI-9)

Initial direct methods solution of SI-9 (top) with electron density map (F_{obs}) contoured at 1.03 e Å$^{-3}$ and ORTEP diagram of refined SI-9 (bottom). Thermal ellipsoids shown as shaded octants at 30% probability.
Crystal data and structure refinement for SI-9.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{34}H_{43}N_{2}O_{5}SCl</td>
</tr>
<tr>
<td>Formula weight</td>
<td>626.26</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>96(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 10.5200(10)</td>
</tr>
<tr>
<td></td>
<td>b = 15.050(2)</td>
</tr>
<tr>
<td></td>
<td>c = 17.020(4)</td>
</tr>
<tr>
<td>Volume</td>
<td>2694.7(8)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_12_12_1</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.546 Mg/m³</td>
</tr>
<tr>
<td>F(000)</td>
<td>105</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>2393</td>
</tr>
<tr>
<td>Reflections with I > 2σ(I)</td>
<td>1774</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.0 Å</td>
</tr>
<tr>
<td>Completeness</td>
<td>83.1%</td>
</tr>
<tr>
<td>Index ranges</td>
<td>10 ≤ h ≤ -10, 15 ≤ k ≤ -15, 15 ≤ l ≤ -14</td>
</tr>
</tbody>
</table>

Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure solution program</td>
<td>SHELXD (Uson & Sheldrick, 1999)</td>
</tr>
<tr>
<td>Primary solution method</td>
<td>Direct methods</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Geometric positions</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>SHELXL-2018/3 (Sheldrick, 2018)</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2393 / 748 / 390</td>
</tr>
</tbody>
</table>
Treatment of hydrogen atoms

Goodness-of-fit on F^2 1.399

Final R indices [I>2s(I)]

R indices (all data)

Type of weighting scheme used Sigma

Weighting scheme used $w=1/s^2(Fo^2)$

Max shift/error 0.045

Average shift/error 0.000

Largest diff. peak and hole 0.15 and -0.13 e.Å$^{-3}$

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5.5 (R)-1-phenylethyl-1-aminium (S)-6’-chloro-5-(((1R,2R)-2-((S)-1-hydroxyallyl)
cyclobutyl)methyl)-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-naphthalene]-7-carboxylate (SI-10)

Initial direct methods solution of SI-10 (top) with electron density map (F_{obs}) contoured at 1.41 e Å$^{-3}$ and ORTEP diagram of refined SI-10 (bottom). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-10.

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C${35}$H${36}$N${2}$O${4}$Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>584.11</td>
</tr>
</tbody>
</table>

Data Collection

| Type of instrument | Talos F200C |
Wavelength 0.0215 Å
Data collection temperature 96(4) K
Unit cell dimensions
 a = 7.9800(10)
 b = 11.730(2)
 c = 28.850(4)
Volume 2700.5(7)
Z 4
Crystal system Orthorhombic
Space group P2₁2₁2₁
Density (calculated) 1.437 Mg/m³
F(000) 103
Measured reflections 3263
Reflections with I > 2σ(I) 2351
Resolution 0.85 Å
Completeness 68.6%
Index ranges
 9 ≤ h ≤ -9, 13 ≤ k ≤ -13, 25 ≤ l ≤ -25

Structure Solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)
Primary solution method Direct methods
Secondary solution method Difference Fourier map
Hydrogen placement Geometric positions
Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)
Refinement method Full matrix least-squares on F²
Data / restraints / parameters 3263 / 390 / 380
Treatment of hydrogen atoms Riding
Goodness-of-fit on F² 1.469
Final R indices [I>2s(I)] R1 = 0.1206, wR2 = 0.2740
R indices (all data) R1 = 0.1536, wR2 = 0.2834
Type of weighting scheme used Sigma
Weighting scheme used w=1/s²(Fo²)
Max shift/error: 0.026
Average shift/error: 0.000
Largest diff. peak and hole: 0.17 and -0.13 eÅ⁻³

Special Refinement Details

Refinement of F² against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2σ(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6. Additional Screening and Recrystallization of Samples

Sample SI-12 was screened in the same manner as described in Supporting Information Section 2 for ~4 additional hours at room temperature to locate monocristalline domains in a largely polycristalline sample.

Crystallization of SI-11, SI-13, SI-14, and SI-15 was performed by placing ~1 mg of powder as received into 6 x 50 mm borosilicate culture tubes purchased from VWR. Samples were dissolved in approximately 500 uL of solvent and allowed to slowly evaporate at room temperature. Higher boiling solvents were evaporated from open containers, while low boiling solvents required placing the culture tube inside an empty dram vial with a slightly loosened cap. If the initial solvent failed to produce a solid after fully evaporating based on visual inspection, the amorphous samples were re-dissolved in the same culture tube with a new solvent mixture. Evaporation occurred until precipitation was observed. Sample crystallization time spanned from overnight to 3 days. SI-11 and SI-13 were obtained from slow evaporation from a 50/50 mixture of MeCN and H₂O. The crystals were dried under reduced pressure and screened at cryogenic temperatures as outlined in Supporting Information Section 4.

SI-15 was generated from slow evaporation from H₂O with a small amount of DMSO. The crystals were blotted with a kimwipe and dried under reduced pressure to remove excess solvent before being brought into the TEM as described in Supporting Information Section 4.

SI-14 was crystallized from slow evaporation of diethyl ether. The crystals were placed onto a grid as a dry powder, and screened by a modified procedure of Supporting Information Section 4. Before typical screening, the prepared grid was plunge frozen in liquid nitrogen and transferred into the TEM while the holder was maintained at cryogenic temperatures.
7. Crystal Structure and Refinement Information of Additional Samples

7.1 (S)-1-(5-fluoropyrimidin-2-yl)piperidine-3-sulfonamide (SI-11).

Initial direct methods solution of SI-11 (left) with electron density map (F_{obs}) contoured at 1.41 e Å^{-3} and ORTEP diagram of refined SI-11 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-11.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{9}H_{13}N_{4}O_{2}SF</td>
</tr>
<tr>
<td>Formula weight</td>
<td>260.29</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>96(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 22.990(2)</td>
</tr>
<tr>
<td></td>
<td>b = 37.240(4)</td>
</tr>
<tr>
<td></td>
<td>c = 4.6400(10)</td>
</tr>
<tr>
<td>Volume</td>
<td>3972.5(10)</td>
</tr>
<tr>
<td>Z</td>
<td>16</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
</tbody>
</table>
Space group P2₁2₁2₁
Density (calculated) 1.741 Mg/m³
F(000) 43
Measured reflections 4964
Reflections with I > 2σ(I) 3031
Resolution 0.90 Å
Completeness 83.1%
Index ranges 25 ≤ h ≤ -25, 37 ≤ k ≤ -36, 5 ≤ l ≤ -5

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)
Primary solution method Direct methods
Secondary solution method Difference Fourier map
Hydrogen placement Geometric positions
Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)
Refinement method Full matrix least-squares on F²
Data / restraints / parameters 4964 / 608 / 614
Treatment of hydrogen atoms Riding
Goodness-of-fit on F² 1.373
Final R indices [I>2s(I)] R1 = 0.1254, wR2 = 0.2743
R indices (all data) R1 = 0.1848, wR2 = 0.2955
Type of weighting scheme used Sigma
Weighting scheme used w=1/s²(Fo²)
Max shift/error 0.000
Average shift/error 0.000
Largest diff. peak and hole 0.20 and -0.16 e.Å⁻³

Special Refinement Details

Refinement of F² against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2s(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for
refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

7.2 (2R,3S)-3-(5-methylpyrazin-2-yl)butane-2-sulfonamide (SI-12).

Initial direct methods solution of SI-12 (left) with electron density map (F_{obs}) contoured at 1.41 e Å$^{-3}$ and ORTEP diagram of refined SI-12 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-12.

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C9H${15}$N$_3$O$_2$S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>229.30</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Type of instrument</th>
<th>Talos F200C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>294(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>22.0000(10)</td>
</tr>
<tr>
<td>b</td>
<td>6.410(2)</td>
</tr>
<tr>
<td>c</td>
<td>7.060(4)</td>
</tr>
<tr>
<td>β</td>
<td>91.18</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Volume</td>
<td>995.4(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.530 Mg/m³</td>
</tr>
<tr>
<td>F(000)</td>
<td>49</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>1265</td>
</tr>
<tr>
<td>Reflections with I > 2σ(I)</td>
<td>789</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.90 Å</td>
</tr>
<tr>
<td>Completeness</td>
<td>86.5%</td>
</tr>
<tr>
<td>Index ranges</td>
<td>24 ≤ h ≤ -24, 7 ≤ k ≤ -7</td>
</tr>
</tbody>
</table>

Structure Solution and Refinement

- **Structure solution program**: SHELXT (Uson & Sheldrick, 1999)
- **Primary solution method**: Direct methods
- **Secondary solution method**: Difference Fourier map
- **Hydrogen placement**: Geometric positions
- **Structure refinement program**: SHELXL-2018/3 (Sheldrick, 2018)
- **Refinement method**: Full matrix least-squares on F²
- **Data / restraints / parameters**: 1265 / 239 / 137
- **Treatment of hydrogen atoms**: Riding
- **Goodness-of-fit on F²**: 1.372
- **Final R indices [I>2s(I)]**: R1 = 0.1348, wR2 = 0.3273
- **R indices (all data)**: R1 = 0.1786, wR2 = 0.3500
- **Type of weighting scheme used**: Sigma
- **Weighting scheme used**: \(w=1/s^2(Fo^2)\)
- **Max shift/error**: 0.034
- **Average shift/error**: 0.000
- **Largest diff. peak and hole**: 0.14 and -0.18 e.Å⁻³

Special Refinement Details
Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2s(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

7.3 (R)-1-(5-fluoropyrimidin-2-yl)piperidine-3-sulfonamide (SI-13).

Initial direct methods solution of SI-13 (left) with electron density map (F_{obs}) contoured at 1.41 e Å$^{-3}$ and ORTEP diagram of refined SI-13 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-13.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C9H${13}$N$_4$O$_2$SF</td>
</tr>
<tr>
<td>Formula weight</td>
<td>260.29</td>
</tr>
</tbody>
</table>

Data Collection
Type of instrument: Talos F200C

Wavelength: 0.0215 Å

Data collection temperature: 96(4) K

Unit cell dimensions:
\[
a = 23.000(2) \\
b = 38.090(4) \\
c = 4.6000(10)
\]

Volume: 4029.9(10)

Z: 16

Crystal system: Orthorhombic

Space group: P2_1_2_1

Density (calculated): 1.716 Mg/m³

F(000): 170

Measured reflections: 4939

Reflections with I > 2σ(I): 3181

Resolution: 0.90 Å

Completeness: 82.6%

Index ranges:
\[
25 \leq h \leq -25, 38 \leq k \leq -38, 5 \leq l \leq -5
\]

Structure Solution and Refinement

Structure solution program: SHELXD (Uson & Sheldrick, 1999)

Primary solution method: Direct methods

Secondary solution method: Difference Fourier map

Hydrogen placement: Geometric positions

Structure refinement program: SHELXL-2018/3 (Sheldrick, 2018)

Refinement method: Full matrix least-squares on F²

Data / restraints / parameters: 4939 / 608 / 614

Treatment of hydrogen atoms: Riding

Goodness-of-fit on F²: 1.323

Final R indices [I>2s(I)]: R1 = 0.1373, wR2 = 0.3069

R indices (all data): R1 = 0.1752, wR2 = 0.3300

Type of weighting scheme used: Sigma
Weighting scheme used \[w = \frac{1}{s^2(Fo^2)} \]
Max shift/error \[0.095 \]
Average shift/error \[0.000 \]
Largest diff. peak and hole \[0.18 \text{ and } -0.13 \text{ e.Å}^3 \]

Special Refinement Details

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on \(F^2 \), conventional R-factors (R) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2s(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Initial direct methods solution of SI-14 (left) with electron density map (\(F_{\text{obs}} \)) contoured at 1.41 e Å\(^{-3}\) and ORTEP diagram of refined SI-14 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-14.

Empirical formula \(\text{C}_7\text{H}_{15}\text{NO}_2\text{S} \)
Formula weight \[177.26 \]

Data Collection
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>96(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.4100(10), b = 9.270(2), c = 12.490(4)</td>
</tr>
<tr>
<td>Volume</td>
<td>857.9(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁2₁2₁</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.372 Mg/m³</td>
</tr>
<tr>
<td>F(000)</td>
<td>29</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>1002</td>
</tr>
<tr>
<td>Reflections with I > 2\sigma(I)</td>
<td>461</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.90 Å</td>
</tr>
<tr>
<td>Completeness</td>
<td>80.3%</td>
</tr>
<tr>
<td>Index ranges</td>
<td>8 ≤ h ≤ -8, 9 ≤ k ≤ -9, 12 ≤ l ≤ -12</td>
</tr>
</tbody>
</table>

Structure Solution and Refinement

- **Structure solution program**: SHELXT (Uson & Sheldrick, 1999)
- **Primary solution method**: Direct methods
- **Secondary solution method**: Difference Fourier map
- **Hydrogen placement**: Geometric positions
- **Structure refinement program**: SHELXL-2018/3 (Sheldrick, 2018)
- **Refinement method**: Full matrix least-squares on F²
- **Data / restraints / parameters**: 1002 / 84 / 101
- **Treatment of hydrogen atoms**: Riding
- **Goodness-of-fit on F²**: 1.326
- **Final R indices [I>2s(I)]**: R1 = 0.1396, wR2 = 0.3178
- **R indices (all data)**: R1 = 0.2144, wR2 = 0.3575
- **Type of weighting scheme used**: Sigma
Weighting scheme used: \(w = 1/s^2(F_0^2) \)

Max shift/error: 0.099

Average shift/error: 0.002

Largest diff. peak and hole: 0.12 and -0.12 e.Å⁻³

Special Refinement Details

Refinement of \(F^2 \) against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on \(F^2 \), conventional R-factors (R) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2s(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
7.5 methyl piperazine-1-carboxylate phosphate hydrate (SI-15)

Initial direct methods solution of SI-15 (left) with electron density map (F_{obs}) contoured at 1.41 e Å^{-3} and ORTEP diagram of refined SI-15 (right). Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for SI-15.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{28}H_{66}N_{10}O_{23}P_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1003.82</td>
</tr>
</tbody>
</table>

Data Collection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of instrument</td>
<td>Talos F200C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.0215 Å</td>
</tr>
<tr>
<td>Data collection temperature</td>
<td>96(4) K</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 66.2000(10)</td>
</tr>
</tbody>
</table>
b = 6.220(2)
c = 9.940(4)
β = 92.14

Volume 4090(2)
Z 4
Crystal system Monoclinic
Space group Cc
Density (calculated) 1.630 Mg/m³
F(000) 169
Measured reflections 5976
Reflections with I > 2σ(I) 3714
Resolution 0.85 Å
Completeness 84.6%
Index ranges 70 ≤ h ≤ -71, 7 ≤ k ≤ -7, 11 ≤ l ≤ -11

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)
Primary solution method Direct methods
Secondary solution method Difference Fourier map
Hydrogen placement Geometric positions
Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)
Refinement method Full matrix least-squares on F²
Data / restraints / parameters 5976 / 873 / 581
Treatment of hydrogen atoms Riding
Goodness-of-fit on F² 1.345
Final R indices [I>2σ(I)] R1 = 0.1383, wR2 = 0.2795
R indices (all data) R1 = 0.1901, wR2 = 0.2995
Type of weighting scheme used Sigma
Weighting scheme used w=1/s²(Fo²)
Max shift/error 0.001
Average shift/error 0.000
Largest diff. peak and hole 0.29 and -0.28 e.Å$^{-3}$

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold expression of F$^2 > 2\sigma$(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
8. Transmission Electron Microscope Images of Crystals

TEM image of **SI-1** crystal at 2600x magnification

TEM image of **SI-2** crystal at 2600x magnification
TEM image of SI-3 crystal at 2600x magnification

TEM image of SI-4 crystal at 2600x magnification
TEM image of SI-5 crystal at 2600x magnification.

TEM image of SI-6 crystal at 2600x magnification.
TEM image of SI-7 crystal at 2600x magnification.

TEM image of SI-8 crystal at 2600x magnification.
TEM image of SI-9 crystal at 2600x magnification.

TEM image of SI-10 crystal at 2600x magnification.
TEM image of SI-11 crystal at 2600x magnification.

TEM image of SI-12 crystal at 2600x magnification.
TEM image of **SI-13** crystal at 2600x magnification.

TEM image of **SI-14** crystal at 2600x magnification.
TEM image of SI-15 crystal at 2600x magnification
9. Images of Diffraction Resolution Loss

TEM diffraction movie frame 1 (left) and frame 50 (right) of *SI-9* crystal at 960 mm detector distance at room temperature.

TEM diffraction movie frame 1 (left) and frame 50 (right) of *SI-9* crystal at 960 mm detector distance at cryogenic temperature.
10. Comparison of MicroED Data to X-ray Structures

Each SI-7 molecule from the asymmetric unit of two previously solved single crystal X-ray structures AGX918A and AGX918B, corresponding to solvated structures of SI-7 containing two molecules in the asymmetric unit with differing solvation states, were overlayed with the microED structure of SI-7.

MicroED (green) and X-ray (red) crystallography data overlay of SI-7. Any solvent molecules observed in the crystal structure were removed for this analysis.

<table>
<thead>
<tr>
<th>Structure Name</th>
<th>Source</th>
<th>RMS</th>
<th>Maximum Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGX918A_1</td>
<td>X-ray</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AGX918A_2</td>
<td>X-ray</td>
<td>0.5645</td>
<td>2.5284</td>
</tr>
<tr>
<td>AGX918C_1</td>
<td>X-ray</td>
<td>0.1869</td>
<td>0.5034</td>
</tr>
<tr>
<td>AGX918C_2</td>
<td>X-ray</td>
<td>0.2704</td>
<td>0.8914</td>
</tr>
<tr>
<td>SI-7_1</td>
<td>Electron</td>
<td>0.6067</td>
<td>2.6340</td>
</tr>
<tr>
<td>SI-7_2</td>
<td>Electron</td>
<td>0.2539</td>
<td>0.4747</td>
</tr>
</tbody>
</table>

RMS of structure overlay comparing one molecule of AGX918A to remaining five molecules in AGX918A, AGX918B, and SI-7.

11. Automated Data Processing Procedure

Movie files were saved in a standardized format separated by underscores to allow for automated data processing. An example format is provided below:

```
samplename-mov1_960_0.3_3_cryo.ser
```

`samplename-mov1` can be any name not including an underscore or special character. This will become the name of the folder containing processed data.

`960` is the detector distance used in mm. This can be set to any value.
0.3 is the rotation speed of the stage, in °/s.

3 is the image integration time.

cryo can be any additional notes about the sample and can include underscores.

On a computer running Ubuntu Windows Subsystem for Linux with properly installed XDS suite and free ser2smv²¹ data conversion file, “python3 auto_indexing.py” is called to run Python3.8 in a folder containing an executable copy of ser2smv, the python scripts, and the .ser movie files to be processed. Merging and solutions obtained subsequent to autoprocessing were done by the user.

auto_indexing.py

"""
Written by Jessica Burch, jessburch@g.ucla.edu
This is a script to batch process individual MicroED datasets using XDS.
version: 03/01/2021
"""

import os
import shutil

def main():
 stats = open("stats.LP","w")
 stats.write("Data summary: ")
 files = os.listdir("")
 if os.path.isfile("ser2smv") == True:
 for name in files:
 if name.endswith(".ser"):
 newname = name.split("_")
 path = os.getcwd()
 os.mkdir(path + "/" + str(newname[0]) + "/images")
 os.mkdir(path + "/" + str(newname[0]) + "/auto_process")
 shutil.move(name,str(path + "/" + newname[0] + "/" + name))
 shutil.copyfile('xds_for_me.py', str(path + "/" + newname[0] + "/xds_for_me.py"))
 print("Setting up files for " + newname[0] + ".")
 os.chdir(path + "/" + newname[0] + "/"
 os.system("python3 xds_for_me.py")
 os.system("rm xds_for_me.py")
 with open(’auto_process/XSCALE.LP’, ’r’) as f:
 lines = f.readlines()
for index, line in enumerate(lines):
 if " ========== STATISTICS OF INPUT DATA SET ==========
 t = lines[index-3]
 t1 = t.split()
 completeness = t1[4]
 Roverall = t1[5]

 l = lines[index-13]
 l1 = l.split()
 t = l1[5]
 t2 = t[:len(t)-1]
 if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','w') as f1:
 f1.write("n" + str(l1[0]) + " " + str(l1[4])
 + " " + str(l1[5]))

 l = lines[index-12]
 l1 = l.split()
 t = l1[5]
 t2 = t[:len(t)-1]
 if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("n" + str(l1[0]) + " " + str(l1[4])
 + " " + str(l1[5]))

 l = lines[index-11]
 l1 = l.split()
 t = l1[5]
 t2 = t[:len(t)-1]
 if 1 < float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("n" + str(l1[0]) + " " + str(l1[4])
 + " " + str(l1[5]))

 l = lines[index-10]
 l1 = l.split()
 t = l1[5]
 t2 = t[:len(t)-1]
 if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("n" + str(l1[0]) + " " + str(l1[4])
 + " " + str(l1[5]))

 l = lines[index-9]
 l1 = l.split()
 t = l1[5]
 t2 = t[:len(t)-1]
 if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
f1.write("\n" + str(l1[0]) + " " + str(l1[4]) + " " + str(l1[5]))
l = lines[index-8]
l1 = l.split()
t = l1[5]
t2 = t[:-1]
if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("\n" + str(l1[0]) + " " + str(l1[4]) + " " + str(l1[5]))
l = lines[index-7]
l1 = l.split()
t = l1[5]
t2 = t[:-1]
if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("\n" + str(l1[0]) + " " + str(l1[4]) + " " + str(l1[5]))
l = lines[index-6]
l1 = l.split()
t = l1[5]
t2 = t[:-1]
if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("\n" + str(l1[0]) + " " + str(l1[4]) + " " + str(l1[5]))
l = lines[index-5]
l1 = l.split()
t = l1[5]
t2 = t[:-1]
if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("\n" + str(l1[0]) + " " + str(l1[4]) + " " + str(l1[5]))
l = lines[index-4]
l1 = l.split()
t = l1[5]
t2 = t[:-1]
if float(t2) < 100 and float(t2) > 0:
 with open('xscale_report.LP','a') as f1:
 f1.write("\n" + str(l1[0]) + " " + str(l1[4]) + " " + str(l1[5]))
else:
 with open('xscale_report.LP','a') as f1:
 f1.write("\n ! low resolution data")
import os
from subprocess import run
import random

"""
This portion reads your file name and converts .ser files to images.
Must have ser2smv program in the folder containing these scripts.
This can be downloaded from https://cryoem.ucla.edu/downloads/snapshots
"""

def main():
 files = os.listdir("."
 for name in files:
 if name.endswith(".ser"):
 newname = name.split("_
 path = os.getcwd()
 newpath = str(path + "/images"
 os.chdir(newpath)
 #This is where data collection information such as conversion = str(path + "/..ser2smv -P 0.014 -B 2 -r " + newname[2] + " -w 0.0251 -d " + newname[1] + " -E " + newname[3] + " -M 200 -v -o " + newname[0] + "##_##.img " + path + "/" + name
 print("Converting your .ser file to .img frames.
"""

xds_for_me.py

"""
Written by Jessica Burch, jessburch@g.ucla.edu
This is a script to automate indexing of MicroED data using XDS.
version: 03/01/2021
"""
if os.path.isfile("ser2smv") == False:
 print("Please add an executable copy of ser2smv to this folder!
" + "Download from https://cryoem.ucla.edu/downloads/snapshots")

if __name__ == "__main__":
 main()
os.system(conversion + ' > summary.LP')
global movname
movname = newname[0]
with open('summary.LP') as f1:
 lines = f1.readlines()
with open('summary.LP', 'w') as f2:
 f2.writelines(lines[-15:]
with open('summary.LP', 'r') as f:
 line = f.readline()
 for line in f:
 if "+++" in line:
 element = str.split(line)
 frame = str(element[2])
 print("You have " + frame + " images.")

path = os.getcwd()
newpath = str(path + "/../auto_process")
o.s.chdir(newpath)
f = open("XDS.INP","w+")
if os.path.isfile("*.LP") == True:
 os.remove("*.LP")
if os.path.isfile("*.XDS") == True:
 os.remove("*.XDS")
if os.path.isfile("*.HKL") == True:
 os.remove("*.HKL")
f.write("JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT" +
 "\n\n!JOB=DEFPIX INTEGRATE CORRECT")
#These are estimates for our beam center. The beam may be slightly off in
#actuality, but XDS does a good job of refining the beam center if the
#values are close.
x = str("1018")
y = str("1000")
osc = str(float(newname[3]) * float(newname[2]))
#This corrected distance value arises from indexing diffraction data of
#standard samples on our TEM and adjusting the detector distance value
#until these standards agree with the X-ray unit cell.
corrected_distance = float(newname[1]) * 0.943
data_path = str(path + "/" + newname[0])
f.write("\n\nNAME_TEMP LATE_OF_DATA_FRAMES=" + data_path + "_???_.img " +
 "\nBACKGROUND_RANGE=1
10\n!DELPHI=15!SPACE_GROUP_NUMBER=0"
"UNIT_CELL_CONSTANTS= 1 1 90 90 90")

"res" is the high resolution cutoff based on our detector distance.

```python
if newname[1] == str("1050"):  
    res = str("0.8")
elif newname[1] == str("1100"):  
    res = str("0.9")
elif newname[1] == str("960"):  
    res = str("0.8")
elif newname[1] == str("850"):  
    res = str("0.65")
elif newname[1] == str("1350"):  
    res = str("1.1")
elif newname[1] == str("670"):  
    res = str("0.45")
elif newname[1] == str("420"):  
    res = str("0.25")
elif newname[1] == str("2200"):  
    res = str("1.7")
elif newname[1] == str("330"):  
    res = str("0.15")
```

An important value to change based on your microscope is "ROTATION_AXIS"

```python
f.write("\nINCLUDE_RESOLUTION_RANGE= 40 " + res +  
  "TEST_RESOLUTION_RANGE= 40 " + res + "TRUSTED_REGION=0.0  
1.2"+  
  "VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=6000. 30000." +  
  ". parameters for detector and beamline: +  
"DETECTOR= ADSC MINIMUM_VALID_PIXEL_VALUE= 1  
OVERLOAD= 65000" +  
"SENSOR_THICKNESS= 0.01" + "NX= 2048 NY= 2048 QX=  
0.0280000009" + " QY= 0.0280000009" + "ROTATION_AXIS=0 0 0" +  
"DIRECTION_OF_DETECTOR_X-AXIS=0 0 0" +  
"DIRECTION_OF_DETECTOR_Y-AXIS=0 0 0" +  
"INCIDENT_BEAM_DIRECTION=0 0 0  
FRACTION_OF_POLARIZATION=0.98" +  
"POLARIZATION_PLANE_NORMAL=0 0 0" +  
"REFINE(IDXREF)=CELL BEAM ORIENTATION AXIS ! DISTANCE" +  
"REFINE(INTEGRATE)= DISTANCE BEAM ORIENTATION ! AXIS  
CELL" +  
"REFINE(CORRECT)=CELL BEAM ORIENTATION AXIS ! DISTANCE !"  
+  
"DATA_RANGE= 1 " + str(element[2]) + "SPOT_RANGE= 1 "  
+ str(element[2]))
```

sp = "4"
minpix = "7"
f.write("\nSTRONG_PIXEL= " + sp +
"\nMINIMUM_NUMBER_OF_PIXELS_IN_ASpot= "
+ minpix + "\n\n")
f.close()
xds_out = open("XDS.LP", "w+")
print("XDS is running..."))
runt(xds, stdout= xds_out)

def autoprocessing():
 if os.path.isfile('XCORRECTIONS.cbf') == False:
 xds_out = open("XDS.LP", "w+")
 print("XDS is running...")
runt("xds", stdout= xds_out)

if os.path.isfile('XPARM.XDS') == False:
 for i in range(10):
 with open('XDS.INP') as f1:
 lines = f1.readlines()
 with open('XDS.INP', 'w') as f2:
 strong = random.randrange(3,9,1)
 mpix = random.randrange(4,9,1)
 f2.writelines(lines[:])
 f2.write("\nSTRONG_PIXEL= " + str(strong) +
"\nMINIMUM_NUMBER_OF_PIXELS_IN_ASpot= " + str(mpix) +
"\n")
f2.close()
print("Screening new indexing values.")
xds_out = open("XDS.LP", "w+")
runt("xds", stdout= xds_out)
if os.path.isfile('XPARM.XDS') == True:
 if os.path.isfile('DEFPIX.LP') == False:
 with open('XDS.INP') as f1:
 lines = f1.readlines()
 with open('XDS.INP', 'w') as f2:
 f2.write("\nJOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"
+ "\nJOB=DEFPIX INTEGRATE CORRECT\n")
f2.writelines(lines[2:])
f2.close()
print("Less than 70% of spots went through. Running with JOB= DEFPIX
"
+ "INTEGRATE CORRECT.")
xds_out = open("XDS.LP", "w+")
runt("xds", stdout= xds_out)
if os.path.isfile('XPARM.XDS') == False:
 print("Unable to autoprocess " + movname + "!")
exit()
else:
 return autoprocessing()
else:
 return autoprocessing()
else:
 print("Unable to autoprocess " + movname + ":")
f2.close()
exit()

if os.path.isfile('DEFPIX.LP') == False:
 with open('XDS.INP') as f1:
 lines = f1.readlines()
 with open('XDS.INP', 'w') as f2:
 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"
 + "!nJOB=DEFPIX INTEGRATE CORRECT\n"
)
 f2.writelines(lines[2:])
 f2.close()
 print("Less than 70% of spots went through. Running with JOB= DEFPIX "
 + "INTEGRATE CORRECT."")
 xds_out = open("XDS.LP", "w+"")
 run("xds", stdout= xds_out)
 return autoprocessing()

if os.path.isfile("INTEGRATE.HKL") == False:
 with open('XDS.INP') as f1:
 lines = f1.readlines()
 with open('XDS.INP', 'w') as f2:
 f2.write("nBEAM_DIVERGENCE= 0.03 BEAM_DIVERGENCE_E.S.D.= 0.003" +
 "nREFLECTING_RANGE=1.0 REFLECTING_RANGE_E.S.D.= 0.2")
 f2.close()
 print("Adding beam divergence values to correct a common error.")
 xds_out = open("XDS.LP", "w+"")
 run("xds", stdout= xds_out)
 return autoprocessing()

if os.path.isfile("CORRECT.LP") == True:
 print ("Successful indexing!")
 return mosaicity()

def mosaicity():
 with open('XDS.INP') as f1:
 lines = f1.readlines()
 with open('XDS.INP', 'w') as f2:
f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"
+ "\nJOB=DEFPIX INTEGRATE CORRECT\n")
f2.writelines(lines[2:-2])

with open('INTEGRATE.LP', 'r') as l1:
 f2 = open('XDS.INP', 'a')
 line = l1.readline()
 for line in l1:
 if "BEAM_DIVERGENCE=" in line:
 f2.write(line)
 if "REFLECTING_RANGE=" in line:
 f2.write(line)
 f2.close()

return iterate_opt()

def iterate_opt():
 with open('XDS.LP') as f1:
 lines = f1.readlines()
 with open('XDS.LP', 'w') as f2:
 f2.writelines(lines[26:])
 with open('XDS.LP', 'r') as f:
 line = f.readline()
 for line in f:
 if " a b ISa" in line:
 next_line = f.readline()
 stats = str.split(next_line)
 Isa1 = float(stats[2])
 print("Isa: " + str(Isa1) + ". Testing new values now.")

xds_out = open("XDS.LP", "w+")
run("xds", stdout= xds_out)

with open('XDS.LP') as f1:
 lines = f1.readlines()
with open('XDS.LP', 'w') as f2:
 f2.writelines(lines[26:])
with open('XDS.LP', 'r') as f:
 line = f.readline()
 for line in f:
 if " a b ISa" in line:
 new_next_line = f.readline()
 new_stats = str.split(new_next_line)
 Isa2 = float(new_stats[2])
 print("Isa: " + str(Isa2))
if "SPACE_GROUP_NUMBER=" in line:
 number = str.split(line)
 space_group = number[1]
if "UNIT_CELL_CONSTANTS=" in line:
cell = str.split(line)
temp = cell[-6:]
temp_str = str(temp).strip("]["")
temp_str2 = temp_str.replace("","")
unit_cell = temp_str2.replace("'""")

Isa_change = abs(Isa2 - Isa1)
if Isa_change > 0.5:
 print("Optimizing beam divergence values.")
 return iterate_opt()
else:
 print("Optimized beam divergence values.")
 f = open('stats.LP','w')
f.write(str(space_group) + "n" + unit_cell)
f.close
 print("Autoprocessing found space group " + str(space_group) + " and a unit cell of" + "n" + unit_cell)

def scale_conv():
 xscale = open('XSCALE.INP','w')
xscale_out = open("xscale.LP","w+")
m = movname
xscale.write("OUTPUT_FILE= " + m + ".ahkl"+"nINPUT_FILE= XDS_ASCII.HKL" + "nRESOLUTION_SHELLS= 10 8 5 3 2.3 2.0 1.7 1.5 1.3 " + "1.2 1.1 1.0 0.90 0.80")
xscale.close()
run("xscale", stdout= xscale_out)
print("Data scaled with XSCALE.")
xdsconv_out = open("xdsconv.LP", "w+")
xdsconv = open('XDSCONV.INP','w')
xdsconv.write("INPUT_FILE= " + m + ".ahkl" + "nOUTPUT_FILE= " + m + ".hkl" + "nSHELX" + "nGENERATE_FRACTION_OF_TEST_REFLECTIONS=0.10" + "nFRIEDEL'S_LAW=FALSE")
xdsconv.close()
run("xdsconv", stdout= xdsconv_out)
print("Data converted for use in shelx!")
if __name__ == "__main__":
 main()
 autoprocessing()
 scale_conv()
13. References

(21) Program ser2smv obtained from https://cryoem.ucla.edu/downloads/snapshots.