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DISCRETE SCHRÖDINGER OPERATORS WITH DECAYING AND

OSCILLATING POTENTIALS

RUPERT L. FRANK AND SIMON LARSON

In memory of Sergey Naboko

Abstract. We study a family of discrete one-dimensional Schrödinger operators with
power-like decaying potentials with rapid oscillations. In particular, for the potential
V (n) = λn−α cos(πωnβ), with 1 < β < 2α, we prove that the spectrum is purely abso-
lutely continuous on the spectrum of the Laplacian.

1. Introduction

We are interested in the nature of the spectrum of certain Schrödinger operators on
ℓ2(Z+) with decaying and oscillating potentials. Our main interest is the family of Schrö-
dinger operators whose potential at site n is given by

λ
cos(πωnβ)

nα
(1)

where ω ∈ R \ {0}, λ ∈ R, α ≥ 0, and β > 0 are fixed. It is known that the structure
of the spectrum of these Schrödinger operators depends in a non-trivial manner on the
parameters. The most studied case is that when β = 1, α = 0 corresponding to the almost
Mathieu operator. Here we are interested in the significantly easier case when α is positive
so that the potential decays at infinity. Since in this case the potential tends to zero it
immediately follows that the essential spectrum of the operator is equal to the essential
spectrum of the Laplacian. While the computation of the essential spectrum is immediate,
understanding its precise spectral nature is far from trivial; specifically, we would like to
understand the absence or presence of absolutely continuous, singular continuous, and pure
point spectrum depending on the parameters of the problem.

If the fluctuations of the potential induced by the cos(πωnβ) are instead given by in-
dependent random variables with mean zero, it is known that the essential spectrum is
almost surely absolutely continuous if α > 1/2, dense pure point if α < 1/2, and when
α = 1/2 there is a transition from pure point to purely singular continuous spectrum with
respect to the energy and the coupling constant λ [3, 16, 4, 5, 11, 10]. If the deterministic
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oscillations induced by the the cosine suffice to reproduce this behaviour is not clear, but
it is natural to conjecture that this should be the case for most values of ω, β, at least in
the non-critical case α 6= 1/2.

While there have been several contributions towards this problem in the past, a full
solution is still missing. It is worth mentioning that the continuum Schrödinger operator
analogue of this problem is completely understood with the final cases settled by White
almost 40 years ago [20]. For references on the many contributions leading up to the final
result, we refer to White’s paper. Unfortunately, the techniques applied in the continuum
case which, to a certain degree, all rely on clever changes of variables and integration by
parts, have limited applicability in the discrete case. In fact, as we shall discuss later on,
the spectral properties of the continuum and discrete models are significantly different at
least for certain values of the parameters.

Our modest contribution in this short note is to show that if 1 < β < 2α, then the
spectrum in (−2, 2) is purely absolutely continuous. Under these assumptions it follows
from the results of Christ–Kiselev [1] (or rather its discrete analogue), Deift–Killip [2], or
Remling [15] that the absolutely continuous spectrum coincides with [−2, 2] (see also [8, 9]).
Therefore, our contribution is to show that the essential spectrum is purely absolutely
continuous. We emphasize that this is not generally the case for Schrödinger operators
covered by the Christ–Kiselev, Deift–Killip, and Remling result. Indeed, Naboko [14] and
Simon [17] have constructed examples of continuum Schrödinger operators with potentials
q such that xq(x) tends to infinity arbitrarily slowly for which the absolutely continuous
spectrum is [0,∞) and the point spectrum is dense in [0,∞).

While our main interest is towards the Schrödinger operators with potential given by (1),
our proof only depends on rather weak properties of the potential and will cover a larger
class of Schrödinger operators. Specifically we shall consider potentials that for some finite
m can be written as

V (n) =

m
∑

j=1

λj cos(φj(n))

nαj
+ V0(n) (2)

where

(1) αj ∈ (1/2, 1] with αj ≤ αj+1,
(2) φj can be written as φj = φ0j +φ

1
j where φ0j ∈ C

2(R+) and there exist βj ∈ (1, 2αj),

ωj ∈ R \ {0}, and γj > 1− αj such that

|∂kx(φ
0
j (x)− πωjx

βj)| = ox→∞(xβj−k) for k = 0, 1, 2, and (3)

|φ1j (n+ 1)− φ1j(n)| . n−γj ,

(3) λj ∈ R, and
(4) {V0(n)}n≥1 ∈ ℓ

1.

We emphasize that the important assumption here is that 1 < βj < 2αj , so that V is
a linear combination of potentials asymptotically resembling (1) with 1 < β < 2α. The
assumption that αj ≤ 1 is only for later convenience. Indeed, if αj > 1 for some j then
this term can be included in V0.
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For a boundary condition µ ∈ R and a potential V define the half-line Schrödinger
operator Hµ

V = ∆+ V in ℓ2(Z+) by

(Hµ
V ψ)n =

{

ψn+1 + ψn−1 + V (n)ψn , n ≥ 2

ψ0 + (V (1) + µ)ψ1 , n = 1 .

Since limn→∞ V (n) = 0 it holds that σess(H
µ
V ) = σess(∆) = [−2, 2].

Our main result is the following theorem.

Theorem 1.1. If V is of the form (2), then Hµ
V has purely absolutely continuous spectrum

in (−2, 2).

To clarify how our contribution fits into existing results for V given by (1), we gather
what we have been able to find in the literature in the following proposition.

Proposition 1.2. Let Hλ,µ
ω,α,β be the Schrödinger operator with potential

V (n) = λ
cos(πωnβ)

nα

and boundary condition parametrized by µ ∈ R. It holds that

(1) If β ∈ (0, 1) and α > 0, then Hλ,µ
ω,α,β has purely absolutely continuous spectrum in

(−2, 2).

(2) If β = 1 and α > 0, then σac(H
λ,µ
ω,α,1) = [−2, 2], σsc(H

λ,µ
ω,α,1) = ∅, and

σpp(H
λ,µ
ω,α,1) ∩ [−2, 2] ⊆ {2 cos(jω/2) : j = 0, . . . , ⌊1/α⌋} .

(3) If β ∈ (1, 2) and 0 < α < 2−β
2 , then σac(H

λ,µ
ω,α,β) = ∅. Furthermore, for almost

every (but not every) µ the spectrum is pure point.

(4) If α > 1/2, then σac(H
λ,µ
ω,α,β) = [−2, 2].

(5) If α > 1, then Hλ,µ
ω,α,β has purely absolutely continuous spectrum in (−2, 2).

The first statement in Proposition 1.2 is due to Stolz [18] whose result applies to a much
larger class of slowly oscillating potentials. The second part of the proposition, i.e. the case
β = 1, is due to Lukic [13]. Again the results of Lukic extend to a more general form of
potentials.

If α > 1/2, then as noted earlier Proposition 1.2 (4) follows from (the discrete analogue
of) the results in [1, 15, 2]. We note again that this is also the case for potentials with the
representation in (2) and our contribution to the statement of Theorem 1.1 is that when
1 < β < 2α the spectrum in (−2, 2) is purely absolutely continuous.

The fact that the essential spectrum is purely absolutely continuous when α > 1, so that
V ∈ ℓ1, follows from general results that only depend on the summability of the potential.

Finally, Proposition 1.2 (3) is due to Krüger [12]. While Krüger only considers the case
ω = 2, λ = 1 his proof goes through in the general case with obvious modifications. Since
we have not been able to verify the proof of the necessary lemma in [12], we include an
appropriately modified proof in Appendix A. Since the absolutely continuous component
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of the spectrum is independent of the boundary condition Krüger’s result implies that

σac(H
λ,µ
ω,α,β) = ∅ for all µ. However, the theory of rank-one perturbations implies that for

a dense Gδ set of µ the singular continuous component of the spectrum is non-empty. In
particular, as claimed in the proposition, almost every µ cannot be improved to every µ.

In stark contrast to Krüger’s result for the discrete model, for the continuum model
with α, β as in Proposition 1.2 (3) White [20] proves that the spectrum is purely absolutely
continuous on the spectrum of the Laplacian.

The proof of Theorem 1.1 is based on Gilbert–Pearson’s subordinacy theory. Effectively,
this reduces the problem to understanding the asymptotic behavior at infinity of solutions
of the eigenvalue equation for our operator. The first step to obtain the desired asymptotics
is to rewrite the eigenvalue equation in suitable Prüfer-type coordinates; this is the content
of Section 2. A key part of the analysis of the Prüfer equations consists in the estimating
certain exponential sums; this is the topic of Section 3.

Acknowledgements The first author is grateful to J. Breuer and H. Krüger for discussions
on the topic of this paper.

2. Prüfer coordinates

Let {ψn}n≥1 be the solution of the eigenvalue equation at energy E = 2cos(k) with
0 < k < π, that is,

{

ψn+1 + ψn−1 + λVω,α,β(n)ψn = 2cos(k)ψn for n ≥ 2 ,

ψ2 + (λVω,α,β(1) + µ)ψ1 = 2cos(k)ψ1 .

Setting ψ0 = µψ1 the second equation can be absorbed into the first by extending it to
n = 1.

For n ≥ 1 define the (modified) Prüfer variables R ∈ R+, η ∈ R by

R(n) cos(η(n) + k(n − 1)) = ψn − cos(k)ψn−1 ,

R(n) sin(η(n) + k(n − 1)) = sin(k)ψn−1 .

The ambiguity in η is fixed by demanding η(1), η(n + 1) − η(n) ∈ [−π, π). For notational
convenience we also set θ(n) = η(n) + kn.

We note that the boundary condition ψ0 = µψ1 becomes

R(1) = |ψ1|(1 + µ2 − 2µ cos(k))1/2 ,

η(1) = arccos
( sgn(ψ1)(1 − µ cos(k))

(1 + µ2 − 2µ cos(k))1/2

)

.

Setting νk(n) = − V (n)
sin(k) , the variables R, η satisfy

R(n+ 1)2 = R(n)2
[

1 + νk(n) sin(2θ(n)) + νk(n)
2 sin2(θ(n))

]

,

cot(η(n + 1) + kn) = cot(η(n) + kn) + νk(n) ,
(4)

see for instance [10] (note that our θ corresponds to their θ̃).
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Under our assumptions νk(n) decays in n and it becomes more practical to deal with
approximate equations obtained by appropriate Taylor expansions. Specifically, we shall
base our arguments on the asymptotic equations

log
(R(n+ 1)

R(n)

)

=
νk(n)

2
sin(2θ(n)) +O(|νk(n)|

2) ,

η(n + 1)− η(n) = −
νk(n)

2
+
νk(n)

2
cos(2θ(n)) +O(|νk(n)|

2) .

(5)

This form of the equations is well suited to study how the solutions behave on scales larger
then 1. Naturally, one could have made Taylor expansions to higher order but for our
purposes the |νk(n)|

2 error term will be sufficient. Under our assumptions this error is
summable and the approximate equation for R determines its asymptotic behavior up to
a bounded multiplicative factor, which is sufficient for the application of Gilbert–Pearson
subordinacy theory [7]. While it is rather clear that the above equations provide sufficient
information concerning R, it need not be the case that this precision suffices when it comes
to η. Indeed, from the manner in which η enters the equation for R even a bounded additive
perturbation might without further information have a very large effect. As we shall see,
this is not the case for us. Indeed, we will argue below that the oscillations of sin(2θ(n))
can be treated as insignificant in relation to those induced by νk(n). However, if one were
to attempt to extend our techniques to the region where αj > 1/2 and βj ≥ 2αj , then one
might need to study the equation for η to higher precision.

By iterating (5) and inserting the assumed form of V , one finds that for integers 1 ≤
N1 < N2

log
(R(N2 + 1)

R(N1)

)

= −
m
∑

j=1

N2
∑

n=N1

λj cos(φj(n)) sin(2θ(n))

2 sin(k)nαj
+O

(

N2
∑

n=N1

[ 1

n2α1
+ |V0(n)|

]

)

, (6)

and

η(N2+1)−η(N1) =

m
∑

j=1

N2
∑

n=N1

λj cos(φj(n))

2 sin(k)nαj

[

1−cos(2θ(n))
]

+O

(

N2
∑

n=N1

[ 1

n2α1
+|V0(n)|

]

)

. (7)

Our goal is to show that these equations imply that the Prüfer radius R(n) has a finite
and non-zero limit as n→ ∞. By Gilbert–Pearson subordinacy theory, it follows that the
spectrum of Hµ

V in (−2, 2) is purely absolutely continuous. Given the form of the equations
above it should not come as a surprise that the key to our analysis is to understand certain
exponential sums. The necessary exponential sum bounds are the topic of the next section.

Under our assumptions we shall see that the only information that we need concerning
η is the rough continuity estimate

|η(n + 1)− η(n)| . n−α1 + |V0(n)| . (8)

If one were to attempt to use the same ideas as employed here under weaker assumptions
on the pairs (αj , βj) one might very well need to consider the equations for R and η to
higher precision. For a problem closely resembling the case α = 1/2, β = 3/2 such analysis
was recently carried out by the authors in [6]. It is likely that the methods used in that
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paper could successfully be applied also to the current setting to treat a larger region of
(α, β). However, without further insights this analysis would likely require certain number
theoretic assumptions on the parameter ω which we believe are artificial when α > 1/2.
However, such number theoretic assumptions might very well be relevant when α ≤ 1/2.

3. Exponential sum bounds

As we observed in the previous section our analysis will rely on understanding exponen-
tial sums with power decaying amplitudes and phases given by combinations of φj and θ.
The goal of this section is to prove that we can understand these sums to fairly high
accuracy by treating the dependence on the Prüfer angle η perturbatively.

More specifically we shall consider sums of the form

∑

a<n≤b

ei(φ(n)+h(n))

nρ

where φ ≈ πωnβ for some ω, β (in the sense of (3)) and h satisfies a regularity estimate in
terms of the differences

δh(n) = |h(n + 1)− h(n)| . (9)

As we shall see there are two natural scales appearing for these exponential sums. One
is that determined by the known oscillations φ(n) = πωnβ(1 + o(1)) corresponding to

considering n comparable to l1/(β−1) for some integer l. This corresponds to the distribution
of points x ∈ R where φ′(x) ∈ 2πZ (where the local oscillation rate lines up with the integer
lattice). The second scale comes from the regularity of the perturbation h. In our case
the perturbation will essentially satisfy an estimate of the form δh(n) . n−γ for some
γ > 0 (cf. (8)). If 2 − β < γ, then h can essentially be treated as a constant on the scale
determined by the oscillations. If 2 − β > γ then this might no longer be the case, which
will lead to some complications that need to be dealt with.

The main theorem to be proven in this section is the following.

Theorem 3.1. Fix 1 < β < 2, ρ ≥ 0, γ ∈ [0, 1], and ε > 0. Let φ ∈ C2(R+) be a real-valued
function satisfying

|∂k(φ(x)− πωxβ)| . ox→∞(|x|β−k) for k = 0, 1, 2 and some ω 6= 0 ,

and h : N → R satisfy

|h(n + 1)− h(n)| . n−γ + vn with v = {vn}n ∈ ℓ1(N) .

For l ∈ N large let Yl be the unique solution of φ′(Yl) = sgn(ω)2πl. Then
∣

∣

∣

∣

∑

Yl<n≤Yl+1

ei(φ(n)+h(n))

nρ

∣

∣

∣

∣

.
(

1 + ‖v‖ℓ1 + l
2−β−2γ
2(β−1)

+ε
)

l
2−β−2ρ
2(β−1) .

Remark 3.2. A few remarks:

(1) We emphasize that the regions close to the points Yl in Theorem 3.1 have a special
significance for the size of the exponential sum and as such the appearance of these
points in the bounds is not coincidental.
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(2) By application of the Poisson summation formula and a stationary phase calculation

it is not very difficult to verify that the contribution to the sum from an l
2−β

2(β−1)

neighbourhood of Yl is comparable to l
2−β−2ρ
2(β−1) . In particular, the order of the first

term in the bound is sharp. If the dependence of the bound on γ is best possible is
less clear.

(3) Noting Yl =
(

2l
β|ω|

)
1

β−1 (1 + o(1)) and Yl+1 − Yl =
1

β−1

(

2
β|ω|

)
1

β−1 l
2−β
β−1 (1 + o(1)) the

sum is trivially O(l
2−β−ρ
β−1 ). Similarly, a square-root cancellation heuristic (treating

the phases ei(φ(x)+h(n)) as i.i.d. random variables with mean zero) suggests that we

cannot expect the sum to be much smaller than O(l
2−β−2ρ
2(β−1) ). This again shows the

optimality of the first term in the bound.

The above theorem will be obtained through fairly standard arguments; away form the
Yl we shall employ the classical bound of Kuzmin–Landau, close to the Yl we bound the
terms trivially; when combined with a simple optimization over choices of scales this leads
to the above theorem. Essentially, we are redoing the standard argument to obtain the
classical bound of van der Corput (see for instance [19, Theorem 5.9]) but allowing for the
additional amplitude n−ρ and the additional perturbation of the phase by h.

While our main aim in this section is to prove Theorem 3.1 it is convenient to start
by proving much simpler bounds. Specifically, we shall work our way up from direct
consequences of the classical bound of Kuzmin–Landau by step-by-step introducing the
complications of the decaying amplitude and the unknown phase.

Lemma 3.3. Fix 1 < β < 2. Let φ, Yl be as in Theorem 3.1. Then, for Yl ≤ a < b ≤ Yl+1,
∣

∣

∣

∣

∑

a<n≤b

eiφ(n)
∣

∣

∣

∣

. l
2−β
β−1 dist({Yl, Yl+1}, [a, b])

−1 .

Proof. Recall the classical result of Kuzmin–Landau [19, Lemma 4.19]: If minν∈Z |f
′(x)−

ν| ≥ κ > 0 for all x ∈ [a, b] then
∣

∣

∣

∣

∑

a<n≤b

e2πif(n)
∣

∣

∣

∣

. κ−1 . (10)

By asymptotic monotonicity of φ′,

min
ν∈Z

∣

∣

∣

φ′(n)

2π
− ν
∣

∣

∣
= min

{
∣

∣

∣

φ′(n)

2π sgn(ω)
− l
∣

∣

∣
,
∣

∣

∣

φ′(n)

2π sgn(ω)
− l − 1

∣

∣

∣

}

for all x ∈ [Yl, Yl+1] .

For n ≥ Yl + clσ, Taylor expanding around Yl

φ′(n) = φ′(Yl) + φ′′(z)(n − Yl) = sgn(ω)2πl + φ′′(z)(n − Yl) for some z ∈ [Yl, n] .

Since n− Yl ≥ dist({Yl, Yl+1}, [a, b]) and φ
′′(z) & l

β−2
β−1 we deduce that for n in the range of

the sum
∣

∣

∣

φ′(n)

2π sgn(ω)
− l
∣

∣

∣
& l

β−2
β−1 dist({Yl, Yl+1}, [a, b]) .
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The analogous argument proves that also
∣

∣

∣

φ′(n)

2π sgn(ω)
− l − 1

∣

∣

∣
& l

β−2
β−1 dist({Yl, Yl+1}, [a, b]) .

The bound claimed in the lemma follows from (10). �

Let’s add decay and perturb the phase.

Lemma 3.4. Fix 1 < β < 2 and ρ ≥ 0. Let φ, Yl be as in Theorem 3.1 and define δh by (9).
If Yl ≤ a < b ≤ Yl+1, then

∣

∣

∣

∣

∑

a<n≤b

ei(φ(n)+h(n))

nρ

∣

∣

∣

∣

.
(

1 + ‖δh‖ℓ1(a,b)

)

l
2−β−ρ
β−1 dist({Yl, Yl+1}, [a, b])

−1 .

Proof. Without loss of generality assume that a, b ∈ N. Summing by parts

∑

a<n≤b

ei(φ(n)+h(n))

nρ
=

∑

a<n≤b−1

[

eih(n)

nρ
−
eih(n+1)

(n+ 1)ρ

]

∑

a<j≤n

eiφ(j)

+
eih(b)

bρ

∑

a<n≤b

eiφ(n) .

(11)

Using the assumption on h,
∣

∣

∣

∣

eih(n)

nρ
−
eih(n+1)

(n+ 1)ρ

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

nρ
−

1

(n+ 1)ρ

∣

∣

∣

∣

+
|h(n)− h(n+ 1)|

nρ

. n−ρ−1 + n−ρδh(n) .

Inserting this bound into (11) we arrive at
∣

∣

∣

∣

∑

a<n≤b

ei(µp(n)+h(n))

nρ

∣

∣

∣

∣

.
∑

a<n≤b−1

n−ρ(n−1 + δh(n))

∣

∣

∣

∣

∑

a<j≤n

eiφ(j)
∣

∣

∣

∣

+ b−ρ

∣

∣

∣

∣

∑

a<n≤b

eiφ(n)
∣

∣

∣

∣

.

By Lemma 3.3, Hölder’s inequality and the fact that Yl & l
1

β−1 ,
∣

∣

∣

∣

∑

a<n≤b

ei(φ(n)+h(n))

nρ

∣

∣

∣

∣

.

(

b−ρ +
∑

a<n≤b−1

n−ρ(n−1 + δh(n))

)

l
2−β
β−1 dist({Yl, Yl+1}, [a, b])

−1

.
(

1 + ‖δh‖ℓ1(a,b)

)

l
2−β−ρ
β−1 dist({Yl, Yl+1}, [a, b])

−1 .

Here we used
∑

a<n<b n
−1 . log(b/a) ≤ log(Yl+1/Yl) . 1. This completes the proof of the

lemma. �

With the above bound in hand we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. The idea of the proof is to split the summation range (Yl, Yl+1] into
appropriate subintervals and apply either the trivial bound or the bound in Lemma 3.4 to
the individual pieces. The choice of subintervals will be chosen depending on the distance
to the resonant points Yl, Yl+1. To simplify notation we only write out the argument for
the sum over the first half of the interval. The sum over the second half can be treated
analogously.

Recall that Yl+1 − Yl is proportional to l
2−β
β−1 . Our goal is to construct a finite increasing

sequence {σk}
K
k=1 with 0 < σj <

2−β
β−1 and split our sum over the intervals I0 = (Yl, Yl+ l

σk ],

IK = (Yl + lσK ,
Yl+1−Yl

2 ], and Ik = (Yl + lσk , Yl + lσk+1 ] with k = 1, . . . ,K − 1. That is, we
write

∑

Yl<n≤
Yl+1−Yl

2

ei(φ(n)+h(n))

nρ
=

K
∑

k=0

∑

n∈Ik

ei(φ(n)+h(n))

nρ
.

For k = 1, . . . ,K − 1, it holds that |Ik| . lσk+1 and dist(Ik, Yl) & lσk . Similarly, |I0| .

lσ1 , |IK | . l
2−β
β−1 , and dist(IK , Yl) & lσK .

Using the trivial bound for the sum over I0 and Lemma 3.4 for the sum over the Ik,
k > 0, we have the bound

∣

∣

∣

∣

∑

Yl<n≤
Yl+1−Yl

2

ei(φ(n)+h(n))

nρ

∣

∣

∣

∣

.
∑

n∈I0

1

nρ
+

K
∑

k=1

(

1 + ‖δh‖ℓ1(Ik)

)

l
2−β−ρ
β−1

−σk .

Since δh(n) . n−γ + vn, K is finite, and Yl & l
1

β−1 , it follows that
∣

∣

∣

∣

∑

Yl<n≤
Yl+1−Yl

2

ei(φ(n)+h(n))

nρ

∣

∣

∣

∣

. lσ1−
ρ

β−1 + (1 + ‖v‖l1)l
2−β−ρ
β−1

−σ1

+ l
2−β−ρ−γ

β−1

K−1
∑

k=1

lσk+1−σk + l
2−β−ρ−γ

β−1
+ 2−β

β−1
−σK .

Choosing σ1 = 2−β
2(β−1) and setting σk+1 − σk = 1

K (2−β
β−1 − σ1) =

2−β
2K(β−1) with the smallest

positive integer so that 2−β
2K(β−1) ≤ ε, the left-hand side above is bounded by

(1 + ‖v‖l1)l
2−β−2ρ
2(β−1) + l

2−β−ρ−γ
β−1

+ε
=
(

1 + ‖v‖l1 + l
2−β−2γ
2(β−1)

+ε
)

l
2−β−2ρ
2(β−1) .

This completes the proof of Theorem 3.1. �

4. Proof of Theorem 1.1

Our proof of Theorem 1.1 is based on the subordinacy theory of Gilbert–Pearson [7].
Specifically, that spectrum of ∆ + V in (−2, 2) is purely absolutely continuous will follow
once we show that for every k ∈ (0, π) and µ ∈ R the Prüfer radius R associated to the
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solution of the generalized eigenvalue equation has a finite and non-zero limit as n tends
to infinity.

Fix k ∈ (0, π), µ ∈ R and let R be the Prüfer radius associated to the corresponding
solution of the generalized eigenvalue equation. By scaling we may without loss of generality
assume that R(1) = 1. To prove that R has a non-zero and finite limit as n → ∞ we aim
to show that

lim
n→∞

log(R(n))

exists and is finite.
We argue that {log(R(n))}n≥1 is a Cauchy sequence. By (6),

log(R(N2 + 1)) − log(R(N1))

= −
m
∑

j=1

N2
∑

n=N1

λj cos(φj(n)) sin(2θ(n))

2 sin(k)nαj
+O

(

N2
∑

n=N1

[ 1

n2α1
+ |V0(n)|

]

)

.

Since by assumption {V0(n)}n≥1 ∈ ℓ1 and α1 > 1/2 the quantity in the error term is
oN1→∞(1) and in particular it constitutes a Cauchy sequence.

To see that the main contribution is also Cauchy we argue as follows. Consider a fixed
j and write the corresponding sum as

N2
∑

n=N1

cos(φj(n)) sin(2θ(n))

nαj

=
1

2
ℑ

[

N2
∑

n=N1

ei(φj(n)+2θ(n))

nαj

]

−
1

2
ℑ

[

N2
∑

n=N1

ei(φj(n)−2θ(n))

nαj

]

=
1

2
ℑ

[

N2
∑

n=N1

ei(φ
0
j (n)+2kn+φ1

j (n)+2η(n))

nαj

]

−
1

2
ℑ

[

N2
∑

n=n1

ei(φ
0
j (n)−2kn+φ1

j (n)−2η(n))

nαj

]

.

Since the argument is identical for both terms, we consider only the first.
Define φ, h by φ(n) = φ0j (n) + 2kn and h(n) = φ1j (n) + 2η(n). By our assumption on

φ0j , φ satisfies the assumptions of Theorem 3.1 with β = βj and ω = ωj. Similarly, by the

assumptions on φ1j and the bound (8) for η we conclude that

|h(n + 1)− h(n)| . n−min{γj ,α1} + |V0(n)|

so h satisfies the assumptions of Theorem 3.1 with γ = min{γj , α1} and vn = |V0(n)|. Let
{Yl}l≥1 be defined as in the theorem, set L1 = min{l : Yl > N1} and L2 = max{l : Yl < N2}.



DISCRETE SCHRÖDINGER OPERATORS 11

Then
N2
∑

n=N1

ei(φ
0
j (n)+2kn+φ1

j (n)+2η(n))

nαj
=

L2
∑

l=L1

∑

Yl−1<n≤Yl

ei(φ
0
j (n)+2kn+φ1

j (n)+2η(n))

nαj

+
∑

N1≤n≤YL1

ei(φ
0
j (n)+2kn+φ1

j (n)+2η(n))

nαj

+
∑

YL2
<n≤N2

ei(φ
0
j (n)+2kn+φ1

j (n)+2η(n))

nαj
.

The last two sums are by the trivial bound no larger than O(L
(2−βj−αj)/(βj−1)
1 ) = o(L

−1/2
1 ),

since αj > βj/2. By applying Theorem 3.1 to the remaining sums we conclude that, for
any ε > 0,

∣

∣

∣

∣

L2
∑

l=L1

∑

Yl−1<n≤Yl

ei(φ
0
j (n)+2kn+φ1

j (n)+2η(n))

nαj

∣

∣

∣

∣

. (1 + ‖V0‖ℓ1)
L2
∑

l=L1

l
2−βj−2αj
2(βj−1)

+

L2
∑

l=L1

l
2−βj−αj−min{γj ,α1}

βj−1
+ε
.

By assumption αj > βj/2, so
2−βj−2αj

2(βj−1) < −1 and therefore the first sum is oL1→∞(1).

Moreover, since αj ≥ α1 > 1/2 and γj > 1− αj we can choose ε > 0 so that for each j

2− βj − αj −min{γj , α1}

βj − 1
+ ε <

2− βj − αj − (1− αj)

βj − 1
= −1 .

Thus also the second sum is oL1→∞(1). Since L1 → ∞ as N1 → ∞ we conclude that
{log(R(n))}n≥1 is Cauchy, which completes the proof of Theorem 1.1. �

Appendix A. On Krüger’s Proposition 3.2

Let Vω,α,β(n) =
cos(2πωnβ)

nα . Assume that 0 < α < 1
2 −

β−1
2 and 1 < β < 2. Introduce the

intervals

Λ0
k = [2k, 2k+1]

Λ−
k = [2k−1, 2k − 1]

Λ+
k = [2k+1 + 1, 2k+1 + 2k−1]

and set Λk = Λ−
k ∪ Λ0

k ∪ Λ+
l .

Proposition A.1. Fix α, β as above and ω, λ ∈ R, and ω′ ∈ [0, 1). Set ε = 2−β−2α
6 > 0.

Then for k large enough there exists intervals I± ⊆ Λ±
k satisfying

(1) |#(I±)− 2(α+ε)k+1| . 1, and
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(2) ‖λVω,α,β − 2λ′± cos(2π(φ± + ω′·))‖L∞(I±) . 2−(α+4ε)k for some φ± ∈ R and with

λ′± ∈ [ λ
2(k−2)α ,

λ
2(k+1)α ].

Remark A.2. Note that the statement is weaker than that claimed by Krüger in two regards;
the length of the interval where the approximation holds is smaller, and the L∞-bound on
that interval is weaker. However, when it comes to the application of the lemma in the
proof of Krüger’s main result it is good enough. Indeed, the important part is that the
interval where the L∞ error is much smaller the size of the gaps in the spectrum of the
respective almost Mathieu operators around ±2 cos(πω′) has a length which is much larger
than the reciprocal of the gap. Since away from E ∈ {−2, 0, 2} the gaps in the spectrum
of the almost Mathieu operators are & λ′± (if λ′± is small enough) this is the case with the
bound in the proposition.

Proof. (The devitation from Krüger’s proof is only in details he omits).
The arguments for I± are almost identical so we consider only the case of I−. Define

c = ⌊2
k−1+2k−1

2 ⌋, the centre of Λ−, and set ωm = ωβmβ−1. While Krüger’s statement that

d

dx
xβ−1 = O(xβ−2)

is trivial, his claim that ωc+2ǫk/4−ωc → ∞ is wrong in the considered range of α, β. Indeed,

the difference ωc+y − ωc is bounded as long as y = O(2(2−β)k).
For δ > 0 to be determined we have that ωc+2(2−β+δ)k −ωc → ∞. Thus we conclude that

there for k large enough exists m̂ with

|m̂− c| ≤ 2(2−β+δ)k and (ωm̂ − ω′) mod 1 . 2(k−1)(β−2) .

Set ℓ = ⌈2(α+ε)k⌉ for ε as in the proposition and define I− = [m̂− ℓ, m̂+ ℓ]. If max{2−
β+ δ, α+ ε} < 1 then I− ⊂ Λ−. In particular, we need to choose δ < β− 1 and check that
α+ ε < 1. Since α+ 3ε = 1− β/2 < 1 the second requirement is ok.

It remains to prove that δ, φ−, and λ− can be chosen such that the two potentials are
close in L∞(I−).

For n ∈ I− a Taylor expand around m̂ implies

λ
cos(2πωnβ)

nα
= λ

cos(2π(ωm̂β + ωm̂(n− m̂) +O(2(k−1)(β−2)ℓ2)))

m̂α +O(2(k−1)(α−1)ℓ)

= λ
cos(2π(ωm̂β − ω′m̂+ ω′n) +O(2(k−1)(β−2)ℓ2))

m̂α +O(2(k−1)(α−1)ℓ)

= λ
cos(2π(ωm̂β − ω′m̂+ ω′n))

m̂α
+O

(2(k−1)(β−2)ℓ2

m̂α
+

2(k−1)(α−1)ℓ

m̂2α

)

.
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Setting φ− = ωm̂β − ω′m̂ and λ′− = λ
2m̂α we conclude that

‖λVω,α,β − 2λ′− cos(2π(φ− + ω′·))‖L∞(I−) .
2(k−1)(β−2)ℓ2

m̂α
+

2(k−1)(α−1)ℓ

m̂2α

= 2(k−1)(β−2)+2k(α+ε)−(k−1)α

+ 2(k−1)(α−1)+k(α+ε)−2α(k−1)

For both terms to go to zero faster than 2−(α+4ε)k we need verify that

β − 2 + 2α + 2ε − α ≤ −α− 4ε and α− 1 + α+ ε− 2α ≤ −α− 4ε .

The first inequality is easily checked to hold, in fact it is an equality, and the second is
equivalent to

4− 4α− 5β < 0

which is true in the considered parameter range. Since the only assumption concerning δ
is that 0 < δ < β − 1 we can choose δ = β−1

2 , completing the proof. �
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