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ABSTRACT
We present STARFORGE (STAR FORmation in Gaseous Environments): a new numerical framework for 3D radiation
magnetohydrodynamic (MHD) simulations of star formation that simultaneously follow the formation, accretion, evolution,
and dynamics of individual stars in massive giant molecular clouds (GMCs), while accounting for stellar feedback, including
jets, radiative heating and momentum, stellar winds, and supernovae. We use the GIZMO code with the MFM mesh-free Lagrangian
MHD method, augmented with new algorithms for gravity, time-stepping, sink particle formation and accretion, stellar dynamics,
and feedback coupling. We survey a wide range of numerical parameters/prescriptions for sink formation and accretion and
find very small variations in star formation history and the IMF (except for intentionally unphysical variations). Modules for
mass-injecting feedback (winds, SNe, and jets) inject new gas elements on the fly, eliminating the lack of resolution in diffuse
feedback cavities otherwise inherent in Lagrangian methods. The treatment of radiation uses GIZMO’s radiative transfer solver
to track five frequency bands (IR, optical, NUV, FUV, ionizing), coupling direct stellar emission and dust emission with gas
heating and radiation pressure terms. We demonstrate accurate solutions for SNe, winds, and radiation in problems with known
similarity solutions, and show that our jet module is robust to resolution and numerical details, and agrees well with previous
AMR simulations. STARFORGE can scale up to massive (>105 M�) GMCs on current supercomputers while predicting the
stellar (�0.1 M�) range of the IMF, permitting simulations of both high- and low-mass cluster formation in a wide range of
conditions.
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1 IN T RO D U C T I O N

Many physical mechanisms are important in star formation (SF).
It is initiated by the formation of radiatively cooled, gravitationally
unstable cores of gas and dust from magnetized, supersonic, turbulent
flows found in giant molecular clouds (GMCs; Larson 1981; Mac
Low & Klessen 2004; McKee & Ostriker 2007; Girichidis et al.
2020). These cores collapse to protostars, and once formed, protostars
and stars influence the surrounding gas flow in via feedback: the in-
jection of mass, momentum, and energy into the interstellar medium
(ISM) in the form of radiation, accretion-powered collimated bipolar
outflows (hereafter simply ‘jets’), radiatively driven stellar winds,
and supernova (SN) explosions, which may ultimately limit the total
stellar mass that can form. The accretion of individual stars is eventu-
ally truncated by feedback, gas exhaustion, or dynamical interactions
with gas clumps or other stars, setting their final masses (Krause
et al. 2020). Hence, the problem of SF is an intricate, tightly-coupled
interaction of gravity, magnetohydrodynamics (MHD), atomic and
molecular physics, radiation, stellar physics, and feedback.

� E-mail: mike.grudic@northwestern.edu

A basic requirement of any star formation theory is to explain the
hallmark phenomena of SF, including the stellar initial mass function
(IMF), the (in-)efficiency of SF, and the properties of stellar clusters
and associations (Krumholz 2014). These phenomena must emerge
from the various processes at work in GMCs, so it is important
to disentangle the physics’ respective roles. This has yet to be
accomplished, partly because the wide range of length-scales and
multitude of physics involved make SF very challenging to model.

1.1 Requirements for a complete dynamical model of star
formation and feedback

While some progress has been made with simpler models that
consider only e.g. turbulence and gravity (Padoan, Nordlund & Jones
1997; Padoan & Nordlund 2002; Krumholz, McKee & Klein 2005;
Hennebelle & Chabrier 2008; Padoan & Nordlund 2011; Hopkins
2012; Hennebelle & Chabrier 2013), other physics are likely to be
important. In particular, feedback is important for understanding the
end-point of star formation (the disruption of GMCs), and its impli-
cations for other questions such as the IMF and stellar multiplicity
have only begun to be explored. Many analytic and semi-analytic
calculations of the effects of feedback in GMCs have been performed
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(for reviews, see McKee & Ostriker 2007; Krumholz, McKee &
Bland-Hawthorn 2019), yielding useful dimensional arguments and
analytic insights. But GMCs are complex, turbulent, inherently three-
dimensional entities that evolve on their internal crossing time-scale
(Larson 1981; Mac Low & Klessen 2004). Thus, even under the gross
simplification of treating GMCs as isolated entities (i.e. neglecting
galactic environment), (semi-)analytic predictions inevitably hinge
on many highly uncertain assumptions. With so much parameter
freedom it is difficult to say whether a given model is correct for
the right reasons, limiting physical insight and ultimately predictive
power. Direct numerical simulations of star formation are a necessary
tool to resolve these uncertainties.

In the past two decades, great progress has been made incorporat-
ing stellar feedback into direct numerical simulations of star-forming
GMCs (for reviews see Dale 2015; Krumholz et al. 2019). But these
studies have shown that further progress on the key questions of
star formation requires next-generation simulations that do all of the
following:

(i) Resolve individual star formation: Many simulations of star
cluster formation do not attempt to resolve the formation and ongoing
accretion of individual stars across the entire stellar mass range,
instead relying on a sub-grid SF prescription that either enforces
a certain underlying IMF directly or is fine-tuned to recover the
observed one (Colı́n, Vázquez-Semadeni & Gómez 2013; Howard,
Pudritz & Harris 2017; Kim et al. 2017; Sormani et al. 2017; Su
et al. 2018; Grudić et al. 2018a; He, Ricotti & Geen 2019; Lahén
et al. 2019; Wall et al. 2020). But there is an infinite number of
ways to do this, each with different implicit assumptions about
how star formation works, and the choice of prescription can have
a major effect upon simulation results (Grudić & Hopkins 2019),
limiting predictive power. Simulations should ideally attempt to
resolve the formation and accretion of individual stars (or sink
particles), and to recover a realistic IMF self-consistently from
physical (not numerical) processes. This is obviously necessary
anyway if one wishes to study the physical origins of the IMF and
stellar multiplicity.

(ii) Follow stellar dynamics: SF simulations that do not integrate
stellar orbits explicitly generally discretize the stellar mass formed
into a collisionless fluid represented by gravitationally softened
particles (e.g. Grudić et al. 2018a; Lahén et al. 2019; Li et al.
2019), which can produce qualitatively correct star cluster density
profiles (Grudić et al. 2018b; Lahén et al. 2020), but have the severe
limitation that the collisionless description (and phase-space density
conservation) breaks down on mass scales M� � 100 M�, so if
cluster formation is a hierarchical assembly from smaller masses
(e.g. Bonnell, Bate & Vine 2003), then individual stellar dynamics
is always important at some stage in the process. A simulation must
also treat dynamics on the scale of binary separations to accurately
predict stellar multiplicity, let alone phenomena such as common
disc accretion (e.g. Lee et al. 2019; Muñoz, Miranda & Lai 2019;
Duffell et al. 2020).

(iii) Follow MHD, chemistry, and cooling: Obviously, following
the dynamics of GMCs, star formation, and accretion requires gas-
dynamical simulations, and stars cannot form if gas cannot radiatively
cool. Moreover, the ISM is magnetized, and this fact can easily have
important implications for star formation. The magnetic field can act
as an additional source of support, potentially stabilizing otherwise-
unstable cores (Chandrasekhar 1951; Mouschovias & Spitzer 1976),
affecting the IMF (Price & Bate 2007; Guszejnov et al. 2020b),
the rate of star formation (Federrath & Klessen 2012; Federrath
2015), and altering the pressure balance, morphology, growth of

instabilities, and transport of energy in feedback bubbles (Krumholz,
Stone & Gardiner 2007; Offner & Liu 2018; Krumholz & Federrath
2019).

(iv) Scale up to massive GMCs: Current star formation simulations
that do both (i) and (ii) have focused upon lower mass systems, sim-
ulating gas masses of 100–1000 M� (Federrath 2015; Cunningham
et al. 2018; Jones & Bate 2018; Lee & Hennebelle 2018; Li, Klein &
McKee 2018; Wurster, Bate & Price 2019; Colman & Teyssier 2020),
producing ∼10–100 M� in stars. Low-mass clusters are important to
model, as they can be readily compared to well-studied sites of star
formation in the Solar neighbourhood (e.g. Evans, Heiderman &
Vutisalchavakul 2014), but the overwhelming majority of SF in
our Galaxy occurs in massive complexes with gas mass �105 M�
(McKee & Williams 1997; Murray & Rahman 2010). Simulated low-
mass clusters are also less likely to host massive (�10 M�) stars, and
hence cannot be used to study massive SF.1

(v) Account for all major feedback channels: 3D MHD simula-
tions of SF have not generally incorporated all known dynamically
important feedback mechanisms (jets, winds, full-spectrum radia-
tion, and SNe) acting in concert. A comprehensive treatment of
feedback is needed because different feedback channels are effective
on different scales, and can interact non-linearly. For example, direct
radiation pressure from a massive star is ineffective if it couples
deep within the star’s potential well (Krumholz 2018), and radiation
pressure in general may be subdominant to protostellar outflows for
regulating the growth of individual massive stars (Rosen & Krumholz
2020). But by regulating accretion or punching optically thin holes,
outflows could help photons to couple their momentum farther away
from the star, eventually allowing them to disrupt the host GMC (Fall,
Krumholz & Matzner 2010; Murray, Quataert & Thompson 2010;
Hopkins, Quataert & Murray 2012; Raskutti, Ostriker & Skinner
2016; Kim, Kim & Ostriker 2018; Grudić et al. 2018a; Hopkins &
Grudić 2019; Hopkins et al. 2020a). Meanwhile, jets can be a
powerful feedback mechanism that can regulate star formation on
the � 1 pc scales of individual cores and dense clumps (Matzner &
McKee 2000; Nakamura & Li 2007; Wang et al. 2010; Cunningham
et al. 2011; Federrath 2015; Offner & Chaban 2017; Cunningham
et al. 2018), but may have only weak effects upon the gas kinematics
at larger (i.e. � 10 pc) scales within the GMC (Murray, Goyal &
Chang 2018). Many other synergies between feedback mechanisms
can also be theorized.

1.2 Enter STARFORGE

In this work, we introduce the STARFORGE (STAR FORmation
in Gaseous Environments) project,2 a new initiative to perform
next-generation 3D star cluster formation simulations in massive
GMCs. The STARFORGE numerical framework that we have
implemented in the GIZMO code (Hopkins 2015, hereafter H15)
simultaneously follows the formation, accretion, and dynamics of
individual stars in massive GMCs, with optional physics modules
capable of accounting for all of the most widely discussed stel-
lar feedback mechanisms (jets, radiative heating and momentum,

1Some works have simulated massive cluster and star formation with
nominally individual star particles, incorporating SN (Padoan et al. 2017,
2020) and photoionization (Gavagnin et al. 2017) feedback, but at fairly
modest (∼ 500–1500 au) resolution compared to state-of-the-art low-mass
SF simulations. At this resolution it is only possible to follow the widest
binaries, and the predicted IMF may suffer bias or low-mass incompleteness.
2http://www.starforge.space
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stellar winds, and SNe), satisfying the requirements (i)–(v) laid
out above. In Guszejnov et al. (2020b, hereafter Paper 0), we
used numerical simulations (using an early version of the meth-
ods presented here) to show that the simple recipe of isothermal
MHD turbulence and gravity fails to yield a realistic IMF and
star formation history in Milky Way conditions, motivating the
need for additional physics implemented in STARFORGE. In the
present paper (Paper 1), we present and test the numerical methods
of STARFORGE, permitting simulations that combine all of the
important SF physics discussed here into a realistic simulation of
GMC evolution and star cluster formation. In Guszejnov et al.
(2021, hereafter Paper 2), we use the algorithms presented here
to explore the effects of protostellar jets upon SF across an un-
precedented parameter space of GMC properties and jet model
parameters.

This paper is structured as follows. In Section 2, we present
the ‘core’ algorithms that any 3D star cluster formation simulation
must have in some form: MHD, gravity, sink particle methods,
and an integration scheme that couples gas and stars stably and
achieves acceptable accuracy in stellar dynamics. In Section 3, we
describe the treatment of cooling, chemistry, and thermodynamics
(treating the opacity limit and protostellar heating either with self-
consistent radiative transfer, or simple inexpensive approximations).
In Section 4, we describe and test algorithms for the numerical
coupling of stellar feedback in the form of jets, winds, SNe, and
radiation. In Section 5, we explore various potential applications of
these methods beyond isolated GMC simulations, and also enumerate
the many caveats and uncertain assumptions inherent in simulating
SF and feedback in this manner, motivating future work. In Section 6,
we summarize our findings and outline the programme of the
STARFORGE project.

2 C O R E A L G O R I T H M S F O R STA R FO R M AT I O N

The STARFORGE framework is implemented in the GIZMO mul-
timethod, multiphysics N-body and MHD simulation code (Hop-
kins 2015).3 GIZMO was selected for the project for several
reasons. It implements second-order, Galilean-invariant, Lagrangian
meshless finite-volume MHD methods (Hopkins & Raives 2016,
hereafter HR16), which have several useful advantages for SF
problems (discussed in Section 2.1). It includes a gravity solver
(Section 2.2) that is spatially adaptive (solved consistently with
the MHD discretization) with near-ideal scaling up to 106 cores
(Hopkins et al. 2018b). In addition to solving the MHD equa-
tions, GIZMO’s meshless discretization and reconstruction schemes
provide a flexible framework for solving additional, non-core
physics such as diffusion, conduction, and non-ideal MHD terms
(Hopkins 2017), radiative transfer (Hopkins & Grudić 2019; Hop-
kins et al. 2020a), and stellar feedback (Hopkins et al. 2018a).
All equations are integrated according to a flexible, hierarchical
powers-of-two time-stepping scheme (Section 2.3) that makes it
possible to follow processes over a wide range of time-scales,
from the ∼ 10 Myr lifetime of a GMC to a � 1yr binary or-
bit.

Conceptually, our approach follows previous Lagrangian 3D
star formation simulations (Klessen & Burkert 2000; Bate, Bon-
nell & Bromm 2003): we discretize the mass of the GMC and
the surrounding medium into discrete elements of mass �m, and
integrate their evolution in time according to the MHD equations.

3http://www.tapir.caltech.edu/∼phopkins/Site/GIZMO.html

Eventually the self-gravitating MHD equations can no longer be
followed self-consistently at the centres of runaway core collapse,
so we replace these centres with sink particles (Bate, Bonnell &
Price 1995) nominally representing individual protostars. These
sink particles interact with the gas via gravity, accretion, and
optionally feedback, with feedback rates determined by a sub-grid
model of (proto-)stellar evolution based upon that used in Offner
et al. (2009). We target a MHD resolution scale on the order of
a few 10 au, comparable to state-of-the-art low-mass star cluster
formation simulations. We defer physics on smaller scales (e.g. disc
formation, accretion, jet launching, and protostellar evolution) to
a sub-grid approach, acknowledging the various caveats that this
entails (Section 5.2).

We provide a glossary of the various numerical resolution-related
quantities in Table 1.

2.1 Magnetohydrodynamics

The default MHD solver used by STARFORGE simulations is the
Meshless Finite Mass (MFM) method presented in HR16,4 which we
will briefly summarize. This method discretizes the fluid into a finite
number of gas cells of mass � Mi, each representing a domain of
volume Vi = � Mi/ρ i as determined by the kernel5 volume partition
described in H15. This partition defines the effective face areas
Agg′ between each interacting pair of gas cells g and g

′
,6 between

which the conservative MHD equations are evolved in standard finite-
volume fashion:

d

dt
(V U)g =

∑
g′

Agg′ · Fgg′ , (1)

where (V U)g gives the usual conserved quantities (mass, momen-
tum, energy, etc.) integrated over the volumetric domain of the cell,
and Fgg′ is the tensor of their fluxes. The fluxes are obtained by
solving the appropriate (HLLD) Riemann problem using the fluid
states reconstructed at the interface according to a slope-limited,
second-order least-squares gradient estimator, evaluated in the frame
moving with the interface to ensure Galilean invariance. In MFM,
the interfaces are defined and move such that the mass flux vanishes
identically, so the method follows the motion of constant-mass, quasi-
Lagrangian fluid elements. Cells exchange conserved quantities
ensuring machine-precision conservation in this operation. Magnetic
field divergence errors are controlled by augmenting equation (1)
with the usual Powell et al. (1999) and Dedner et al. (2002) source
terms and using the Hopkins (2016) constrained gradient method for
obtaining the consistent fluid reconstruction operator that minimizes
the numerically unstable terms.

Because the volume partition associated with each cell can have
complicated shapes (see Hopkins 2015 for discussion), it is useful
to define an effective cell size �xg ≡ V 1/3

g ≡ (�mg/ρg)1/3 (the
equivalent cell side length for a cubic cell of the same volume and

4MFM is our method of choice, but all STARFORGE methods are compatible
with any quasi-Lagrangian MHD method implemented in GIZMO, including
MFV and SPMHD, enabling easy comparisons.
5Following HR16, we adopt the M4 cubic spline as the default kernel partition
function Wgg′ = W (|xg′ − xg |, Hg), with kernel radius of compact support
Hg defined recursively by Hg = 2 �xg where �xg is the kernel-weighted

mean cell separation: �xg ≡ V
1/3
g = (n̄cells

g )−1/3 = [
∑

g′ Wgg′ ]−1/3.
6Throughout this work, we adopt index notation for gas cells and sinks where
i and j denote any element regardless of type, g and g

′
denote gas cells, and s

and s
′

denote sink particles.
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Table 1. Glossary of numerical resolution-related quantities in STARFORGE simulations. � M−3 is the mass resolution �m in units of the fiducial 10−3 M�
resolution, n3 = XHρ/ Mp ≈ 0.7ρ/ Mp is the local number density of H in units of 103 cm−3, and cs, 0.2 is the minimum gas isothermal soundspeed in units of
0.2 km s−1.

Symbol Meaning Notes or expression Fiducial value

�m Normal gas cell mass resolution Numerical parameter 10−3 M�
� Mw Wind cell mass resolution Numerical parameter 10−4 M�
h Volume-equivalent spherical cell radius equation (2) 0.02 pc �m

1/3
−3 n

−1/3
3

�x Volume-equivalent Cartesian cell length (�m/ρ)1/3 0.03 pc �m
1/3
−3 n

−1/3
3

NNGB Effective neighbour number Numerical parameter 32

H Kernel radius of compact support
(

3NNGB�m
4πρ

)1/3 ≈ 2�x 0.06 pc �m
1/3
−3 n

−1/3
3

fJ Number of Jeans lengths per cell length Equation (18) 0.03 n
1/6
3 c−1

s,0.2 �m
1/3
−3

fJ, max fJ value for marginal Jeans resolution Heuristic; problem-dependent; see
Section 2.4

1/2

�xJ Minimum Jeans-resolved cell length Equation (20) 30 au × �m−3 c−2
s,0.2

ρJ Maximum Jeans-resolved density Equation (19) 3 × 10−14g cm−3 × �m−2
−3c

−6
s,0.2

tacc Accretion smoothing time-scale Equation (33) 500 yr × �m−3

S� Sink particle force softening compact support radius Numerical parameter 18 au × �m−3

Rsink Sink particle maximum accretion radius Equation (22) 18 au × �m−3

mass):

�xg ≡
(

�mg

ρg

)1/3

≈ 0.03 pc

(
�m

10−3M�

)1/3 ( nH,g

103 cm3

)−1/3
,

(2)

and volume-equivalent spherical radius

hg ≡
(

3�mg

4πρg

)1/3

≈ 0.02 pc

(
�m

10−3M�

)1/3 ( nH,g

103 cm3

)−1/3
,

(3)

where the latter expressions are given in terms of the typical
STARFORGE mass resolution of 10−3 M� and the number density
of H atoms nH,g ≈ 0.7ρg/mp. We emphasize, as discussed in HR16,
that MFM has little in common with smoothed-particle MHD
(SPMHD) – MFM is formally a member of the class of Arbitrary
Lagrangian-Eulerian (ALE) finite-volume Godunov methods, much
more closely related to Voronoi moving-mesh methods (e.g. Springel
2010; Duffell & MacFadyen 2011), and in fact reduces to a Voronoi-
mesh method in the limit of sharply peaked kernel functions with
exact volume quadrature.

Meshless, Lagrangian, Galilean-invariant MHD methods have
several advantages for simulating SF in GMCs with feedback. In
Lagrangian methods, Galilean invariance implies that the time-step
required does not depend upon the bulk flow velocity v as �t ∝ �x/v
(as is required for stable advection in Eulerian fixed-grid methods),
so larger time-steps are possible in the highly supersonic flows of
GMCs, and the presence of very high (� 100 km s−1) bulk velocities
in accretion flows or winds does not incur such a high cost, an issue
often encountered by Eulerian simulations combining high velocities
with high-spatial refinement levels.

Galilean and rotational invariance also ensure that structures
formed in the simulation (e.g. dense cores and clumps) to evolve
internally in a manner independent of their mean bulk velocity and
orientation with respect to the coordinate axes (to machine precision).
Numerical errors are velocity-independent, and a significant source
numerical diffusivity in supersonic flows in Eulerian methods (the
grid advection operation, Robertson et al. 2010; Pontzen et al. 2021)
is absent. These advantages can enable more rapid convergence of
phenomena involving highly supersonic flows, large density con-

trasts, angular momentum conservation, and coupling to self-gravity,
all of which are highly relevant in SF. We refer the reader to H15,
HR16, and Hopkins (2016) for demonstrations of the performance
of the MFM MHD method in a wide variety of standard test
problems.

2.1.1 Non-ideal MHD terms

By default, STARFORGE simulations solve the equations of ideal
MHD, but it is also possible to include additional terms in the
momentum, energy, and induction equations, including Spitzer
anisotropic conduction and Braginskii viscosity (e.g. Su et al. 2017;
Hopkins et al. 2020b), Ohmic resistivity, ambipolar diffusion, and
the Hall effect (e.g. Hopkins 2017). These terms are implemented
numerically by operator-splitting with the ideal MHD update cycle,
as described in Hopkins (2017). The effects of these non-ideal terms
in star formation will be the subject of a future study.

2.1.2 Coupled dust-gas dynamics

Physically, dust grains are coupled to gas aerodynamically and hence
do not necessarily move with the gas (Draine & Salpeter 1979), and
this can have important effects for GMC physics and star formation
(Hopkins 2014; Hopkins & Lee 2016). Our default set-up assumes
a constant dust-to-metals ratio for cooling, radiative transfer, etc.,
but compatible with STARFORGE modules are fully compatible
with GIZMO’s dust dynamics module (Hopkins & Lee 2016; Lee,
Hopkins & Squire 2017; Moseley, Squire & Hopkins 2019), which
follows dust tracer particles in a Monte Carlo sampling of phase space
and grain size, with an arbitrary grain-size distribution, including
Stokes, Epstein, and Coulomb drag, Lorentz forces with collisional,
photoelectric, and cosmic ray charging, and gas back-reaction. The
effect of these physics on star formation will be the subject of future
work.

2.2 Gravity

We compute the gravitational field g = −∇�, tidal tensor T =
−∇∇� (where � = ∇−24πGρ is the gravitational potential) and

MNRAS 506, 2199–2231 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/2199/6276745 by C
alifornia Institute of Technology user on 20 O

ctober 2021



STARFORGE 2203

the gravitational jerk j at the location of every gas cell and sink
particle in the simulation using a modified version of the massively
parallel, approximate tree-force algorithm introduced in Springel
(2005, hereafter S05). This algorithm recursively subdivides the
simulation domain into an oct-tree structure, and uses the monopole
approximation of the field contribution of the contents of a tree
node, unless an the opening criterion is satisfied, in which case the
opening criteria are re-evaluated recursively for all sub-nodes and
forces evaluated accordingly. We use the acceleration-based opening
criterion introduced in S05 (which requires that the quadrupole error
term aQ ∼ GML2/r4 of a node is less than a specified fraction of
the total field g), but also always require the original Barnes & Hut
(1986) opening criterion: a tree node is always opened if it subtends
an angle θ ≡ L

r
> �, where L is the side length of the node, r is

the distance between the node centre of mass and the target point
for field evaluation, and � = 0.5 is the maximum opening angle.
This ensures that a dense sub-system of a hierarchically structured
system that dominates its own field (e.g. a dense clump or a binary)
still has some control over the accuracy of the force contribution
from surrounding material, which is still needed to predict its centre-
of-mass motion (Grudić et al. 2020). T and j are computed in the
same pass through the gravity tree as g, summing the respective
monopole contributions of tree nodes and particles according to
the same opening criterion (Vogelsberger et al. 2008; Grudić &
Hopkins 2020). Gravitational forces are updated for gas cells only
as frequently as required per the Grudić (2020) adaptive criterion,
using j to construct a predictor of g between updates. This generally
decreases overall cost of calling the gravity solver by a factor of 2 or
better.

2.2.1 Softening

We use a softened form of the gravitational force law for sink
particles or gas cells that fall within each other’s respective softening
radii Si and Sj, i.e. rij < max

(
Si, Sj

)
, ensuring that all interactions

are antisymmetric, conserving total linear and angular momentum.
Softening for gravitational interactions between gas cells is fully
adaptive, i.e. we set Si = Hi so that the gravitational force resolution
is always scaled to be consistent with the cell volume partitioning
assumed when solving the MHD equations. This prevents various
unphysical effects that are seen if the hydro and gravitational
resolution scales are mismatched (Bate & Burkert 1997). At the
second-order consistency of our MHD method, H15 showed that this
can be done by using the same spherically symmetric compact spline
softening scheme as smoothed particle hydrodynamics (SPH), with
the same additional terms and symmetrization to ensure conservation
of momentum and energy (Price & Monaghan 2007). The full
form of the pairwise force law between gas cells is given in H15
(equations H8–H10).

For interactions between sink particles, it would be ideal to use
the full, unsoftened 1/r2 force law to be able to follow stellar
dynamics on all scales down to stellar radii. Unfortunately, this is
not presently possible for our code, because binaries with arbitrarily-
close separations (down to surface contact) can form and harden
dynamically (Heggie 1975), potentially requiring very short time-
steps. In theory, this workload could be accomplished by our
hierarchical individual time-stepping scheme (Section 2.3), but in
practice the massively parallel architecture of GIZMO is such that
global overheads tend to eventually bottleneck time-steps involving
a small subset of the total particle number (e.g. two sink particles in a
very short-period binary). Therefore, we adopt a finite, fixed softening

radius S� for sink particles in a given simulation, allowing us to follow
collisional dynamics accurately on spatial scales � S�, while limiting
the effective hardness of binaries having separation � S�.

Lastly, softened interactions between fixed-softening sinks and
adaptively-softened gas cells must be handled specially, because the
respective softenings can differ by orders of magnitude – e.g. if a
star with S� ∼ 20 au is moving through a diffuse part of the GMC
where nH ∼ 10 cm−3, and hence a gas cell would have size ∼ 0.1 pc
(equation 2). In such a case using the same Price & Monaghan (2007)
symmetrization as gas–gas interactions (averaging the forces) would
result in unphysical noise, because the interaction between the gas
and star on the scale of S� is totally unresolved, but the back-reaction
on the star depends sensitively upon its position with respect to the
cell centre. Instead, we take the maximum of S� and the gas kernel
radius H as the softening radius, in both directions of the pairwise
interaction (thus conserving momentum). A natural choice for the
fixed S� is to match it to the finest possible Jeans-resolved spatial
MHD resolution, which we will show to be ∼ 20 AU in Section 2.4
for our fiducial mass resolution of 10−3 M�.

In all pairwise interactions, the tidal tensor T and jerk j (for
sinks) are summed using spatial derivatives of the same softened
force kernel that is used for g, with the same symmetrization scheme
used for that particular interaction.

2.3 Time-stepping

Gas cells and sink particles are advanced in time in a hierarchical
powers-of-two individual block-time-stepping scheme (S05). To
compute the time-step taken by an element, we compute numerous
time-step criteria for capturing the various physical processes in the
simulation, take the smallest of these, and round it down to the
next step in the powers-of-two hierarchy. Individual time-steps are
essential because the shortest time-steps required are typically on the
order of a few days, requiring ∼109 time-steps over the ∼ 10 Myr
lifetime of a GMC, but the vast majority of elements in the simulation
require much less-frequent updates.

2.3.1 Time-step criteria

Gas cells obey all of the standard local, Galilean-invariant, MHD-
specific time-step criteria given in HR16, except that we neglect the
gravitational component of the acceleration in the Power et al. (2003)
acceleration criterion. Instead, both gas cells and sink particles obey
the tidal time-step constraint (Grudić & Hopkins 2020):

�ti < �ttidal = √
η

(‖T‖2

6

)−1/4

, (4)

where ‖T‖ denotes the Frobenius norm of the tidal tensor and η is a
tolerance parameter controlling the overall accuracy of integration.
In Grudić & Hopkins (2020), we showed that ‖T‖ encodes a reliable
estimate of the local gravitational dynamical time tdyn ∼ 	−1 =√

r3/GM , respecting the equivalence principle (invariance to the
addition of a uniform external field g′) and interpolating between
appropriate limits for a continuous mass distribution and in the
vicinity of a point mass (e.g. sinks) more accurately and robustly
than the usual acceleration-based criterion.

Sink particles also obey their own special time-step criterion for
ensuring orbital integration accuracy (von Hoerner 1960):

�ts < �t2−body = √
η
(
t−1
c,min + t−1

dyn,min

)−1
, (5)
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where

tc,min = min
s′ 
=s

√
r2
ss′ + ε2

�

vss′
(6)

and

tdyn,min = min
s′ 
=s

√√√√(
r2
ss′ + ε2

�

)3/2

G
(
ms + m′

s

) , (7)

where j runs over all other sink particles, ε� = h�/2.8 is the Plummer-
equivalent sink softening radius, and rss′ , vss′ , Ms, mss′ are the
separation, relative velocity, and respective masses of sink particles s
and s

′
. Note that �t2-body is simply the harmonic mean of a kinematic

orbital crossing time-scale ∼r/v and an orbital dynamical time-
scale tdyn = 	−1 ∼

√
r3/GMtot, but replacing r with a softened

version
√

r2 + ε2
� . We treat this as a single time-step criterion

using the harmonic mean of the two time-scales because the smooth
interpolation in the regime tc, min ∼ tdyn, min yields slightly better
integration accuracy for eccentric binary orbits. Unlike the tidal
criterion (equation 4), �t2-body is symmetric between pairs of sinks,
ensuring that binaries are updated synchronously when this is the
dominant time-step constraint, which can give better conservation
of orbital parameters. The global min operations can be evaluated
efficiently in the pass through the gravity tree, combining stellar
masses that exist within the same tree node if it is not opened
(consistent with the force approximation).

Sink particles also observe various time-step constraints derived
from local gas conditions, to ensure the stability of local gas
interactions occurring within the hydrodynamic stencil, such as
accretion and feedback injection. First, it cannot time-step more than
4× the smallest time-step of a gas neighbour:

�ts < �tngb = min
g

4�tg, (8)

where g runs over all overlapping, potentially interacting gas neigh-
bours, i.e. rsg < max (Hs, Hg). This is analogous to the constraint
imposed for neighbouring gas cells in GIZMO, following Saitoh &
Makino (2009). A sink particle’s time-step is also constrained to
anticipate the infall and/or orbital motion of surrounding gas, via a
gas free-fall time criterion:

�ts < �tff =
√

η (max (ε�, �xs))
3

Gms

, (9)

where η is the parameter controlling overall integration accuracy and
�xs is the effective gas cell size in the vicinity of the sink. Sinks
also obey a local Courant–Friedrichs–Lewy (CFL)-type time-step
constraint:

�ts < �tCFL,�

= CCFL
�xs

max
(√

c2
s,s + v2

A,s + |vs − vgas,s|2, c̃, vfb,s

) , (10)

where vs is the velocity of the sink, cs, s, vA, s, and vgas,s are the local
gas sound speed, Alfvén speed, and gas velocity (reconstructed using
a simple kernel-weighted interpolation), c̃ is the (possibly reduced)
speed of light (only included if radiative transfer is enabled), and vfb

is an estimate of the maximum velocity of gas emerging from the
sink due to feedback:

vfb = max (vSN, min (vwind, vshell)) , (11)

where vSN is the SN ejecta velocity given by equation (47) (or
0 if the sink is not currently going SN), vwind is the stellar wind

velocity (equation 45), and vshell is the greater of the velocity of an
energy-conserving (Weaver et al. 1977) or momentum-conserving
(Steigman, Strittmatter & Williams 1975) shell as its radius reaches
the resolution scale �x:

vshell = max

⎛
⎝0.38

(
Lwind

ρ�x2
s

)1/3

,

(
0.053

(
L/c + Ṁwindvwind

)
ρ�x2

s

)1/2
⎞
⎠ ,

(12)

where Ṁwind is the sink’s wind mass-loss rate (equation 32), vwind

is the wind velocity (equation 45), Lwind = 1
2 Ṁwindv

2
wind is the

mechanical luminosity of the wind, L is the bolometric luminosity
of the sink, ρ is the local gas density. We have found that including
something like the vfb term in �tCFL, � can be important to prevent the
sink particle from ‘overshooting’ the amount of feedback it injects,
i.e. injecting feedback over a time-step longer than the time required
for the local gas cells to react to it, leading to an unstable solution.7

Reciprocally to the vfb term in equation (10), gas cells also obey a
time-step constraint to anticipate the arrival of feedback from a star:

�tg < �tfb = CCFL min
s∈sinks

√
r2
gs + max

(
ε�, �xg

)2

vfb,s
, (13)

where s runs over all sink particles and the min can be evaluated
efficiently in the gravity tree pass. If a hyperbolic RT solver (e.g.
M1) is enabled, we also enforce a local radiation CFL condition:

�tg < �tCFL,rad = CCFL
2hg

c̃
. (14)

Likewise, we enforce appropriate local time-step criteria in the
relevant methods papers for the various optional physics (e.g. non-
ideal MHD and dust) described above.

2.3.2 Time integration

Given a choice of individual time-step as in Section 2.3.1, we require
a time-integration scheme that achieves acceptable truncation error.
The error budget of a multiphysics SF simulation is dominated by
errors in MHD, radiative transfer, stellar evolution/feedback, and
gravity, all of which are necessarily approximate and/or have large
modelling uncertainties. Some errors may not even converge away in
the limit of infinite resolution: e.g. moments-based radiative transfer
methods will not converge to the exact radiative transfer solution in
general. Hence, for gas, high-order integration schemes are unlikely
beat down the leading-order error terms in the global GMC and star
cluster evolution. For all gas cells, and as a robust fall-back option
for stars in special circumstances, we use the standard second-order
Kick–Drift–Kick (KDK) integrator (S05):

vi �→ vi + 1

2
�ti ai ,

xi �→ xi + �ti vi ,

vi �→ vi + 1

2
�ti ai , (15)

where ai is the total gravitational+MHD+radiative acceleration of
cell/particle i, which is re-evaluated after every initial half-step kick.

7This is only required to stabilize feedback mechanisms using weighted
local injection within the hydrodynamic stencil: the component of radiation
pressure due to unresolved absorption, and stellar winds with unresolved
free expansion (Section 4). Feedback mechanisms that resolve the ejecta
self-consistently (resolved winds, jets, and SN) are stable because the high-
velocity ejecta ‘wake up’ ambient gas cells as they approach, bringing them
down to the necessary time-step automatically (Saitoh & Makino 2009).
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Some additional control on orbital integration accuracy for stars
is needed to preserve the properties of binaries once formed. Any
numerical integration scheme will incur a certain fractional energy
error �E/E per orbit (as well as an angular momentum error �J/J
and phase error �φ/φ, but here we use �E/E as an overall proxy for
integration error, as is standard). A true symplectic integrator such
as the leapfrog with constant time-steps will preserve orbital energy
and angular momentum on average, but true symplecticity is lost
once the adaptive KDK version is adopted and errors accumulate
over time, causing the semimajor axis to change with each orbit
(S05). If a fairly typical ∼ 100 yr, e = 0.9 binary is to survive the
∼ 10 Myr lifetime of its host GMC in a simulation, then we require
|�E/E| � 1 and hence an energy error per orbit of �10−5. In
Fig. 1, we show that this would require �2000 time-steps per orbit
with the KDK integrator (and would demand a minimum time-step at
periastron of � 1 d), which we have found to demand an excessively-
large overhead. Instead, we adopt a modified version of the fourth-
order Hermite integrator (Makino & Aarseth 1992) for stars. At the
beginning of the time-step, we evaluate the initial accelerations as,0

and jerk j s,0 of all sinks in a special sinks-only gravity tree pass. We
then perform the initial prediction step:

xs �→ xs,0 + �t vs,0 + 1

2
�t2as,0 + 1

6
�t3 j s,0,

vs �→ vs,0 + �t as,0 + 1

2
�t2 j s,0, (16)

re-evaluate as and j ,s using the new positions and velocities, and
then perform the correction step:

vs �→ vs,0 + 1

2
�t

(
as + as,0

) + 1

12
�t2

(
j s,0 − j s

)
,

xs �→ xs,0 + 1

2
�t

(
vs + vs,0

) + 1

12
�t2

(
as,0 − as

)
, (17)

where the order here matters because the update to xs requires the
updated version of vs . This is subtly different from the original
implementation in Makino & Aarseth (1992), in that we perform two
force/jerk evaluations per time-step, one at the beginning of the time-
step and one after the prediction step, whereas the original Hermite
scheme only re-evaluates the force/jerk after the prediction step.
We discovered serendipitously that this small modification gives a
scheme that converges at the same order, but can give order-of-
magnitude smaller energy errors at fixed time-step size in binary
integration (Fig. 1). In a typical direct N-body application the entire
cost of the simulation is force/jerk evaluation and there is not much
parallelization overhead, so this advantage would be nullified by
simply taking 2× smaller time-steps at equal cost. In GIZMO, the
force/jerk comes relatively cheaply, but there can be significant global
overheads involved in taking smaller time-steps, so our modified
Hermite scheme is more suitable. For our standard choice of η =
0.01, this method achieves a relative energy error of <10−6 per orbit
for an e = 0.9 binary (and this decreases steeply for smaller e).

In a given time-step, a sink particle is first provisionally time-
stepped according to the KDK scheme, co-evolving it alongside
the gas update cycle so that the gas-star coupling seen by the gas
is unaltered by the Hermite integration (but saving the initial state
of the time-step). At the end of the time-step, the sink particle is
eligible to accrete gas cells. If it does, low-order integration errors
are introduced and j ceases to be well-defined, so we simply keep
the more-robust KDK result for that time-step. If it does not accrete,
it is eligible to take a Hermite time-step, updating via equation (16)
using the saved values xs,0, vs,0, as,0, and j s,0, and performing the
subsequent force evaluation and correction step (equation 17). Given

Figure 1. Relative energy error accumulated per orbit integrating e = 0.9
binary motion with the second-order Kick–Drift–Kick (KDK) (S05), fourth-
order Hermite (Makino & Aarseth 1992) and our modified Hermite integrator
(equations 16–17), as a function of the time-step tolerance parameter η, which
controls the number of steps taken per orbit per our adaptive time-stepping
scheme (equations 4 and 5 and powers-of-two block scheduling, Section 2.3).
Conserving binary properties in a ∼ 10 Myr GMC simulation (�104–107

binary orbits) is only practical with a higher order scheme. Both Hermite
schemes happen to converge at fifth order in this problem when using our
time-step criteria, and our modified version performs better at fixed η, for an
extra force and jerk evaluation per time-step.

the order of the MHD reconstruction, and the inability to define
the jerk given e.g. shocks, there would be no gain from using this
integrator for gas.

2.4 Isothermal hydro+gravity tests and resolution
requirements

Before discussing sink particles, it is useful to first examine the be-
haviour of our methods in test problems involving simple isothermal
hydrodynamics and gravity.

2.4.1 Existing tests

The standard MHD and gravity algorithms in GIZMO have been
extensively tested and applied to hundreds of different problems in
the literature, so we will not repeat these. We do note these tests have
demonstrated that our default implementation can simultaneously
accurately evolve phenomena including gas in regular or warped
Keplerian discs, strong interacting shocks, current sheets and flux
tubes, supersonic and subsonic turbulence, fluid mixing instabil-
ities (Kelvin–Helmholz, Rayleigh Taylor, etc.), multifluid dust–
gas dynamics, collisional+collisionless gravitational dynamics, and
reproduces the correct linear growth rates of the magnetorotational
instability (MRI) and non-ideal Hall MRI and anisotropic MHD
instabilities (magnetothermal, heat–flux–bouyancy) (Hopkins 2015;
Hopkins & Raives 2016; Zhu & Li 2016; Lupi, Volonteri & Silk 2017;
Deng et al. 2019a, b; Moseley et al. 2019; Rennehan et al. 2019; Hu &
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Chiang 2020; Panuelos, Wadsley & Kevlahan 2020). Tests of ideal-
ized problems involving self-gravitating MHD including the Evrard
(1988) problem (spherical collapse of a self-gravitating polytrope),
the MHD Zel’dovich (1970) pancake (self-gravitating collapse of
an initially linear density perturbation along one dimension in a 3D
Hubble flow) demonstrate that the MFM/MFV methods in GIZMO
(as well as related moving-mesh methods) converge much more
rapidly than popular AMR or SPH methods applied to the same
problem (Hopkins 2015; Hopkins & Raives 2016; Hubber, Rosotti &
Booth 2018).

Several studies have argued that the most notable advantages
of MFM compared to SPH or AMR methods may come in
astrophysical discs, which are crucial for the physics of stellar
accretion but are often marginally resolved in our simulations (mean-
ing that more-rapid convergence at fixed resolution is especially
valuable). For example, (1) MFM accurately conserves angular
momentum and prevents both unphysical disc ‘spreading’ and/or
clumping/fragmentation via artificial viscous instabilities in SPH
or catastrophic angular momentum loss from spurious coordinate-
alignment torques which are inescapable in AMR (Hopkins 2015;
Few et al. 2016; Zhu & Li 2016; Lupi et al. 2017; Panuelos
et al. 2020; Deng, Ogilvie & Mayer 2021). (2) Few et al. (2016)
found MFM more rapidly converges to correct linear growth rates
for spiral arms and other disc instabilities, compared to AMR or
SPH, while Deng et al. (2021) found a similar result for physical
parametric instabilities of warped discs. (3) Deng, Mayer & Meru
(2017) showed MFM was the only method surveyed which exhibited
convergence to exact solutions for gravitoturbulent fragmentation in
cooling discs. (4) MFM, at fixed resolution, has been shown to more
accurately capture boundary-layer mixing in discs (especially those
formed via collisions), avoiding artificial suppression of subsonic
turbulence and mixing common in SPH (Zhu & Li 2016; Deng
et al. 2019b). (5) Hubber et al. (2018) demonstrated that MFM
simulations of ‘gap opening’ via massive planets or binaries in discs
converged more rapidly and maintained the gaps more accurately
than equivalent SPH or AMR simulations (which tended to produce
artificially-high torques and therefore stellar accretion rates in this
regime).

2.4.2 Isothermal collapse tests

Next, we consider a variant of the ‘isothermal test case’ from Boss &
Bodenheimer (1979): a uniform-density, un-magnetized, spherical
solar-mass core with initial radius 5 × 1016cm, in uniform rotation
with 	 = 7.2 × 10−13rad s−1 and a 10 per cent m = 2 azimuthal
density perturbation with an isothermal equation of state P = c2

s ρ,
cs = 0.166 km s−1 (Burkert & Bodenheimer 1993; Bate & Burkert
1997; S05). We use the MFM hydrodynamics solver with the default
STARFORGE gravity and time-stepping set-up (Sections 2.2–2.3),
and initialize the cells in a glass configuration with the density
perturbation imposed by rescaling cell masses. In Fig. 2, we plot
the maximum density in the simulation as a function of time
while varying the average cell mass �m from 10−3−10−7 M�, and
compare with SPH results from Bate & Burkert (1997) and S05.
The solution appears to converge to an answer in fair agreement
with the highest resolution SPH results in S05. Moreover, our
solution with Ngas = 104 cell resolution is closer to its respective
converged limit than SPH simulations with 3.34 × 104 and 8 × 104

particles, respectively. However, at low enough resolution numerical
effects become apparent, as evidenced by the ∼ 10 per cent delay
of the collapse of our lowest resolution run with only 103 gas
cells.

Figure 2. Evolution of the maximum density ρmax in the standard isothermal
test problem (Boss & Bodenheimer 1979), with time in units of the global
cloud free-fall time tff. We plot MFM results for various mass resolutions
�m = 10−7−10−3 M� and compare with SPH results from Bate & Burkert
(1997) and S05.

It is important to assess the effects of resolution upon SF
simulations, as this will inform our sink particle prescription.
A common convergence parameter for self-gravitating isothermal
hydrodynamics simulations is the number of Jeans lengths per cell
(Bate & Burkert 1997; Truelove et al. 1997; Hubber, Goodwin &
Whitworth 2006):

fJ ≡ �x

λJ
=

√
G

πc2
s

(�m)1/3 ρ1/6

≈ 0.03

(
�m

10−3M�

)1/3 ( nH

103 cm−3

)1/6
(

cs

0.2 km s−1

)−1

,

(18)

using �x =
(

�m
ρ

)1/3
and λJ = cs

√
π
Gρ

. The consequences of under-

resolving λJ (i.e. allowing �x � λJ) vary from method to method,
and have been the subject of extensive study. Truelove et al. (1997,
hereafter T97) found that Eulerian grid simulations that do not
enforce fJ < 1

4 are subject to artificial fragmentation (AF), wherein
fragments of unphysical origin can form even in a smooth, symmetric
collapse. A similar effect is seen in SPH simulations if care is not
taken to match the gravitational resolution to the hydrodynamic
resolution (Section 2.2.1), e.g. adopting a constant gas softening
length that is much smaller than the particle spacing (Bate & Burkert
1997). Clearly, AF is undesirable, so a variety of approaches have
been developed to prevent it, e.g. by fine-tuning the sink particle
formation, accretion, and merger criteria in conjunction with the re-
finement scheme (e.g. Krumholz, McKee & Klein 2004; Haugbølle,
Padoan & Nordlund 2018). AF does not occur in SPH simulations
that maintain consistency between gravitational and hydrodynamic
resolution (Bate & Burkert 1997; Whitworth, Boffin & Francis 1998;
Hubber et al. 2006), and more recently it has been confirmed that this
is true for MFM as well in the linear Jeans problem (Hubber et al.
2018; Yamamoto et al. 2021 in preparation). With these methods,
fragments that should physically collapse but are insufficiently Jeans-
resolved either do not collapse, or simply collapse more slowly.
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Figure 3. Effect of (under-)resolving the Jeans length in isothermal collapse with the Meshless Finite Mass (MFM) method with adaptive gravitational softening.
We plot a surface density map of the filament formed in the T97 self-gravitating isothermal hydrodynamics test problem, at the time that the maximum density
is ρmax = 10−9.5g cm−3 (cf. T97 Fig. 4). From top left to bottom right, we vary the mass resolution �m from 8 × 10−5−1.6 × 10−7 M�, which varies
the maximum number of Jeans wavelengths per cell fJ = (�x/λJ )max ≈ √

Gc−1
s (�m)1/3 ρ

1/6
max from 1.1 to 0.14. Failure to resolve the Jeans length simply

coarse-grains the structure of the filament – there is no evidence of artificial fragmentation when the Jeans length is poorly resolved.

Here, we also check for AF in the exact test problem simulated
in T97, a variant of the Boss & Bodenheimer (1979) problem,
using an initial Gaussian density profile. With a 10 per cent m = 2
initial density perturbation, T97 found that the converged solution
is the formation of a single collapsing filament, but if the Jeans
resolution criterion �x > λJ/4 was violated then they would obtain
an unphysical solution containing two filaments instead. In Fig. 3,
we plot the structure formed in the simulation at the time that
the maximum density exceeds 10−9.5g cm−3, at a variety of mass
resolutions such that the T97 criterion is strongly violated at our
lowest resolution (8 × 10−3 M�, �x ≈ 1.1λJ), and is well satisfied at
our highest (1.56 × 10−7 M�, �x ≈ 0.14λJ). No additional filament
or fragment forms even when the T97 criterion is strongly violated –
the effect of poor resolution appears consistent with a simple spatial
coarse graining of the structure of the filament. T97 also found that the
version of the problem with no initial density perturbation resulted in
the formation of numerical fragments, unless fJ < 1/4 was enforced.
We have verified that this is not the case for MFM: axisymmetry is
preserved accurately throughout the collapse, even when the Jeans
resolution criterion is strongly violated.

Our findings for MFM appear consistent with previous results in
the linear Jeans problem (Hubber et al. 2018; Yamamoto et al. in
preparation): unstable scales that are well-resolved (fJ � 1) collapse
as they should, and scales that should be stable are stable. Marginally
resolved (fJ ∼ 1) unstable wavelengths are either artificially sta-
bilized, or collapse more slowly than is physical (e.g. the lowest
resolution run in Fig. 2), and these effects converge away with
sufficient resolution.

2.4.3 Resolution criteria

What density- and length-scales should then be considered ‘resolved’
in isothermal self-gravitating flows? This depends on what threshold
value of fJ is considered acceptable for the question at hand, which
is generally problem-dependent with no one straightforward answer.
But assuming we do adopt a certain maximum fJ, max to demarcate
the boundary of ‘trusting’ results in a certain problem, the maximum
Jeans-resolved density is,

ρJ ≡ f 6
J,max

π3c6
s

G3�m2

≈ 3 × 10−14g cm−3
(

fJ,max

0.5

)6 (
�m

10−3M�

)−2 (
cs

0.2 km s−1

)6

,

(19)

and the minimum Jeans-resolved cell length is

�xJ ≡ f −2
J,max

G�m

πc2
s

≈ 30 au

(
fJ,max

0.5

)−2 (
�m

10−3M�

)

×
(

cs

0.2 km s−1

)−2

.

(20)

We caution that direct comparisons of the ‘resolved’ density- or
length-scale between SF simulations should ideally be made at fixed
fJ, max (i.e. correcting by appropriate fJ, max factors), and that even
then there can be many confounding factors when comparing across
different methods.

This discussion of Jeans resolution neglects magnetic fields, which
can supplement thermal pressure as a source of support against gravi-
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tational collapse. For the purposes of gravitational stability analyses,
it effectively adds the Alfvén speed vA = |B|/√μ0ρ to the thermal

sound speed cs in quadrature, i.e. cs �→
√

c2
s + v2

A =
√

1 + 2
β
cs,

modulo some geometry-specific O (1) factors in the β term
(Chandrasekhar 1951; Mouschovias & Spitzer 1976). Assuming that
the convergence parameter for isothermal, self-gravitating MHD is
instead the magnetic Jeans number obtained by substituting the above
into equation (18), as has been argued in various works (Federrath
et al. 2010; Myers et al. 2013), our assessment of the resolving
power of the simulations (equations 19 and 20) is overly conservative.
However, the densest gas in isothermal MHD core collapse attracts
towards β ∼ 1 (Mocz et al. 2017; Wurster et al. 2019; Guszejnov
et al. 2020b), so the corrections to our analysis from magnetic fields
are expected to be modest for the present purposes. Even if not, this
would merely make our effective fJ threshold more conservative, so
e.g. our sink algorithm would not follow gas as far into the marginally
resolved regime, and our simulations are better-resolved than as
quoted in equations (19) and (20).

2.5 Sink particles

We use sink particles to model the accretion, dynamics, and feedback
of individual stars and protostars (e.g. Bate et al. 1995; Krumholz
et al. 2004; Federrath et al. 2010; Hubber, Walch & Whitworth 2013;
Bleuler & Teyssier 2014). A sink particle represents a designated
region in the domain of the simulation in which physical processes are
considered unresolved, and are relegated to sub-grid prescriptions.
The general strategy is to put a sink in the centre of a collapsing core
once the collapse process can no longer be followed self-consistently
by the MHD scheme, and to allow this sink to accrete subsequent
infalling material according to certain physically motivated rules.

Our sink implementation formally distinguishes between resolved
accretion, i.e. the actual mass transfer from the gas in the simulation
domain to the sink particle, and unresolved accretion: the transfer of
mass from the sink’s internal gas reservoir (comprising unresolved
gas in the envelope or the protostellar disc) on to the protostar
itself (and potentially into the protostellar outflow). Other works
equate the two types of accretion, often assuming that gas removed
from the simulation domain arrives at the protostar immediately
(e.g. Krumholz et al. 2004), or using a detailed sub-grid model
to decide how rapidly resolved accretion should occur (Hubber
et al. 2013). For us it is important to model accretion on to the
protostar distinctly from resolved accretion into the sink region,
because we discretize resolved accretion into quanta – the mass
resolution �m – but would like a continuous estimate of the
protostellar accretion rate for modelling the protostellar evolution
and accretion luminosity.8 Our algorithm is most similar to that
of Bate et al. (1995), with some additional rules for formation

8We have experimented with our own implementation of the algorithm of
Hubber et al. (2013), which uses an estimate of Ṁ� that interpolates between
disc-like and Bondi-like regimes based on local gas kinematics, and uses that
estimator to directly determine how much gas should be removed. However,
we have found that in some problems the estimator of Ṁ� used to set the
rate of resolved accretion can underestimate the actual accretion rate of
the surrounding flow, so mass piles up within the softening radius of the
sink particle and the actual accretion rate ends up being set by the need to
remove gas cells on too small a time-step (circumventing the normal criteria),
defeating the purpose of trying to estimate and enforce the proper accretion
rate as determined by physical processes. One potential issue is that the α-disc
parameter used in the disc-like regime must be known a priori, otherwise the
accretion rate will not match the boundary flow. This will generally vary with

Figure 4. Diagram of the flow of mass due to accretion and feedback, as
managed by our sink particle algorithm. We follow gas cells of mass �m until
they satisfy all sink particle accretion criteria (Section 2.5.2) and they are
transferred to the sink’s accretion reservoir representing the envelope or disc
gas mass present on scales < Rsink. Mass is accreted from the reservoir towards
the protostar according to the smoothed accretion prescription (equation 32),
and if protostellar jets are enabled a fraction of this mass fw is diverted to
the jet reservoir. The rest arrives at the star, and mass is transferred from the
star to the wind reservoir according to the wind mass loss rate (which is set
to an extremely large value (with appropriate velocity) if the star goes SN,
equations 48 and 47). The jet and wind reservoirs return gas to the simulation
domain via their respective feedback channels (waiting until a sufficient mass
is available to inject or spawn their respective mass quanta).

and accretion, and some additional modelling of protostellar ac-
cretion and feedback. We sketch the flow of mass dictated by our
algorithm in Fig. 4, and describe the algorithm in detail in this
section.

2.5.1 Formation

A gas cell is eligible to turn into a sink particle if and only if it
satisfies the following criteria:

(i) Density threshold: The gas cell is denser than a density
threshold ρ th, which we take to be the maximum density of marginal
Jeans resolution, ρJ (equation 19), assuming fJ = 1/2.

(ii) Density maximum/no overlapping sink: The gas cell is the
densest of all neighbouring gas cells or sink particles with overlap-
ping kernel radii (with rgi < max (Hg, Hi)). For the purposes of this
criterion we take sinks to have infinite density, i.e. overlapping with
a pre-existing sink always prevents sink formation.

(iii) Increasing density: The gas cell’s density is increasing: ∇ ·
v < 0, according to the same least-squares matrix gradient estimator
of ∇v used for reconstructing fluid quantities for the MHD solver.

(iv) Virial/Jeans criterion: The gas cell is gravitationally
unstable/self-gravitating at the resolution scale, as determined by
a local Jeans analysis including contributions from thermal pressure,
magnetic fields, and velocity dispersion (Federrath et al. 2010;
Hopkins, Narayanan & Murray 2013a). We evaluate a local virial
parameter for the gas cell:

αg =
2π2

�x2

(
c2

s + v2
A

) + ‖∇v‖2

4πGρ
, (21)

where �x = (�m/ρ)1/3 is the local cell length, and ‖ · ‖ denotes the
Frobenius norm. We permit sink formation only if αg < 2. It is easy to

turbulent and numerical viscosity, magnetic torques, gravitational torques,
etc., and cannot generally be fit by a single choice of α.
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STARFORGE 2209

verify that this reduces to the usual requirement that the cell is Jeans-
unstable at the resolution limit where kinetic energy is negligible,
and recovers the Hopkins et al. (2013a) kinematic virial criterion
when the ‖∇v‖ term dominates (e.g. preventing sink formation in
Toomre-stable flows stabilized by shear near a star).

(v) Tidal criterion: The tidal tensor T at the position of the gas
cell is fully compressive (possesses three negative eigenvalues). Note
that the linearization of the gravitational field about a point xi is
g (x) − g (xi) ≈ T · (x − xi), so if T has three negative eigenvalues
then the gravitational force seen in the frame comoving with a
ballistic trajectory starting at xi will always be directed back towards
the origin. This is similar in motivation to the potential minimum
requirement in Federrath et al. (2010) and the Hill sphere criterion in
Hubber et al. (2013), intended to pick out actual centres of collapse
from the shape of the gravitational landscape. Unlike a potential
minimum criterion, the tidal criterion respects the equivalence
principle, i.e. it is invariant to the transformation g �→ g + g′ for a
spatially uniform g′, which should not physically affect the internal
dynamics of the simulation in any way, but would displace the
location of a potential minimum. However, it is less strict than a
potential minimum criterion, e.g. it is satisfied at every point in
a uniform sphere (in which T is constant and negative-definite),
whereas the potential minimum criterion is satisfied at one point, or
none if the external field g′ exceeds the internal field.

(vi) Can collapse before accretion: The local gas free-fall time

tff =
√

3π
32Gρg

is shorter than both the time-scale for approaching a

sink particle and the orbital time-scales around that sink particle, as
estimated by evaluating equations (6) and (7) for gas cells.

When a gas cell is converted to a sink particle, it is removed from
the simulation domain, and the volume it occupied is reassigned to
surrounding cells when they re-compute their volume partitions.

2.5.2 Accretion criteria

Gas cells are accreted by a sink particle if they satisfy the following
criteria:

(i) Sink radius: A gas cell is only eligible for accretion if its centre
approaches within sink radius Rsink. We take Rsink to be the greater of
the sink particle softening radius S� or volume-equivalent radius of a
gas cell at the density of marginal Jeans resolution ρJ (equation 19,
assuming fJ = 1/2):

RSink = max

(
S�, 0.79

G�m

c2
s

)

= max

(
S�, 18 au

(
�m

10−3M�

)(
cs

0.2 km s−1

))
, (22)

where cs denotes the isothermal sound speed at sink formation (i.e.
it is set at formation, and kept constant thereafter).

(ii) Boundedness criterion: The gas cell satisfies

2ug + v2
A,g + |vg − vs |2 < v2

esc = −2�
(
rgs

)
, (23)

where ug is the specific internal energy of the gas, vA, g is its Alfvén
speed, and �(rgs) is the softened gravitational potential of the sink,
evaluated at the separation between the gas and sink rgs. This checks
that the sink-gas system is gravitationally bound, and could not
escape to infinity in isolation.

(iii) Angular momentum criterion: The gas cell possesses less
angular momentum than a circular Keplerian orbit around the sink
at rgs (Bate et al. 1995):

| (xg − xs

) × (
vg − vs

) |2 < Gmsrgs . (24)

In the limit of ballistic flow, this ensures that the orbit of the gas cell
lies within Rsink (so we do not capture e.g. a gas cell that only makes
a single close passage but then interacts outside Rsink and escapes).

(iv) Size/density criterion: The volume of the gas cell is less than
the volume within Rsink:

Vg = mg

ρg

<
4π

3
R3

sink. (25)

This has the effect of ensuring that only gas having spatial resolution
on the scale of Rsink can be accreted, which may be necessary for
the other criteria to be reliable predictors of the gas’s dynamics
(and whether it is legitimately being accreted). In any true resolved
accretion flow, gas will pile up around the sink until this criterion
is eventually satisfied. It is analogous to maintaining the maximum
refinement level in the vicinity of a sink in an AMR simulation
(Krumholz et al. 2004).

It is possible for a gas cell to satisfy all of these criteria for more
than one sink. In such instances, the gas is accreted by the sink
s with which it has shortest mutual dynamical time tdyn = 	−1 =√

r3
gs

G(mg+ms) .

The quantization of resolved accretion into parcels of mass �m has
certain important limitations. Clearly, a sufficiently slow accretion
flow with Ṁ � �m/t , where t is some time-scale of interest, cannot
be captured. In the limit of a ballistic, Bondi-like flow, we can take
t = tdyn (< R) =

√
R3/GM� at some radius of interest R. Then,

assuming the physical accretion flow has a certain Ṁ�, the most
optimistic radius down to which the flow can be resolved is

Rmin = 73 au

(
�m

10−3M�

)2/3 (
Ṁ�

10−5M� yr−1

)−2/3 (
M�

1M�

)1/3

,

(26)

where we insert typical values for �m, Ṁ�, and M�. Hence, the
accretion flow becomes less well-resolved for smaller accretion rates
and greater stellar masses. This may impose some numerical bias
towards higher accretion rates in the accretion histories of sink
particles, and underestimate more extended periods Bondi-Hoyle
accretion from low-density gas. However, the effect does converge
to the correct solution with sufficient mass resolution.

2.5.3 Updating conserved quantities

When a gas cell is accreted, it is deleted from the simulation domain
and the volume partition of neighbouring gas cells is re-computed. Its
mass, first mass moment mgxg, momentum, and angular momentum
are added to the sink:

ms �→ ms + mg, (27)

xs �→ msxs + mgxg

ms + mg
= x′

s, (28)

ps �→ ps + pg = p′
s, (29)

J s �→ J s + (
ps × xs + pg × xg − p′

s × x′
s

)
, (30)

conserving mass, centre of mass, momentum, and angular mo-
mentum, respectively. The stored value of J s does not necessarily
correspond to the physical angular momentum of the star, merely
the angular momentum within the sink (consisting of the star and a
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2210 M. Y. Grudić et al.

presumed surrounding gas disc or envelope).9 Within the sink, the
accreted mass is initially stored in the sink’s accretion reservoir:

Macc,s �→ Macc,s + mg. (31)

Note that our implementation does not address the long-standing
issue of violating conservation of magnetic flux when a Lagrangian
gas cell is deleted (e.g. Price & Bate 2007). The removal of a gas
cell will also generally create a ∇ · B error, and we rely upon
our divergence cleaning scheme to damp it away. However, in
Section 4.2.3 we show that the main quantities of interest that we
wish to predict (star formation histories and the IMF) are in good
agreement with results from a constrained-transport AMR code,
which does not accrete magnetic flux and enforces ∇ · B to machine
precision.10

2.5.4 Accretion from reservoir on to protostar

To model the continuous accretion of the protostar for the purposes
of modelling protostellar evolution and feedback, we use a simple
prescription:

Ṁ�,s = (1 − fw)
Macc,s

tacc
, (32)

where Ṁ�,s is rate at which mass arrives at the protostar, fw is the
fraction of gas mass transferred into the protostellar outflows instead
(Section 4.2), and tacc is the accretion time-scale. Both fw and tacc are
variable, prescription-dependent quantities (we discuss fw further in
Section 4.2 and in Paper 2), but by default we take tacc to be the mean
time interval between the arrival of gas cells of mass �m, assuming
the accretion rate is c3

s /G:

tacc = G�m

c3
s

= 530 yr

(
�m

10−3M�

)( cs

0.2 km s−1

)−3
, (33)

which is dimensionally the same as the free-fall time at the maximum
Jeans-resolved density, tJ ∼ (GρJ)−1/2. This feeds the protostar with
an exponentially smoothed version of the discrete resolved accretion
rate, with a 1/e-folding time equal to tacc. For the smallest plausible
continuous accretion rate in the initial core collapse, Ṁ� ∼ c3

s /G

(Shu 1977), our choice of tacc is simply the mean time interval
between the accretion of mass quanta �m, which guarantees that
it limits unphysical discreteness noise without ‘oversmoothing’
accretion.

Note that the prescription in equation (32) is not meant to model
the physical accretion rate at the protostellar surface in detail, and
is merely a numerical scheme to obtain a continuous version of
the resolved accretion rate with a smoothing time-scale adapted to
the mass resolution. If the accretion flow is a direct radial infall
(e.g. Bondi accretion) then the relevant physical accretion time-
scale is the free-fall time (generally shorter than tacc). In the regime
where the gas hits an angular momentum barrier before reaching

9The raw accreted angular momentum of a sink particle is typically of order√
GMsRsink, which depends on the numerical parameter Rsink, and is typically

orders of magnitude greater than the angular momentum of a star (Hubber
et al. 2013). To determine the actual stellar angular momentum evolution one
must model unresolved AM transfer processes.
10One possible solution for Lagrangian MHD codes (not explored here)
would be to introduce a numerical resistivity ηsink that interpolates between
∼0 when r � Rsink and ηsink ∼ √

GM�Rsink when r ∼ Rsink, which would
diffuse flux away from the star as mass is carried into the sink, modelling the
physical non-ideal processes that occur near protostars.

the protostar, accretion will generally take many orbits, and might
be better described by e.g. a Shakura & Sunyaev (1973) α-disc
type model (in which the dimensionless parameter α encodes the
net effect of gravitational torques, magnetic fields, outflows, and
viscosity upon angular momentum transport). In principle, our
continuous accretion rate estimator could be fed into a physical
model to obtain a more realistic estimate of the rate at which
mass arrives at the protostar. However, protostellar accretion on
sub-10 au scales is subject to a wide variety of poorly understood
complex microphysics (e.g. making the specific choice of α an
open problem), so we do not attempt to model such processes
here.

2.5.5 Stellar evolution

In simulations with feedback, it is necessary to model the evolution
of the protostar or star in the sink particle to inform the emergent
luminosity, spectral energy distribution (SED), mass-loss rate, and
wind/outflow velocity. We model the star or protostar according
to a one-zone sub-grid model whose sole input is the present
protostellar mass and the accretion rate (equation 32), originally
following Nakano et al. (2000) and based upon the particular
implementation of Offner et al. (2009). The model evolves the
protostellar radius R� explicitly, and is calibrated to recover the
results of detailed numerical simulations of individual protostellar
evolution. This model has been used in many subsequent works
by different groups with different codes (e.g. Myers et al. 2014;
Federrath, Krumholz & Hopkins 2017; Murray et al. 2018), so
we describe it only briefly and refer the reader to Offner et al.
(2009) for full details. The evolution is separated into distinct
phases:

(i) Pre-collapse: If M� < 0.01 M� then the protostar is presumed
to be a ≈ 4 au first Larson core that has yet to undergo the second
collapse phase (Larson 1969; Masunaga, Miyama & Inutsuka 1998).

(ii) No burning: Once M� > 0.01 M� the core undergoes the
second collapse to protostellar density, but deuterium has yet to
ignite.

(iii) Deuterium burning at fixed core temperature: D burning has
started, fixing the core of the protostar at ≈ 1.5 × 106 K.

(iv) Core burning at variable core temperature: The core tem-
perature has begun to rise and D is convected to the core on short
time-scales (burning it roughly as rapidly as it arrives at the protostar).

(v) Shell deuterium burning: If D is still arriving rapidly enough,
the protostar swells and forms an outer convective zone where the D
ignites.

(vi) Main sequence: The star has reached a central core tempera-
ture sufficient to ignite H.

At each time-step, the state of the protostar is updated based upon
the present mass, accretion rate, and evolutionary phase, and dictates
the evolution of the stellar radius R� and the emergent luminosity L�

(which includes terms from accretion, Kelvin–Helmholtz contrac-
tion, D burning, and H burning, as given in Offner et al. 2009). We
use the Tout et al. (1996) fits for the mass-dependent zero-age main
sequence luminosity LMS and radius RMS, and neglect the effects of
stellar evolution beyond the main sequence (apart from modelling a
Wolf –Rayet phase for winds, Section 4.3, and an eventual SN for
>8 M� stars, Section 4.4). For the purposes of modelling SNe, stars
>8 M� have a mass-dependent stellar lifetime:

t� = 9600 Myr

(
M�

M�

)(
L�

L�

)−1

+ 3.4 Myr, (34)
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Figure 5. Stellar properties as a function of zero-age main-sequence mass
MZAMS used to model feedback and stellar evolution in STARFORGE.
We plot the main-sequence luminosity LMS, radius RMS, and resulting
effective temperature Teff from Tout et al. (1996), the stellar lifetime t� per
equation (34), the flux of H-ionizing > 13.6eV photons QHI (assuming a
black-body spectrum of temperature Teff, Section 4.5), the wind mass-loss
rates Ṁwind and Ṁwind,WR for main-sequence and Wolf–Rayet stars, and the
wind velocity vwind (with wind quantities assuming solar metallicity, see
Section 4.3).

which interpolates between ∼ 10 Gyr for solar-type stars and ∼
40 Myr for 8 M� stars, and asymptotes to ∼ 3.7 Myr for the most
massive (� 100 M�) stars. In Fig. 5, we plot LMS, RMS, t�, and various
other useful derived quantities for stellar feedback (Section 4) as a
function of the zero-age main-sequence mass MZAMS.

We do not model the end of life of stars less massive than 8 M�
(i.e. planetary nebulae), but this could be important for calculations
that run for much longer than a GMC lifetime (e.g. Section 5.1.2). We
also presently neglect the formation of relic compact objects, but this
would be a trivial modification to the inputs of the SN/wind module
(simply reserving a certain relic mass), given a more-detailed stellar
evolution prescription.

2.5.6 Merging criteria

In the code, sink particles are allowed to merge if they have
a binary semimajor axis <Rsink and the secondary has a mass
<10�m. In theory this helps eliminate unphysical, spurious low-
mass sinks that may form in proximity to legitimate sinks, or
∼few-au clumps of mass <0.01 M� that would physically be
accreted by a protostar (Offner et al. 2009). In practice, this
merger condition is not satisfied in most simulations, and gen-
erally only a few times (out of �1000 stars) if so. Hence, our
results are not sensitive to our sink particle merging strategy. It
is possible that physical stellar mergers are a channel for the
formation of very massive stars in the centres of dense star
clusters (Portegies Zwart et al. 1999; Bonnell & Bate 2005; Shi,
Grudić & Hopkins 2020), but we generally run stellar softenings
significantly larger than physical stellar radii and hence cannot

follow mergers self-consistently without some kind of sub-resolution
modelling.11

2.5.7 Singular isothermal collapse test

We first validate the formation and resolved accretion criteria of sink
algorithm in the Shu (1977) singular isothermal sphere problem, the

collapse of a core with an initial density profile ρ = Ac2
s

4πr2 , where A
parametrizes the family of solutions and collapse occurs for A > 2.
This problem possesses a single central singularity (to be represented
by the sink), and admits a semi-analytic, spherically-symmetric
solution for all fluid quantities [from the numerical solution of Shu
(1977) equations 11 and 12]. This unambiguous reference solution
allows it to quickly expose numerical quirks and bugs, whereas
testing the sink particle algorithm on e.g. a full turbulent GMC
collapse problem is both more expensive and less conclusive because
the ‘correct’ solution (or whether it exists for a given physics setup) is
unknown a priori. An insufficiently-strict sink formation prescription
(or an overly strict accretion prescription) can result in the formation
of multiple spurious sinks when there should be a single singularity.
Errors in momentum conservation or gravity can cause the sink to
drift from the centre of collapse, causing subsequent gas to arrive
off-centre and form spurious discs or sinks. Passing this test does not
prove that a sink algorithm is valid for all problems, but failing this
test is a strong indicator that the algorithm is flawed.

For reliable test results, the initial conditions should represent the
analytic initial density field with equal-mass elements as we use
in our simulations, but this is non-trivial. For MFM, we initialize
125 000 equal-mass gas cells on a uniform radial grid (producing
the desired r−2 density profile) with random initial angular positions,
and relax the resulting Poisson sampling noise in the IC to a glass
by reversing the sign of gravity and allowing cells to slide around
on their respective initial radial shells, with an artificial drag force
to damp out the motions towards equilibrium. We then rescale to
survey various values of A. Exactly one sink forms in each test, and
we plot its mass accretion rate in Fig. 6 for A values ranging from 3 to
1000. Agreement with the semi-analytic solution is excellent across
the entire range of A surveyed. We also verify Galilean invariance
by running a version of the A = 4 setup with a velocity boost
of 100cs: even at this extreme bulk Mach number, the solution is
preserved owing to the machine-precision Galilean invariance of the
hydro, gravity, and sink particle algorithms. The error bars in Fig. 6
plot the ±σ variations of our continuous accretion rate estimator
(equation 32), showing that its average error is at most a factor of ∼2
for the lowest A values and accretion rates, and generally much less
for higher accretion rates.

2.5.8 Effect of sink prescriptions

Because we wish to use the properties of sink particles to predict
the IMF that emerges from a given set of physics, it is important to
ensure that the results of STARFORGE simulations are insensitive
to the specific parameter choices made in our sink algorithm for
e.g. the density threshold and sink radius, and ideally have some
robustness to the specific choice of sink formation and accretion

11One possible approach to stellar mergers is to use the orbital energy and
angular momentum (which are conserved absent perturbations) of stellar
pairs passing within their respective softening radii to determine the physical,
un-softened periastron radius, and hence whether the stars should physically
merge.
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2212 M. Y. Grudić et al.

Figure 6. Simulated accretion rate in the Shu (1977) singular isothermal
collapse problem, in units of c3

s /G, as a function of the instability parameter

A, such that the initial density profile is ρ = Ac2
s

4πGr2 and A = 2 is the threshold
of stability. To the analytic solution (dashed) we compare results simulated
with our default hydro, gravity, and sink particle algorithms simulated with
the ICs at rest (squares) and with the initial gas moving at Mach 100 to verify
Galilean invariance (star). Error bars indicate the ±σ quantiles of the accretion
rate estimator used to feed the sub-grid protostar (equation 32) – variance is
driven by the discretization of resolved accretion into chunks of mass �m.
Agreement with the analytic solution is excellent, and in all instances exactly
one sink particle is formed (replacing the central singularity).

criteria as well. For this we re-run the M2e4 GMC set-up in Paper
0, a 2 × 104 M� initially spherical GMC of radius 10 pc at 10−3 M�
resolution with numerous variations from the prescription described
in this section, listed in full in Appendix A. By including only
minimal physics (isothermal MHD and gravity), the incremental
effects of sink numerics are expected to be more pronounced than in
a more complex setup with realistic thermodynamics and feedback.
In this sense this test could be considered a worst-case assessment
of the sensitivity of STARFORGE results to sink prescriptions.

The reference numerical parameters in this setup are �m =
10−3 M�, Rsink = S� = 18 au, and ρJ = 2.6 × 10−14g cm−3, and
some tests vary these quantities (Appendix A). We plot the results
of this sink parameter study in Fig. 7: the SFE, number of sinks
N∗, mass-weighted median sink mass M50, median sink mass Mmed,
and maximum sink mass Mmax. Our SFE and IMF results are
remarkably robust to wide variations in the sink particle prescription
and parameters, including ρ th over a factor of 106, and Rsink and
S� over a factor of 200. The SFE is particularly robust, with very
good agreement across all tests (the one outlier is consistent with a
simple delay in accretion). The only setups that produced markedly
different results in the IMF were ones with obvious flaws, such as
ignoring the density maximum criterion (making the choice of which
gas cell to turn into a sink generally non-unique), making Rsink much
smaller than S� (making the accretion criteria unreasonably difficult
to satisfy, because gravity is unresolved at the sink radius), and
increasing Rsink and S� by a factor of >100 (a gross mismatch with
the simulation resolution). Moreover our results do not hinge on any
one particular ingredient or assumption – neglecting each formation
criterion in our prescription in turn had small effects (apart from the
density maximum criterion). Stripping down our accretion criteria to

simpler versions also made a negligible difference. Hence, in practice
there is a fair amount of redundancy between the different elements
of our prescription.

We conclude from this experiment that the results of STARFORGE
simulations are unlikely to have any strong dependence upon the
details of our sink implementation, at least within the space of
Bate et al. (1995)-like algorithms we have explored. Hence, to
our knowledge, our sink implementation lacks parameter freedom
for ‘fine tuning’ to ensure a particular desired result – rather,
simulation results are mainly sensitive to physical processes as
desired. We generally recommend that ρ th and Rsink be matched to
the nominal density and spatial resolution limits of the simulations
(e.g. equations 19 and 20), but e.g. the exact numerical prefactors we
have adopted for these quantities are not important, within reasonable
limits. Our results hint that simpler prescriptions can perform just as
well as ours, but we err on the side of redundancy because the cost of
evaluating the various sink formation and accretion criteria is small,
and no criterion appears to be unreasonably strict (or else the sink
algorithm would allow the simulation to crash due to a runaway gas
pile-up).

3 TH E R M O DY NA M I C S

Although often idealized as such, GMCs are not truly isothermal,
and many potentially important effects in star formation require an
explicit treatment of the thermal structure of the ISM, such as the
dynamics of fragmentation (Bate et al. 2003; Larson 2005) and the
evolution of bubbles driven by wind, radiative, and SN feedback. We
evolve the internal energy of the gas according to the MHD equations
explicitly (HR16), accounting for all gravitational and MHD work
terms with heating and cooling. We explicitly evolve the species Z,
He, C, N,O, Ne, Mg, Si, S, Ca, and Fe, and by default assume initial
solar abundances (Z, He, C, N,O, Ne, Mg, Si, S, Ca, Fe) = (0.02, 0.28,
3.26 × 10−3, 1.32 × 10−3, 8.65 × 10−3, 2.22 × 10−3, 9.31 × 10−4,
1.08 × 10−3, 6.44 × 10−4, 1.01 × 10−4, 1.73 × 10−3), and re-scale
abundances appropriately to the desired initial metallicity (but this
can be freely varied).

We use a gas equation of state (EOS) with a variable adiabatic
index γ , to account for variations in the equilibrium mixture of para-
and ortho-hydrogen and the collisional dissociation of H2 above
∼ 2000 K (Vaidya et al. 2015). However, we do not roll the heat
of ionization into the EOS as in Vaidya et al. (2015), because this
is handled separately by our cooling/chemistry solver. We fit to the
values of γ given in Vaidya et al. (2015) (neglecting the feature
corresponding to ionization) as a function of internal energy:

γ = 5

3
+

5∑
k=1

δkS
(
ak(log10 u − bk)

)
, (35)

where S
(
x
) = 1

2

(
1 + x√

1+x2

)
is a sigmoid function,

δk = (−0.38,0.22,−0.068,−0.42,0.65), ak = (5.95,6.18,
10.26,7.71,98.87), bk = (9.25, 9.89,10.24,11.13, 14.28), and u
is the specific internal energy in cm2 s−2.

We operator-split the adiabatic MHD evolution with a standard
implicit cooling algorithm, which solves for equilibrium inter-
nal energy, temperature, net cooling/heating rate, mean molecular
weight, and ionization state of the gas (treating the adiabatic heating
rate from the MHD solver as an additional heating term). Our
treatment of cooling and heating terms largely follows the FIRE-2
simulations (described fully in Hopkins et al. 2018b Appendix B), in
accounting for free–free, photoionization/recombination, Compton,
photoelectric, metal-line, molecular, fine-structure, dust collisional,
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Figure 7. Effect of variations in sink particle formation and accretion prescriptions and properties upon the results of a simulation of a 2 × 104 M� GMC of
radius 10 pc, including just gravity and isothermal MHD (i.e. re-simulating M2e4 from Guszejnov et al. (2020b) at the same 10−3 M� resolution). We plot the
SFE (top left), number of sinks N� (top centre), and the mass-weighted median ( M50), number-weighted median ( Mmed), mean ( Mmean), and maximum ( Mmax)
mass statistics of the stellar mass function as a function of time from the beginning of SF. We highlight the most ‘extreme’ variations: neglecting the density
maximum and virial sink formation criteria in turn, reducing Rsink by a factor of 1/4 (to ∼ 5 au) without reducing the softening, reducing the minimum density
for sink formation ρth by a factor of 10−3, and increasing Rsink and the stellar softening S� by a factor of 100 (to 1800 au). A variety of other overlapping sink
parameter/prescription variations are plotted in grey, listed in full in Appendix A. Our predictions are fairly insensitive to most of these variations, provided they
are within reasonable physical limits.

and cosmic ray heating and cooling processes. This cooling module
has had various evolutionary updates since Hopkins et al. (2018b)
that are not important for our results here [e.g. updating to the
Faucher-Giguère (2020) UV background, which is similar to the
previously-used Faucher-Giguère et al. (2009) UVB at z = 0],
but will be detailed in full in an upcoming paper (Hopkins et al.
2021, in preparation). Note that our treatment of hot ( > 106 K)
gas considers the dominant radiative cooling mechanisms (i.e. free–
free emission and metal lines) as described in Hopkins et al.
(2018b), but neglects heat conduction by thermal electrons by
default, which may moderate expansion of wind and SN bub-
bles.

3.1 Background radiation

In the intermediate-density (∼ 100–104cm−3) gas that makes up the
bulk of the mass of GMCs, the thermal structure is set mainly by
the balance of photoelectric heating and molecular or fine-structure
cooling (Glover & Clark 2012), necessitating some treatment of this
background. When modelling solar circle conditions, we assume
an isotropic Draine (1978) background eFUV = 9 × 10−14erg cm−3

for purposes of photoelectric heating, i.e. 1.7 times the Habing
(1968) flux of photons in the range 6−13.6 eV. For each gas cell,
we evaluate the optical depth to the FUV background on-the-fly
using the TreeCol algorithm (Clark, Glover & Klessen 2012), i.e.
summing the optical depths of tree nodes grouped into angular
bins during the pass through the gravity tree. We default to a

simple 6-bin angular binning of the sky, and assume an opacity
of κFUV = 500 cm−2Z/Z�.

We also model the background radiation due to galactic dust
emission as a black-body spectrum with energy density 0.31 eV cm−3

and an effective temperature of 20 K. When we evolve this radiation
component with explicit RHD, we simply implement this radiation
energy density and temperature as the initial conditions, and allow
both to evolve freely (Section 4.5). Without RHD, it is simply held
fixed.

The background radiation components quoted here are as mea-
sured in the Solar neighbourhood, and can be re-scaled to appropriate
values for other environments.

3.2 Dust cooling and heating

Dust cooling and heating are dominant at high (� 106 cm−3) ISM
densities (Goldsmith & Langer 1978). The dust heating/cooling term
�dust is (Meijerink & Spaans 2005)

�dust = 1.12 × 10−32 erg s−1 cm3 (T − Tdust) T 1/2

×
(

1 − 0.8 exp

(−75

T

)) (
fd

0.01

)
, (36)

where T is the gas temperature in K, Tdust is the dust temperature, and
fd is the local dust-to-gas ratio, which we take to be fd = 0.01Z/Z�
(i.e. assume a constant dust-to-metals ratio equal to the local value) in
simulations which do not explicitly follow dust dynamics (otherwise
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this is the actual local value ρdust/ρgas). How Tdust is determined
depends on whether or not we are using an explicit RHD solver.

3.2.1 Simulations with explicit RHD

If explicit RHD is enabled, we co-evolve the gas, dust, and radiation
temperature self-consistently as in Hopkins et al. (2020a), including
the stellar luminosity in various bands accounting for photon trans-
port, absorption and emission using dust opacity fits from Semenov
et al. (2003). Dust cooling is handled by including equation (36) as
a radiation source term for the IR band, so that energy lost to dust
cooling is transported away by the RHD solver. This automatically
handles the trapping of cooling radiation in the optically thick limit
(setting e.g. the ‘opacity limit’ for fragmentation, Rees 1976). We
explain our RHD treatment fully in Section 4.5.

3.2.2 Simulations without explicit RHD

If an explicit RHD solver is not enabled, we either make the minimal
assumption that Tdust is constant, or use a simple, inexpensive RT
approximation similar to Guszejnov, Krumholz & Hopkins (2016)
and Federrath et al. (2017). This approximation uses the LEBRON
radiative transfer algorithm (Hopkins et al. 2018b) to estimate the
IR radiation energy density from local sources at the position of a
gas cell in the gravity tree pass, summing over contributions from all
stars:

eIR,g =
∑

s

Ls

4πr2
gsc

, (37)

where Ls are the respective bolometric luminosities of the sink
particles, rgs are the distances from the gas cell to the sinks. We
then solve for Tdust assuming local equilibrium between absorption
and emission according to a β = 1 opacity law [i.e. κ(ν) ∝ ν, e.g.
Draine 2006]. Tdust is then the solution to the quintic equation

(Tdust/2.92 K)5 =
∑

k

(
Trad, k/K

) (
ek/eV cm−3

)
, (38)

where the index k runs over three radiation field components
with respective energy densities and effective temperatures: the
above component from local sources, which is assumed to have
Trad, IR = Tdust, IR, the CMB with eCMB = 0.262 (1 + z)4 eV cm−3 and
Trad, CMB = 2.73K(1 + z), and the dust-reprocessed component of
the interstellar radiation field (ISRF) with eISRF = 0.31eV cm−3 and
Trad,ISRF = max

(
20K, Trad,CMB

)
, with fiducial values appropriate for

solar neighborhood conditions, and adjustable depending upon the
simulated environment. Note that this differs slightly from Guszejnov
et al. (2016) and Federrath et al. (2017), who adopted the optically
thick grey-opacity radiative transfer solution in the static diffusion
limit T ∝ e1/4

r , as was found in Offner et al. (2009).

3.3 Optically thick cooling and the opacity limit

If the trapping of cooling radiation is not being solved self-
consistently by our RHD solver, we also adopt a simple prescription
for interpolating the cooling rate between the optically thin and thick
regimes. If the net absolute heating/cooling rate is |�Net|, then we
enforce

|�Net| < �BB (39)

�BB ≡ 5.67 × 10−5 T 4
(

μ

a�eff

)
1

1+κeff a�eff
n−1

H , (40)

Figure 8. Thermal evolution of the densest gas cell in the centre of a
collapsing M� core as a function of its density ρmax, replicating the test
problem in Masunaga et al. (1998) with our default physics using our self-
consistent M1 RT solver with gas–dust–radiation coupling (Section 4.5) and
our simple optically thick cooling approximation based upon the TreeCol
algorithm (equation 40).

where μ ≈ 2.4 is the mean molecular weight and �eff is estimated
via the TreeCol algorithm, κeff is the effective opacity detailed in
Hopkins et al. (2018b), and a = 0.2 is an uncertain geometric factor
chosen to reproduce detailed RHD protostellar collapse calculations
(Masunaga et al. 1998). This limits the cooling (or heating) rate to
the bound for a slab geometry derived in Rafikov (2007). This is still
approximate, but is more realistic than an ‘effective equation of state’
that transitions from isothermal to adiabatic (e.g. Bate et al. 2003;
Bate 2009a): we are still always allowing for heating and cooling,
with radiation terms that explicitly account for optical depth, which
is the physically relevant quantity for radiative cooling. In a single
isolated collapsing clump in a spherical geometry, an equation of
state may be justified because �eff ≈ ρλJ, but this does not hold in
general, and particularly not in systems that are optically thick to
dust globally (�eff � 1g cm−3).

3.4 Tests

To test the code’s ability to capture the transition from isothermal
to adiabatic behaviours as the ISM gets optically thick to cooling
radiation (important e.g. for the opacity limit for fragmentation),
we simulate collapse of a 1 M�, uniform-density Jeans-unstable
core with both methods described here: explicit RHD with the M1
solver and the simpler TreeCol-based prescription (equation 40). We
initialize the cloud with a mass resolution of 10−5 M� (sufficient to
marginally resolve the first Larson core, Bate et al. 2003), arranging
the cells in a uniform-density glass configuration with density
5.3 × 10−18g cm−3, and assume solar metallicity with a dust-to-gas
ratio of 0.01, as has been simulated by many other RHD studies
(Larson 1969; Masunaga et al. 1998; Vaytet & Haugbølle 2017). In
Fig. 8, we plot the thermal evolution of the centre of the core as a
function of its density, showing good agreement with previous cal-
culations: in all instances, the transition from isothermal (T ∼ const.)
to adiabatic (T ∝ ρ2/5) evolution occurs at ∼ 10−13g cm−3. Small
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Figure 9. Illustration of the mesh-free local injection procedure used for
coupling photons and stellar winds with unresolved free expansion to gas cells
in STARFORGE (adapted from Hopkins et al. 2018a). Local injection adds
momentum, energy, and either mass or photons to pre-existing interacting gas
cells (coloured domains with circles representing the mesh-generating points)
around the sink particle (red star), in proportion to the solid angle subtended
by each cell according to the ‘effective’ faces constructed around each source
from the neighbouring mesh-generating points (thick black lines). We use
a weighting scheme that ensures statistical isotropy and exact momentum
and energy conservation, and in the case of photons accurately accounts for
unresolved extinction between the star and cell centre (Section 4.5).

residual differences between the four calculations at the level seen
here are expected, due to varied assumptions about radiation initial
and boundary conditions, dust properties and opacities, molecular
equation of state, etc.

4 FE E D BAC K

We now describe the respective physical model and numerical
implementations of each feedback mechanism in turn. For those with
well-understood or analytic solutions (winds, SN, and radiation),
we will verify that each module performs accurately. Where such
solutions are not available (e.g. jets), we will do the next best thing:
test for robustness to numerical details and agreement with other
codes.

4.1 Generic injection algorithms

4.1.1 Local injection

When coupling feedback in the form of mass, momentum, and
energy from stars, a natural approach is analogous to the manner
in which the MHD equations are solved: simply determine the fluxes
of those respective quantities at the faces of surrounding gas cells, or
more generally distribute those quantities in some weighted fashion
in the local hydrodynamic stencil – we refer to this technique as
‘local injection’ (illustrated for a meshless/unstructured mesh code
in Fig. 9). This is what is done in virtually all grid codes and
is the technique typically used in GIZMO simulations for local
radiative feedback, SNe, and stellar winds (Hopkins et al. 2018a,
b, 2020a). We adopt this algorithm for feedback coupling (described
in full in Hopkins et al. 2018a) where appropriate: for stellar winds
when the free-expansion radius is unresolved (Section 4.3) and

Figure 10. Illustration of the cell spawning technique for injecting mass
return from sinks (winds, jets, and SNe, Section 4.1.2). We create new gas
cells of mass � Mw (blue circles) at the sink radius (or at a fraction of the local
inter-cell spacing, whichever is smaller), at antipodal positions and velocities
to ensure conservation of centre of mass and momentum. The angle θ from the
sink angular momentum vector J sink can be controlled to allow arbitrarily-
collimated injection. � Mw can be set smaller than �m (the ‘normal’ mass
resolution of ambient gas) to improve resolution in diffuse feedback-driven
cavities. Note that this depicts the launching of a pair of gas cells (as for jets
and winds), but for SN we launch 24 at once in an angular grid (Section 4.4),
designed to ensure exact conservation and isotropy.

for photon injection (Section 4.5). This method ensures machine-
precision conservation of mass, momentum, and energy, and ensures
that feedback is injected isotropically (or according to the desired
angular weighting) even when the local spatial arrangement of cells
is anisotropic (unlike e.g. a simple kernel weighting).

4.1.2 Cell spawning

Local injection with Lagrangian methods can run into a major chal-
lenge: the resolution is concentrated where gas dens, but feedback
structures such as jet cavities, SN remnants, and wind bubbles can
be very diffuse. Moreover, if feedback is driving mass away then
this problem grows worse over time. And if the inter-cell spacing
becomes sufficiently large, it may cease to be a good approximation
to instantaneously dump mass, momentum, and energy, because the
gas has finite traveltime. Moreover, if we restrict injection to the
nearest neighbour cells we cannot inject outflows more collimated
than the solid angle subtended by a neighbouring cell (which can
be large). So where local injection is not feasible or appropriate,
we instead create new gas cells, in a procedure we refer to as ‘cell
spawning’ (Fig. 10). A similar technique has been used previously
in SPH simulations of stellar winds (Dale & Bonnell 2008) and
protostellar outflows (Rohde et al. 2019), and recently in GIZMO to
simulate AGN jets (Torrey et al. 2020). We adapt it here to simulate
protostellar jets, stellar winds (when resolvable), and SN ejecta.
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Cell spawning can be viewed as the inverse of the gas cell deletion
operation that occurs during sink accretion: a new cell is created at a
certain position with a certain mass, velocity, and internal energy, and
the volume partition in its vicinity is re-computed to accommodate it
in the next density iteration. We take the distance between the centre-
of-mass mesh-generating point of the spanned cell and the sink to
be

Rspawn = min (Rsink, �xs/2) , (41)

where �xs is the average inter-cell spacing in the vicinity of the sink.
We prescribe the initial radial direction and velocity according to the
desired angular pattern of the feedback mechanism being realized
(Sections 4.2–4.4). We assign purely radial initial velocities, but
non-radial velocities could potentially be used to model angular
momentum transport (Federrath et al. 2010). Spawned cells are
assigned an initial temperature of 104 K, and a very small, random
initial magnetic field scaled such that the initial plasma β is 106.

Spawning is allowed to occur when the sink’s internal respective
feedback reservoir (Fig. 4) contains enough mass to produce at least
Nspawn × � Mw cells, where the number of cells spawned at a time
Nspawn and spawned cell mass resolution � Mw are specified for
the respective feedback channel. Note that cells do not necessarily
have to be spawned with a mass resolution equal to the nominal
average ‘ambient’ gas cell mass �m : rather � Mw can be chosen
to be smaller to achieve better time resolution of feedback and to
improve spatial resolution within diffuse feedback cavities. For jets
and winds, we have generally found the choice � Mw = 0.1�m to
be a good compromise between computational cost and resolution.
For SNe, we simply take � Mw = �m. With these choices, we note
the spatial resolution in diffuse feedback bubbles will generally be
fairly coarse (∼ 1 pc) for a typical �m ≈ 10−3 M�, possibly making it
challenging to resolve channels and leakage of hot gas (e.g. Rogers &
Pittard 2013).

Care must be taken when handling MHD interactions between
cells of greatly differing masses and sizes in MFM, particularly for
new cells which change the local volume partition and can perturb
∇ · B (interacting with out ∇ · B cleaning algorithm). Spawned
cells with � Mw < �m/2 default to a lower-order but more-
robust reconstruction in the Riemann problem. We also limit the
magnitude of the oriented effective face area Agg′ between cells (all
interacting cells, wind or not) to the lesser of their geometric areas,

Amax = min
(
πh2

g,πh2
g′
)

. A spawned cell g is merged into a normal

cell g
′

if they are hydrodynamically interacting neighbours, they
are moving towards each other, and |vg − vg′ | < min

(
cs,g, cs,g′

)
.

We have found that this is a good indicator that the spawned cell has
merged with the surrounding ISM, and hence its additional resolution
is no longer required.

Lastly, to ensure physical and convergent results, it is important
for any feedback algorithm to ensure conservation of momentum
and centre of mass. We achieve this by always spawning cells in
multiples of 2, such that each cell has an antipodal counterpart in the
opposite direction, giving machine-precision conservation.

4.2 Jets

4.2.1 Physics prescription

Collimated, bipolar protostellar outflows (jets) have special impor-
tance as a feedback mechanism. Many works have demonstrated their
potential importance both in setting the IMF and SFE, because they
are the only channel can be both prompt and omnipresent, immedi-

ately regulating the growth of individual stars without requiring e.g.
massive stars with dynamically relevant wind or radiative fluxes to
be present (Matzner & McKee 1999a; Krumholz et al. 2019). We find
that they are likely to be an important ingredient for the IMF in Paper
2, consistent with previous studies (Krumholz, Klein & McKee 2012;
Myers et al. 2014; Federrath et al. 2014; Li et al. 2018; Cunningham
et al. 2018). The details of the MHD jet launching mechanism (e.g.
whether it is better-described by the canonical ‘X-wind’ or ‘D-wind’
models, Pudritz & Norman 1983; Shu et al. 1994) are the subject of
active research, and depend upon a variety of complex microphysics
operating at sub-au scales that are not practical to resolve in our
simulations (although the simulations may provide important context
for subsequent ‘zoom-in’ studies of individual stars). Thus, we model
jets according to a simple phenomenological prescription following
Cunningham et al. (2011), parametrizing the jets’ properties in three
parameters: the fraction fw of mass accreted by the envelope-disc-
star system that is diverted to the jet (see Fig. 4), the fraction fK of
the Keplerian velocity at the protostellar radius R� at which jets are
launched, such that

vjet = fK

√
GM�

R�

, (42)

and the collimation angle θ0, such that the angular distribution of
injected wind momentum is given by (Matzner & McKee 1999b):

ξ (θ, θ0) =
(

ln

(
2

θ0

)
sin2 θ + θ2

0

)−1

, (43)

where θ is the angle with respect to the angular momentum axis
of the sink J s of the sink. This concentrates injection in a narrow
cone of angular size ≈θ0 about the angular momentum axis of the
star (see Fig. 11). Our default choices are fw = fK = 0.3 and θ0 =
0.01, following Cunningham et al. (2011) and other authors. These
choices put the momentum loading fwfK roughly in the middle of the
observed range (see Cunningham et al. 2011, section 2.4; Federrath
et al. 2014, section 3.5; and references therein). The values of fw

and fK do matter: in Paper 2, we find that the product fwfK affects
the IMF peak. The specific value of θ0 is likely to be unimportant
because in any realistic turbulent accretion scenario J s will generally
tend to precess during accretion over an angular region much larger
than θ0 (Rosen & Krumholz 2020), and even without precession
jet cavities will expand in the perpendicular direction, opening up
an ever-increasing solid angle (Arce & Sargent 2006; Offner et al.
2011). In our tests, we will show that our results are insensitive to
variations in θ0 of at least a factor of 10, which is consistent with
prior hydrodynamic outflow simulations carried out by Offner &
Arce (2014).

4.2.2 Numerical methods

We always couple jets via cell spawning (Section 4.1.2), waiting
until sufficient mass is available in the jet reservoir to spawn two
cells of mass � Mw. The angular direction with respect to the sink
angular momentum Js is sampled randomly for the first cell from
equation (43), and the second cell is pointed in the opposite direction,
conserving momentum and centre of mass. Our prescription ignores
both the angular momentum and magnetic flux content of the jet
material. Although outflows can be the dominant mechanism of
angular momentum transport within the disc (i.e. on scales smaller
than the sink radius), the material in the disc already had to have
very low angular momentum to get to the base of the jet, so it is
unlikely that this angular momentum has important effects on larger
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Figure 11. Examples of the protostellar jet module (Section 4.2) in action in SF simulations. Left: Idealized laminar rotating core collapse problem forming a
single star, run at high (10−5 M�) resolution. As the star accretes from a disc, jets clear out high-velocity diffuse cavities along the poles, entraining material
away from the core. Right: Bipolar outflows (highlighted in orange) permeate a 2 × 104 M� GMC run at 10−3 M� resolution (typical of STARFORGE runs),
with the largest penetrating out to ∼ 10 pc scales before merging with the ISM. This map colours by 1D line-of-sight velocity dispersion (purple is ∼ 0.1 km s−1,
orange is ∼ 10 km s−1 and modulates the lightness to encode surface density information (lighter is denser).

scales once transported back out in the jet (however it is considered
by other jet feedback models, such as by Federrath et al. 2014 and
Rohde et al. 2019). The effects of the magnetic field in the jet are
less readily dismissed; however, this would be nontrivial model in the
present numerical framework due to the problem of determining what
initial B should be assigned to the spawned cells while observing
conservation laws.

We plot some examples of the effects of the jet module in simula-
tions in Fig. 11. We generally observe realistic-looking structures in
the simulations, with broad bipolar cavities penetrated by a narrow
jet, surrounded by a disc (if angular momentum support is important)
or a pseudo-disc (of infalling material funnelled by the bipolar
cavities). vjet tends to increase as the star accretes (because R� varies
only weakly in equation 42), so the jet tends to catch up with itself,
piling up and cooling in a plume-like region reminiscent of Herbig–
Haro objects (e.g. Bally 2016).

Lacking a test problem for our jet module that admits an analytic
or universally agreed-upon solution, we resort to heuristic methods
to validate it: checking for numerical convergence, checking for
robustness to uncertain or arbitrary numerical parameters, and
finally comparing with another published solution from a different
code.

4.2.3 Resolution tests

Here we consider the effects of numerical resolution upon a simu-
lation of the M2e3 GMC model introduced in Paper 0 with gravity,
MHD, the cooling module without explicit RT or protostellar radi-
ation (Section 3), and the jet module enabled. The initial condition
is a spherical, uniform-density GMC with mass 2 × 103 M�, radius
3 pc, and virial parameter 2 (for an initial turbulent Mach number of
∼9). The GMC is surrounded by a diffuse medium with 1/1000 the

density filling a 30 pc box, and the initial magnetic field is uniform
throughout the box with a strength of 2.3 μG. The normal mass
resolution �m varies from 0.1 to 10−4 M�, and the jet mass resolution
� Mw varies from 0.01 to 10−5 M�. The sink formation density
threshold, sink radius, and sink softening scale are varied according
to the mass resolution (section 2.5), scaling ρ th ∝ �m2 over a factor
of 106 between 3 × 10−17 and 3 × 10−11g cm−3, and scaling Rsink =
S� ∝ �m from 1800 to 1.8 au. Hence, there is no purely-numerical,
resolution-related quantity that is held fixed in our resolution study,
so the possibility of inferring ‘false’ convergence is ruled out.12

In the top left-hand panel of Fig. 12, we plot the evolution of the
SFE for the 10 simulations in our resolution study. Star formation
tends to start sooner at lower resolution, opposite to what is seen
in the collapse of Jeans-mass clumps (Fig. 2), possibly owing to
increased numerical dissipation of turbulence at low resolution. The
star formation history ceases to appear sensitive to resolution below
≈0.01 M�. This corresponds to the resolution criterion we derived in
Paper 0, that the sonic mass Msonic ≈ M0M

−4 ≈ 0.3M� be resolved
in at least ≈30 gas cells.

We examine the resolution dependence of the stellar mass spec-
trum at fixed total stellar mass in panels 2–6 of Fig. 12: the

12Scaling all purely numerical, dimensional sink-related quantities with
resolution is important for resolution studies in SF simulations. Otherwise,
it is possible that the constant value of e.g. the density threshold or sink
radius imprints a characteristic Jeans mass or length, leading one to falsely
infer convergence. In near-isothermal problems with Lagrangian codes, this
entails scaling ρth ∝ �m2 and Rsink ∝ �m. For AMR codes, one must scale
ρth ∝ �x

−1/2
min and Rsink ∝ �xmin, where �xmin is the spatial resolution at the

finest refinement level (and assume a Truelove et al. (1997) Jeans refinement
scheme). AMR resolution studies may also need to scale the based-level grid
resolution to resolve turbulent fragmentation (Haugbølle et al. 2018), i.e.
fixing the number of refinement levels.
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Figure 12. Resolution study of a simulation of a 2000 M� GMC with initial radius 3 pc, with MHD, gravity, cooling physics, and protostellar jets (Section 4.2).
We vary the mass resolution �m from 10−4–0.1 M� (darker is finer), scaling sink accretion and softening radii ∝ �m from 2−2000 au (equation 22) and scaling
the sink density threshold ∝ �m−2 (equation 19), so that there is no characteristic numerical scale that could cause false convergence. We plot the resulting star
formation history and the mass-weighted median, mean, and median stellar masses M50, Mmean, and Mmed, and black dashed lines correspond to the value for a
Kroupa (2002) IMF. SFE and IMF statistics cease to scale systematically with resolution past a certain threshold.

number of stars N�, the mass-weighted median stellar mass M50,
and the median, mean, and maximum stellar masses. All IMF
statistics, whether mass- or number-weighted, eventually cease to
change systematically with resolution. As in the isothermal case,
the resolution threshold for M50 and Mmax to stabilize is ≈0.01 M�.
Number-weighted statistics require somewhat higher resolution, with
≈10−3 M� being the marginal value for accurately predicting the
mean stellar mass and 4 × 10−4 M� for the median. We also plot the
effects of resolution upon statistics taken over different stellar mass
cuts in Appendix B, finding that the resolution required depends
upon the mass cut (consistent with a simple resolution-dependent
low-mass incompleteness effect, with incompletness starting below
<100�m).

By design, there is no purely numerical dimensional quantity
that could imprint a characteristic stellar mass here, so it is likely
that the predicted IMF is shaped largely by the physical processes
modelled in the simulation, i.e. there may exist a well-defined,
physical IMF that emerges from the combined physics of cooling,
MHD, gravity, stellar dynamics, and protostellar outflows, and this
IMF resembles the observed one. We explore this IMF prediction
across a wide parameter space in Paper 2. Assuming that other
feedback processes do not demand further resolution requirements,
this experiment gives some idea of the mass resolution needed
to predict e.g. the mean stellar mass in STARFORGE simula-
tions. Note that some incompleteness in the IMF may persist to
higher resolution – to obtain a complete IMF, we may require a
resolution of ∼10−5 M� to fully resolve the collapse of clumps
at the opacity limit, forming the smallest brown dwarfs (Bate
et al. 2003). But brown dwarfs contain only a small fraction
of the total number and mass in stars and are not expected to

exert significant feedback. Hence, many major questions involving
cluster formation, feedback, and the physics underlying the typical
mass of stars can be addressed at much lower resolution. We
adopt 10−3 M� as our standard resolution for these purposes, but
note that the coincidence of our results here with the Paper 0
sonic mass resolution criterion �m � 0.03Msonic ∼ 0.03M0M

−4 ≈
0.01M� (T /10 K)2

(
�/100M� pc−2

)−1
suggests that this is the

more-general convergence criterion. This resolution criterion can
be more demanding for e.g. high-surface density GMCs found
in the Galactic centre (Oka et al. 2001; Longmore et al.
2012) but not necessarily because such clouds can also be
warmer.

We take this opportunity to comment on the computational
cost and scaling of these simulations with feedback. Our fiducial
resolution (10−3 M�, 2 × 106 cells) run cost roughly 10 000 core-
hours run on the Frontera supercomputer at the Texas Advanced
Computing Center equipped with 2.7 GHz Intel Xeon ‘Cascade
Lake’ processors (56 cores per node), and the simulations in
the following section at the same resolution all had comparable
cost. The largest simulation shown in Fig. 12 (mass resolution
10−4 M�, 2 × 107 gas cells) required roughly 100 000 core-hours,
running for 17 wall-clock days on 4 Frontera nodes. The largest
STARFORGE simulation with jet feedback run so far ( MGMC =
2 × 105 M� with 2 × 108 cells, Paper 2) required roughly 4.8M
core-hours in 70 wall-clock days on the Stampede-2 machine
at the Texas Advanced Computing Center with 2.1 Ghz Intel
Xeon ‘Skylake’ processors (24 cores per node). Note that these
are numbers for simulations without explicit RHD; we anticipate
that our full RHD STARFORGE simulations currently in progress
will be a factor of ∼5–10 more expensive than their non-RHD
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Figure 13. Effects of various numerical and physical variations upon the star formation history, kinematics, and IMF evolution of the same 2000 M� GMC
simulated in Fig. 12, at 10−3 M� resolution. Quantities are as described in Fig. 12, plus the evolution of the 3D mass-weighted RMS Mach number M (bottom
left). Reference: Baseline settings, with cooling, MHD, and protostellar jets enabled. No jets: Jet module disabled. No jets; facc = 0.5: Jet module disabled,
and sinks delete half the mass that they accrete. Protostellar heating: Including the approximate protostellar heating prescription described in Section 4.1.2,
with physical and artificially large (× 10) luminosities. Isotropic jets: spawning jet cells in random (versus highly collimated, equation 43) directions. θ0 = X:
Changing the jet collimation angle θ0 (equation 43) from the standard value of 0.01. No MHD: Setting the magnetic field to 0.tacc × 10: Scaling the accretion
smoothing time-scale (33) × 10. No jets if <X: Jets are disabled for stars with mass < X. �Mw = �m: Setting the jet cell mass resolution to the nominal mass
resolution �m, as opposed to the standard �m/10. Ang. mom return: Returning accreted angular momentum to surrounding gas as in Hubber et al. (2013).

counterparts, mainly due to their more stringent time-step con-
straints.

4.2.4 Effect of physics variations and numerical details

In Fig. 13, we explore the effects of 13 other variations on this
set-up (both numerical and physical) upon the same SFH and IMF
statistics, as well as the GMC kinematics. Neglecting jet feedback
altogether results in much higher terminal SFE, even if we delete half
the accreted mass from the simulation, a simple prescription used by
previous works to model jet feedback, deleting either on-the-fly or in
post-processing (Padoan, Haugbølle & Nordlund 2012; Federrath &
Klessen 2012; Haugbølle et al. 2018). Models that do not explicitly
treat feedback also seriously underestimate the level of turbulence
in the GMC, and predict a much more top-heavy IMF (e.g. greater
values of M50). Haugbølle et al. (2018) found that deleting half the
accreted mass gave a good fit to the observed IMF, but simulated
a somewhat different GMC set-up, and it can easily be reasoned
on dimensional grounds that the accretion efficiency one needs to
emulate the effect of jets could generally be problem-dependent.
Overall, runs with jet feedback behave dramatically different to the
baseline run with feedback: both the total stellar mass formed and
average individual stellar masses are roughly an order of magnitude
smaller, because the momentum content of the jets disrupts both
local protostellar accretion flows and eventually the cloud itself (see
Paper 2).

All results are fairly insensitive to variations in the collimation an-
gle θ0 from 0.01 to 1, the jet mass resolution � Mw from 0.1 to 1�m,
and the accretion smoothing time-scale tacc from 1 to 10 × �mc3

s /G

(equation 33). Results are also insensitive to whether we allow jets

from stars <0.1 M�, whether we include protostellar heating, and
whether we return accreted angular momentum to the surrounding
gas as in Hubber et al. (2013) (which would influence the stellar
angular momenta and jet directions in turn). Results only differ
significantly for variations that are ruled out observationally and/or
unphysical: neglecting magnetic fields (resulting in a much more
bottom-heavy IMF, Guszejnov et al. 2018), assuming jets are emitted
isotropically (reducing the typical stellar masses and increasing the
overall SFE), artificially increasing the coupled protostellar heating
luminosity by a factor of 10 (which made the IMF noticeably more
top-heavy, as in Krumholz et al. 2012), and disabling jets for all stars
<1 M� (which also made the IMF more top-heavy).

4.2.5 Comparison with AMR simulations

To conclude our testing of the jet module, we test its results
against a code that differs from ours in all regards except for the
physical equations solved and the physical assumptions underlying
our feedback models. Our objective here is to verify that the results
of simulations with jets are robust to such details.

We have reproduced the set-up described in Cunningham et al.
(2018), who simulated low-mass cluster formation in a periodic
box of side length 0.65 pc containing 185 M� with the ORION2
AMR constrained-transport MHD code with radiative transfer and
protostellar jets (Cunningham et al. 2011; Li et al. 2012). We
re-run their driven turbulence simulation with an initial mass-to-
flux ratio μ = 2.17, initially driving turbulence at M ∼ 6.6 for
∼ 1 Myr and then switching on gravity. We did not use exactly
the same turbulent driving pattern, so our results should only be
compared statistically, hence we ran an ensemble of simulations from
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2220 M. Y. Grudić et al.

Figure 14. Comparison between the results of the driven μ= 2.17 simulation
in Cunningham et al. (2018) with MHD and protostellar heating and
jets, and three different STARFORGE replications at standard 10−3 M�
resolution, using our simple approximate RT treatment of dust heating and our
protostellar jet module (modified so that vjet = min

(√
GM�/R�, 60 km s−1

)
,

as in Cunningham et al. 2018). Top: Star formation efficiency versus time.
Bottom: Stellar mass function at the final SFE of ∼ 8 per cent, comparing the
stacked mass function from the three STARFORGE runs with Cunningham
et al. (2018), showing the respective median stellar masses as vertical lines.

three different initial turbulence realizations. We adopted the same
modified prescription for the jet speed as Cunningham et al. (2018),
vjet = min

(√
GM�/R�, 60 km s−1

)
, and the two codes’ respective

protostellar evolution modules setting R� both follow Offner et al.
(2009). Cunningham et al. (2018) account for protostellar radiation
with a flux-limited diffusion solver, while we use the inexpensive
tree-based approximation described in Section 3. Our simulations
adopt a mass resolution of 10−3 M� and cost roughly 200 core-hours
each when run on a single Frontera CLX node.

We plot the resulting star formation history and IMF at 8 per cent
SFE in Fig. 14. The specific shape of the SF history does appear to
be a function of the initial turbulent driving, but we had two seeds
that matched that of Cunningham et al. (2018) for an appreciable
fraction of the SF history, both modulo a small time difference due to
the different initial turbulent states. Therefore predictions regarding
the regulation of SF due to protostellar feedback appear similar for
the two codes.

The final IMFs are also in fair agreement: the median stellar
mass predicted by both codes is ∼0.15 M� (shown as vertical lines).
The only statistically significant difference is between the predicted
numbers of 0.01–0.03 M� brown dwarfs, with STARFORGE runs
finding only ∼1/4 as many. This may be due any number of
details in the cooling and RT modules that differ (with more higher
temperatures or more radiative heating suppressing brown dwarfs,
Bate 2009b; Offner et al. 2009), or a mere resolution effect (as we
expect some numerical IMF incompleteness at masses � 30�m).

In summary, the respective implementations of STARFORGE and
ORION2 find very similar results for the regulation of SF and the

stellar mass range of the IMF in low-mass star cluster formation,
despite these two codes’ detailed numerical implementations differ-
ing in every regard. We scale a set-up similar to this to GMCs as
much as >1000× more massive in Paper 2, exploring the broader
implications of protostellar feedback in massive GMCs.

4.3 Stellar winds

4.3.1 Physics prescription

We allow main-sequence stars more massive than 2 M� to inject
stellar winds. Stellar mass loss rates are subject to considerable
theoretical and observational uncertainties, with various unresolved
discrepancies between theory and observations (Smith 2014), so we
default to a simple phenomenological prescription. Wind-emitting
stars feed their wind reservoir from the stellar mass at a base rate of

Ṁwind

M�yr−1
= min

(
10−6L1.5

MS, 10−7.7L2.9
MS

)
Z0.7

� , (44)

where the main-sequence luminosity LMS and the metallicity Z�

are in solar units. This is a fit to the envelope of the ‘de Jager/3’
and ‘weak wind problem’ scalings given in Smith (2014), hence it
is a conservative model accounting for the widely acknowledged
overestimation of Ṁ by theoretical line-driven stellar wind models
[i.e. it is generally weaker than widely used models such as Vink, de
Koter & Lamers (2001)]. The velocity of the winds is

vwind =
√

2GM�

R�

×
⎧⎨
⎩

0.7 Teff < 12 500 K
1.3 12 500 K < Teff < 21 000 K
2.6 Teff ≥ 21 000 K

, (45)

following Lamers, Snow & Lindholm (1995).
Much of the energy and momentum in stellar winds from a stellar

population originates in Wolf–Rayet stars. We use a simple model
for the Wolf–Rayet phase for > 20 M� stars, multiplying Ṁwind

by a factor of 10 at the end of its lifetime. The time spent in the
Wolf–Rayet phase is given by

tWR = 1.5 Myr min

(
1,

M�/M� − 20

80

)(
Z�

Z�

)0.5

, (46)

an approximate fit to results from Meynet & Maeder (2005).

4.3.2 Numerical methods

Our numerical method for coupling winds uses either local injection
or cell spawning, where appropriate. In the regime where the wind’s
free-expansion radius Rfree =

√
Ṁwind/vwindρ is much less than the

size of a wind cell �xw = (� Mw/ρ)1/3, a spawned cell will generally
stop within a single cell length, collide with the ISM, and thermalize
its kinetic energy, so it is more efficient and accurate to instanta-
neously inject that mass, momentum, and energy isotropically into
the neighbouring cells. But when the free-expansion radius is well
resolved, the simulations resolve the traveltime of the wind before it
merges with the ISM, so cell spawning is more appropriate. Hence
we switch between the two modules adaptively, based on whether
Rfree is resolved by at least 1 wind cell length. As with jets we spawn
cells 2 at a time, but with an isotropic angular distribution instead of
collimated.

4.3.3 Tests

We test this module on the problem of the self-similar expansion
of a wind bubble propagating into a uniform medium with an
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Figure 15. Self-similar expansion of a stellar wind bubble with an
adiabatic interior and radiative outer shell, as simulated with our stel-
lar wind module (Section 4.3) for a star with Ṁwind = 10−5M� and
vwind = 3000 km s−1 in a 16 pc box containing 2 × 104 M�, using dif-
ferent numerical methods (local injection (Section 4.1.1), cell spawning
(Section 4.1.2), and a hybrid method that switches between them adap-
tively (Section 4.3). Top: Comparison of the evolution of the radius of
the swept-up shell Rshell (corresponding to the number of swept-up gas

cells Nshell) to the known similarity solution, Rshell = 0.763
( Lwind

ρ

)1/5
t3/5

(Weaver et al. 1977). Bottom: Numerical velocity anisotropy of the bub-
ble (= 0 in the similarity solution), generally � 10 per cent except in
very early phases when the bubble is not well-resolved (contains just a
few cells). The switch between different coupling methods at 0.02 Myr
is apparent when the ‘Hybrid’ curve deviates from the ‘Local Injection’
curve.

adiabatic interior and radiative exterior with negligible exterior
pressure, which has the analytic solution Rshell = 0.763

(
Lwind

ρ

)1/5
t3/5

(Weaver et al. 1977). We place a star with Ṁwind = 10−5M� and
vwind = 3000 km s−1 in a 16 pc box containing 2 × 104 M�, with
�m = 0.01 M� and � Mw = 10−3 M�, with initial temperature 10K.
In Fig. 15, we plot the bubble expansion and find that agreement with
the similarity solution is good whether we use pure local injection,
pure cell spawning, or our hybrid method.13 We also examine the
velocity anisotropy σ v, max/σ v, min − 1 where σ v, max and σ v, min are
the maximum and minimum gas velocity dispersions along the
principal axes of the gas momentum distribution, which is 0 in
the exact solution. This is typically � 10 per cent, except in the
very early phase of the run with pure cell spawning (because the
free expansion radius is not yet well resolved, so shot noise from
individual injection steps is still apparent). For the hybrid method, the
transition between methods occurs smoothly, with no clear spurious
numerical artefacts.

13We have also found negligible differences between the different wind
methods in full star cluster formation simulations including winds as the
only feedback mechanism.

4.4 Supernovae

4.4.1 Physics prescription

We assume that all stars more massive than 8 M� go SN at the
end of their lifetime, with the lifetime given by equation (34) (from
≈ 40 Myr for 8 M� to ≈ 3 Myr at 100 M�). When flagged as a SN,
the star ceases all other forms of feedback, and rapidly expels its
mass isotropically with velocity

vSN =
√

2ESN

Mejecta
= 3200km s−1

(
ESN

1051erg

)1/2 (
Mejecta

10M�

)−1/2

,

(47)

where we assume ESN = 1051erg by default. We assume the entire
star is destroyed, but we can in principle allow for finite-mass
relic compact objects by reserving a certain final mass. We assume
that the SN ejecta have IMF-averaged yields according to Nomoto
et al. (2006), with mass fractions (He, C, N, O, Ne, Mg, Si, S, Ca,
Fe) = (3.87, 0.133, 0.0479 MAX[Z/Z�, 1.65], 1.17, 0.30, 0.0987,
0.0933, 0.0397, 0.00458, 0.0741).

4.4.2 Numerical methods

SNe are realized numerically by the same cell spawning strategy
as winds, except that 1) the spawned cells have the standard mass
resolution � Mw = �m and 2) cells are spawned in shells of Nspawn =
24 cells at once until the progenitor mass is exhausted. Mass is
transferred from the star to the wind reservoir at a rate of

ṀSN = NspawnvSN�m

Rsink
, (48)

which in our default simulations is ≈ 1 M� yr−1. Hence, a typical
progenitor will actually take several years to eject all its mass,
but this does not affect the solution on scales � 0.01 pc, where
we actually resolve the dynamics. We impose this finite duration
because a very massive star could, in a single time-step, spawn ∼105

new cells, which would make operations like load-balancing and
controlling ∇ · B computationally challenging. Gas cells within a
given shell are arranged in a regular angular grid pattern following
Bruls, Vollmöller & Schüssler (1999) to avoid pathological cell
arrangements and ensure statistical isotropy, and the orientation of
the grid is randomized between each shell to reduce grid alignment
effects.

4.4.3 Tests

In Fig. 16, we test this algorithm by detonating a 10 M� progenitor
star in the manner described here. The star is initially placed in
a 16pc box containing 2 × 104 M� in gas (with 0.01 M� mass
resolution in the box and the ejecta), and we follow the evolution of
the remnant from the free expansion through Sedov–Taylor through
snowplow phases. The radius of the swept-up shell matches the
expected similarity solutions in the different phases, and the terminal
momentum boost factor from PdV work in the Sedov–Taylor phase is
∼6, consistent with more-detailed SN simulation studies (Martizzi,
Faucher-Giguère & Quataert 2015; Walch & Naab 2015; Haid
et al. 2016; Gentry et al. 2017; Hopkins et al. 2018a), given the
ambient density n ∼ 200 cm−3 and metallicity (Z = Z�). Numerical
momentum anisotropy is always small, peaking at ∼ 1 per cent
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2222 M. Y. Grudić et al.

Figure 16. Evolution of the SN remnant from a 10 M� progenitor in a
16 pc box containing 2 × 104 M� (n ∼ 200 cm−3, Z = Z�), with cooling
physics enabled (Section 3) and with the SN modelled via cell-spawning
as described in Section 4.4, SNR evolution starting at the free-expansion
phase. Top: Radius of the swept-up shell of dense gas as a function of
time, which interpolates between the initial free-expansion (∝ t), Sedov–
Taylor (∝ t2/5), and pressure-driven snowplow phases (∝ t2/7) as shown.
Middle: radial momentum in units of the initial pejecta = Mejectavejecta, initially
conserved in the free-expansion phase but boosted by a factor of ∼6 due to
PdV work performed in the Sedov–Taylor phase. Bottom: Numerical velocity
anisotropy, which is generally � 1 per cent.

during the Sedov–Taylor phase. We visualize the final morphology
of the SN remnant in Fig. 17.

4.5 Radiation

Following Hopkins et al. (2020a), STARFORGE simulations with
the radiative transfer module enabled follow the emission, transport,
and absorption of photons in five different bands in wavelength λ:

(i) Hydrogen ionizing (λ < 912 Å): Ionizing photons emitted by
stars and responsible for the dynamics of H II regions, which are
widely theorized to be the most important feedback effect from
massive stars in typical Galactic conditions on global GMC scales
(McKee, van Buren & Lazareff 1984; Krumholz & Matzner 2009;
Dale, Ercolano & Bonnell 2012; Geen, Soler & Hennebelle 2017;
Kim et al. 2018; Grudić et al. 2019; Olivier et al. 2021).

(ii) Far-UV/photoelectric (912 Å< λ < 1550 Å): Responsible
for heating the ISM via the photoelectric effect on dust grains, and
likely an important component of the thermal balance of the cold
and warm neutral media in the outer parts of galaxies (Wolfire et al.
1995; Ostriker, McKee & Leroy 2010).

(iii) Near-UV (1550 Å < λ < 3600 Å): Contains most of the
photon energy and momentum emitted by a young stellar population,
and hence is the most important term for direct stellar radiation
pressure (Fall et al. 2010; Murray et al. 2010; Raskutti et al. 2016;
Kim et al. 2018; Hopkins & Grudić 2019).

(iv) Optical/near-IR (3600 Å < λ < 3μm): Contains most of
the light from old stellar populations, and carries a non-negligible

Figure 17. Morphology of the SN remnant at the end of the SN test in
Section 4.4, when the SN remnant has entered the pressure-driven snowplow
phase.

fraction of photon momentum that can potentially couple on larger
scales in a GMC due to reduced dust opacity compared to NUV.

(v) Mid/far-IR (mainly λ > 3μm): Radiation absorbed and re-
radiated by dust, which is the primary cooling mechanism in the
densest gas and can dominate the radiation pressure near massive
protostars or in ULIRGs (Krumholz et al. 2009; Kuiper et al. 2011;
Davis et al. 2014; Rosen et al. 2016; Tsang & Milosavljević 2018).
Thi s is treated specially, as a component of the radiation field having
a blackbody SED with a local effective temperature Trad, which is
evolved self-consistently.

We can optionally further ‘fine grain’ these bands into narrower
bins: for example, splitting ionizing and FUV photons into photo-
electric, Lyman-Werner, H ionizing, He-ionizing, He-secondary-
ionizing, soft X-ray, etc., as described in Hopkins et al. (2020a), but
this generally produces second-order effects. Note that, unlike most
RHD SF simulations, we independently and explicitly evolve the
dust temperature Tdust, radiation temperature Trad (of the IR band),14

and gas temperature Tgas.
All sinks/stars are treated as potential sources for all bands above.

In our default simulations, we calculate the emitted flux in each band
by treating each sink/star as a blackbody with effective temperature
Teff,� ≈ 5780 K (L�/L�)1/4 (R�/R�)−1/2 with L� and R� given by our
stellar evolution module (Section 2.5.5), integrated over the relevant
wavelengths. We ignore ‘primary’ gas emission at other wavelengths,
as this is generally negligible in the problems of interest. Secondary
gas/dust (re)-emission is treated as follows: recombination emission
from absorbed ionizing photons are re-emitted into the optical/near-
IR (OIR) band; the absorbed radiation energy in other bands (where

14Note that the IR radiation temperature Trad, IR parametrizes the spectral
shape (or equivalently wavelength of the IR SED peak or mean energy per
photon). We therefore allow the IR radiation energy density uγ, IR and spectral
shape or Trad, IR to evolve independently, rather than imposing the blackbody
assumption ugamma, IR ∝ T 4

rad, IR (which is only valid in the infinite optical-
depth, tight-coupling limit).
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the opacity is dust-dominated) is re-emitted by dust in the IR band
with the evolved dust temperature Tdust.

The limitation of this band-integrated treatment of radiation is that
line emission and absorption are not followed explicitly. As such, it
does not capture molecular line cooling explicitly (which we treat
using approximate formulae, see Section 3). It is also not applicable
to dust-free conditions where multiply-scattered Ly α photons are
dynamically important (e.g. Smith, Bromm & Loeb 2017).

Absorption and scattering cross-sections/opacities and coupling to
our thermo-chemistry (gas heating/cooling) routines largely follow
Hopkins et al. (2020a). For ionizing bands, this employs standard
photoionizing absorption cross sections which scale with the neutral
H and neutral or partially ionized fractions for He, and absorbed
ionizing photons directly couple to our detailed photoionization
heating rates (see Hopkins et al. 2018b; note these are always
calculated, our RHD simulations simply include local sources in
addition to the UVB and ISRF). The opacities in FUV, NUV,
OIR are given by the grey expressions: (κFUV, κNUV, κOIR) = (0.2 +
2000 f ′

d , 1800 f ′
d , 180 f ′

d ) cm2 g−1 where f ′
d = fd/0.01 is the local

dust-to-gas ratio relative to solar, defined as in Section 3. The
FUV intensity directly enters the photo-electric heating rate in our
thermochemistry calculation (Hopkins et al. 2018b; appendix B);
absorbed radiation in FUV+NUV+OIR + IR bands contributes to
determine the dust temperature Tdust which interacts via dust–gas
collisions (Section 3). For the IR band, we calculate the opacity
as a function of ionized fraction, local dust-to-gas ratio, dust tem-
perature, and radiation temperature, as κIR = κgas + κ0

dust f
′
d where

κgas ≈ 0.35 xe cm2 g−1 from Thompson scattering with xe the free
electron fraction, and κ0

dust(Tdust, Trad) calculated from the tables of
Semenov et al. (2003). Specifically, we take the ‘standard’ model with
the ‘porous 5-layered sphere’ composition in Semenov et al. (2003)
and for each dust temperature Tdust (which gives a different dust com-
position) we explicitly calculate the Rosseland-mean opacity for each
radiation temperature Trad assuming a blackbody-like spectral shape.
We provide detailed fits in Appendix C. We assume a sublimation
temperature of T sub

dust = 1500 K. Finally, because our RHD methods
account for both absorption and scattering we must define the albedo
A. For simplicity we assume Aion = 0 (pure absorption) for ionizing
bands; AFUV, NUV, OIR = 1/2, i.e. equal absorption and scattering
opacities which is roughly appropriate for dust grains in FUV through
OIR bands (see e.g. Weingartner & Draine 2001); and for IR we
assume the Thompson portion of the opacity is pure-scattering while
for the dust albedo we can interpolate reasonably accurately between
the short-wavelength (A ∼ 1/2) and long-wavelength (Rayleigh
scattering, A → 1) regimes by taking AIR ≈ (T̃r/2 + 1)/(T̃r + 1)
with T̃r ≡ (Trad, IR/725 K)2.

Photon momentum (radiation pressure) is always transferred ap-
propriately to the gas + dust when radiation is absorbed or scattered
(from any band).

4.5.1 Photon injection

Photons from sinks must be injected into the simulation domain
before they are propagated by the RT solver. We do this via
local injection: constructing effective oriented faces Asg between
the sink particle and overlapping gas cells, and injecting photons
conservatively with a weighting given by the solid angle subtended
by the face (e.g. Fig. 9). A full description of the original algorithm
for photons is given in Hopkins & Grudić (2019) Appendix A, but
we make a small extension here.

In the original algorithm, an extinction factor fabs = exp (−
rsg/λmfp) (for photon mean free path λmfp = (κρ)−1) was applied

to the injected photon energy and momentum of a cell, and the
appropriate absorbed photon momentum was imparted. This models
sub-resolution extinction, which is crucial for capturing radiation
pressure effects when λmfp is unresolved – which is very often
the case in SF problems at practical resolutions (Krumholz 2018;
Hopkins & Grudić 2019). Here we also take the photon energy
absorbed on unresolved scales and ‘downgrade’ (re-emit) it to the
appropriate band as defined above. The downgraded photons are
then injected into their respective bands in addition to the photons
originally in that band in the stellar SED. Hence, in practice a star in
a highly optically thick accretion flow will usually end up injecting
most of its luminosity to the mid/far-IR band, because λmfp is not
resolved.

4.5.2 Photon transport

GIZMO employs modular RHD solvers, so in principle we can
adopt and compare various methods for photon transport. But in
our default explicit-RHD simulations we adopt the first-moment or
M1 (Levermore 1984) method, which has the advantages of being
computationally efficient (well-adapted to hierarchical time-stepping
and multiphysics simulations), manifestly momentum and energy
conserving in finite-volume form, able interpolate between optically-
thick and optically thin limits, and well-tested in simulations of star
cluster formation (Geen et al. 2015; Gavagnin et al. 2017; Geen
et al. 2017; He et al. 2019). In particular, for questions involving
radiation pressure forces on gas, shadowing in an inhomogeneous
medium, and the transition between optically thin-thick regimes, it
is (by construction) able to capture phenomena which cannot appear
in the 0th-order flux-limited-diffusion (FLD) method (see references
above and e.g. Davis et al. 2014; Rosdahl et al. 2015; Zhang & Davis
2017; Kannan et al. 2019). For each band i we explicitly evolve
the first two moments of the intensity equation in the usual mixed-
frame approximation keeping all terms to O(v2/c2), with all terms
appropriately integrated over the relevant bands (Mihalas & Mihalas
1984; Lowrie, Morel & Hittinger 1999). This gives

∂ei
r

∂t
+ ∇ · f i

r = (
ėi

em − ėi
abs

) + (ψi
a − ψi

s ) u · gi
r , (49)

1

c̃2

∂ f i
r

∂t
+ ∇ · Pi

r = −(ψi
a + ψi

s ) gi
r + u

c2

(
ėi

em − ėi
abs

)
, (50)

where u is the local gas/dust velocity, ėabs ≡ c̃2 ψa er and ėem are the
volumetric absorption and emission rates, gr ≡ f r − u · (er I + Pr )
with er and fr the radiation energy and flux densities, ψa, s ≡ ρ κa, s/c̃

are the absorption+scattering coefficients, c̃ and c the reduced
(RSOL) and true speed of light, and Pr ≡ er Dr the radiation pressure
tensor (Eddington tensor Dr ).15 These are discretized and inter-cell
fluxes are integrated in the same finite-volume (conservative) form
as the MHD equations (Hopkins et al. 2020a).

Note that equations (49)–(50) include terms up to formal O(v2/c2)
such as the u · (er I + Pr ) term differentiating gr and fr or the
(ψa − ψs) u · gr term representing the work done by radiation
pressure which are often dropped in SF simulations where typical
speeds v � c. However, as many authors have pointed out, these
terms actually dominate the behaviour in the infinite-optical-depth,
tight-coupling or photon-trapped limit, where their actual order
scales closer as O(v/vrad, diff ) (with vrad, diff the effective bulk speed

15We adopt the common M1 closure for Pr , taking Dr → (1/2) [(1 − χ ) I +
(3 χ − 1) f̂ r f̂ r ], χ ≡ (3 + 4ξ2)/(5 + 2 [4 − 3 ξ2]1/2), and ξ ≡ | f r |/(c̃ er ),
which interpolates between thin and thick regimes (Levermore 1984).
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2224 M. Y. Grudić et al.

of photon diffusion). Without this terms, the RHD equations in
the trapped limit will give unphysical solutions (photons will not
properly be advected and arbitrarily large radiation-pressure forces
can arise). The terms in (ėi

abs − ėi
em) u/c2, on the other hand, represent

true relativistic beaming, and are negligible for our problems of
interest.

In the gas/dust momentum equation we add the terms
∑

i (ψi
a +

ψi
s ) gi

r + (ėi
abs − ėi

em) u/c2, the former representing the normal radi-
ation pressure acceleration and the latter accounting for beaming.
In the gas/dust total energy equation we add the terms

∑
i (ėi

abs −
ėi

em) + (ψi
s − ψi

a) u · gi
r , the former representing the energy of ab-

sorption + emission (handled with our thermochemistry as described
above) and the latter work terms. The gas temperature is then evolved
according to the thermodynamics modules in Section 3, coupled also
to the dust temperature by way of dust-gas collisions (equation 36).
The dust temperature is set assuming grain absorption-emission
equilibrium, giving T 4

dust = (〈Qabs〉/〈Qem〉) etot
r c/(4 σT ) where etot

r =∑
i ei

r , and Qabs, em are the appropriate absorption and emission
efficiencies.16

As noted above, the IR radiation field is treated as a blackbody
shape with local effective temperature Trad, IR and total energy inte-
grated over the cell domain Egamma, IR, which evolves as new photons
are emitted or when radiation is exchanged between cells of different
Trad. In emission, sinks emit with T em

rad, IR = Teff and dust has T em
rad, IR =

Tdust; given a total emitted radiation energy �Eem in the cell time-
step, the effective Trad, IR is then updated to guarantee both radiation
energy and photon number conservation, giving Trad, IR(t + �t) =
[Eγ, IR(t) + �Eem]/[Eγ, IR(t)/Trad, IR(t) + �Eem/T em

rad, IR]. The same
update scheme is used when cells exchange radiation energy.

Finally, we follow common practice and adopt a reduced speed
of light (RSOL) with c̃ < c to enable larger time-steps. In general, c̃

should be larger than the bulk speeds of radiative diffusion or ionizing
front expansion to capture the dynamics; Geen et al. (2015) argue
this is satisfied for c̃ � 30 km s−1 in our problems of interest, and
we verify this below.

4.5.3 Tests

First, we remind the reader of the test in Section 3, which demon-
strates the accuracy of our IR RHD + thermochemistry models
evolving Tdust, Trad, and Tgas appropriately in the collapse of a Jeans-
unstable core. To test other aspects of our RHD models, we next
repeat the test setup of an O star in a box described in the previous
sections (Sections 4.3–4.4) for radiation. First, we examine the ability
of the photon injection, transport, and absorption schemes to capture
radiation pressure in two regimes: where the photon mean free path
is well-resolved (�x � λmfp) and totally unresolved (�x > λmfp).
We inject radiation in a single band with opacity scaled so that the
cell opacity τ cell = �x/λmfp ranges from 0.015 to 1.5, and the global
optical depth τ box = Lbox/λmfp ranges from 1.9 to 190. Because the
box is always optically-thick and thermal pressure is negligible, in
all cases we expect the expanding shell solution to approach the
momentum-conserving similarity solution Rshell = (

L�

6πρ0c

)1/4
t1/2 at

late times with radial momentum approaching the total emitted
photon momentum L�t/c, and the solution should be spherically
symmetric.

Fig. 18 shows that the dynamics of a radiation pressure-driven shell
are captured accurately: all three solutions eventually approach the

16For IR–IR band interactions, we assume Qabs ≈ Qem, though this could
lead to small differences in Tdust.

Figure 18. Radiation pressure-only test with an O star in a homogeneous
box, accounting only for radiation pressure feedback with a range of opacities,
varying the global and cell optical depths τ box and τ cell and injecting and
transporting photons as described in Section 4.5. Top: position of the spherical
shell swept up by the radiatively-driven bubble. All solutions approach the
analytic similarity solution for momentum-driven bubbles ∝ t1/2, with the
time lag determined by the absorption time-scale as expected. Middle: Radial
gas momentum in units of the total emitted photon momentum Lt/c. The
correct momentum is always coupled even when τ cell > 1, by accounting for
unresolved local extinction in the injection phase (Hopkins & Grudić 2019).
Bottom: Numerical velocity anisotropy, which is < 1 per cent in all but the
earliest (i.e. worst-resolved, few-cell) phases of the expansion.

similarity solution (with the least optically-thick run having a time
delay λmfp/c̃ ≈ 0.3 Myr, owing to the finite light traveltime before
absorption). The correct radial momentum is imparted whether or not
λmfp is well-resolved (due to the face-integrated injection method,
detailed in Hopkins & Grudić 2019), and numerical anisotropy falls
rapidly below ∼ 1 per cent once the bubble becomes well-resolved.

We repeat this experiment with our ionizing radiation band
enabled, without radiation pressure, to test the ability of the code to
follow the dynamics of expanding H II regions (and also to determine
an appropriate value for c̃ to accomplish this). We compare with the
approximate Hosokawa & Inutsuka (2006) solution for the position
of the ionization front:

RHII = RSt

(
1 + 7

4

√
4

3

cit

RSt

)4/7

, (51)

where ci ≈ 11 km s−1 is the isothermal sound speed in ionized gas
and the RSt is the Strömgren radius:

RSt =
(

3ṄLyCm2
p

αBρ2
0

)1/3

, (52)

where ṄLyC is the emission rate of H ionizing photons and αB is
the case-B H II recombination coefficient (invoking the ‘on-the-spot’
approximation, Osterbrock 1989). We fix the ratio ṄLyC/αB so that
RSt is initially resolved in only two cell lengths, RSt = 2(�m/ρ0)1/3,
and survey c̃ values between 5 and 300 km s−1. We also run a version
with c̃ = 30 km s−1 with the gas fixed in place, to compare with the

MNRAS 506, 2199–2231 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/2199/6276745 by C
alifornia Institute of Technology user on 20 O

ctober 2021



STARFORGE 2225

Figure 19. Evolution of an H II region surrounding a single O star in an
initially static, homogeneous box, with only ionizing radiation feedback and
no photon momentum. Top: Evolution of the ionization front, plotting the
interval over which the ionization fraction falls from 99 per cent to 1 per cent,
comparing results for a range of reduced speed of light values to the analytic
solution (Hosokawa & Inutsuka 2006). The ‘No Hydro’ solution freezes
the gas in place, simulating a static Strömgren sphere. Bottom: Numerical
velocity anisotropy as a function of time (0 in the exact solution).

static Strömgren sphere solution and isolate artefacts of the RSOL
approximation.

We plot the expansion of the ionization front for the different
runs in Fig. 19. The ‘No Hydro’ frozen solution relaxes to the static
Strömgren sphere solution after a time ∼ tSt = RSt/c̃ as expected, and
remains statistically (but not exactly) static thereafter. The solutions
with c̃ > 30 km s−1 relax to the Strömgren solution similarly, but
then start to expand after a time ∼RSt/ci and agree well with the
equation (51) solution. But for c̃ = 5 km s−1, tSt is longer than the
physical sound crossing time of the bubble, so the bubble expansion
is delayed artificially, confirming the finding of Geen et al. (2015) that
c̃ ∼ 30 km s−1 is roughly the marginal RSOL value for following the
dynamics of H II regions accurately. Numerical anisotropy is again
small (a few per cent ) once the bubble actually expands and becomes
well resolved.

5 D ISCUSSION

We have presented, demonstrated, and tested the methods used for
STARFORGE simulations, and we refer the reader to Paper 2 for
the preliminary science results of the STARFORGE project. We now
discuss some further applications of the methods presented here and
enumerate several caveats, limitations, and possible extensions to our
set-up.

5.1 Applications

The particular suite of physics and numerical methods developed
here is optimized and intended for GMC and star cluster formation
simulations, but the methods described in this work are potentially

suitable for wider applications in astrophysical simulations involving
stars and feedback.

5.1.1 Dedicated feedback simulations

The methods we have presented for coupling feedback from in-
dividual stars do not necessarily need to be combined with star
formation simulations – in principle our feedback implementation
is suitable for any problem involving stellar winds, jets, radiation,
or SNe from individual stars. Notably, our methods can be used
to capture multi-scale flows in complicated geometries, such as the
evolution of a SN remnant from the free-expansion phase at sub-AU
scales onward in an inhomogeneous ISM, or following interacting
binary stellar winds from the scale of the binary separation all the
way to interaction with the ISM. These geometries are historically
challenging for AMR methods owing to high-velocity, non-grid-
aligned motion.

5.1.2 Local and global galaxy simulations

Stratified and/or shearing-box simulations have been used to simulate
the evolution of a patch of the ISM within a galaxy at a resolution
that is generally higher than what is attainable in global galaxy
simulations (e.g. Hennebelle & Iffrig 2014; Walch et al. 2015;
Martizzi et al. 2016; Kim & Ostriker 2017). These can be used
to follow the formation and dispersal of GMCs self-consistently.
All the algorithms presented here translate directly to this type of
setup – the only differences are the initial conditions, boundary
conditions, and additional inertial forces (all currently implemented
in GIZMO). Resolved SF simulations could also be performed in
a galactic context via a ‘zoom-in’ re-simulation of a GMC, taking
a coarsely resolved GMC in a simulated galaxy (e.g. Guszejnov
et al. 2020a) and up-sampling it to higher resolution (Rey-Raposo,
Dobbs & Duarte-Cabral 2015).

The total stellar masses we form in the largest simulations in
Paper 2 (�104 M�) is within an order of magnitude of the total
stellar mass in the faintest known dwarf galaxies (Simon 2019;
Wheeler et al. 2019), so it may even be possible to perform a
global cosmological galactic zoom-in simulation of an ultra-faint
dwarf (UFD) with individually-resolved star formation. State-of-the-
art simulations like Wheeler et al. (2019) simulate UFD formation at
a mass resolution of ∼30 M�, so much higher resolution would be
required, but this could potentially be achieved by using a T97-like
refinement criterion to reach the required resolution in the dense gas,
while the more diffuse gas not engaged in star formation could be
kept at coarser resolution.

5.1.3 Stellar zoom-in simulations

Our sink particle method creates an open boundary condition for
gas to flow into a stellar system, but we do not follow physics
on scales smaller than Rsink, for lack of resolution. Meanwhile,
detailed simulations of individual protostellar systems can capture
processes on smaller scales that we cannot, but lack the broader
context of star cluster formation that should inform the accretion
history of the system, as well as environmental effects like ionizing
radiation and close encounters (Concha-Ramı́rez, Vaher & Portegies
Zwart 2019a; Concha-Ramı́rez et al. 2019b). Simulations like those
here, however, can be used to inform the initial conditions for
simulating the formation of individual star systems at much higher
(<10−6 M�) resolution, sufficient to resolve the structure of the
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inner envelope and disc, and follow the dynamics of dust and non-
ideal MHD with a suitable adaptive refinement scheme (e.g. Tomida,
Okuzumi & Machida 2015; Mocz et al. 2017; Angles-Alcazar et al.
2020).

5.2 Caveats and room for improvement

5.2.1 Gravity and full N-body dynamics

In Section 2.3, we introduced a treatment of stellar dynamics using
an integrator that gives superior accuracy to the usual second-
order integrators used in multiphysics simulations (Fig. 1), allowing
us to preserve the properties of binaries over the GMC lifetime.
However, the accuracy and efficiency of our algorithms in pure N-
body applications still pales in comparison to dedicated N-body codes
(e.g. Aarseth 2003; Wang et al. 2015). Standard N-body treatments
do not generally require a minimum softening length, using a variety
of techniques to optimize binary motion and close encounters (e.g.
regularization). The gravitational force is also generally exact to
machine precision in pure N-body applications, or approximate to a
specified very fine, dynamically controlled tolerance (McMillan &
Aarseth 1993). The approximate tree-force is not necessarily an issue,
because as discussed in Section 2.3 the error budget in SF simulations
is dominated by errors and uncertainties in RMHD algorithms and
feedback, but it is not presently clear what physics relevant to SF
may be missed when softening is introduced (but we do not find
qualitatively-different results with softenings as small as 1.8 AU,
Section 4.2.3). A regularization scheme would improve the efficiency
and accuracy of binary integration, potentially allowing larger time-
steps and optimizing the simulations. However, such methods are
non-trivial to couple to multi-physics simulations (see however recent
successes with the AMUSE framework, Wall et al. 2020).

5.2.2 Radiative transfer

Although we have validated our implementation of the M1 radiative
transfer method in various simple problems relevant to SF (Sec-
tion 4.5), it is by no means clear that M1 can capture all important
radiation phenomena in SF. As a moments method, it does not capture
the collisionless nature of photons (colliding streams will shock, not
pass through each other), so the radiation field streaming within a
cluster will not generally be particularly accurate (but should still be
reasonable if a single source is dominant).

Unfortunately the idiosyncrasies of different RT methods often
only reveal themselves in complex, nonlinear problems with non-
trivial geometries (such as SF), where exact solutions are unknown
(as opposed to the simple problems considered here). This motivates
an empirical approach to studying the behaviours of different RT
methods in SF, i.e. comparing their results in the full SF problem,
and determining which best reproduces observations. This will be
important to do but is beyond the scope this work.

5.2.3 Resolving disc evolution

Our use of the sink particle method (which identifies each sink with an
individual star) effectively ignores any possibility of fragmentation
on scales <Rsink (∼ 20 au in a typical STARFORGE application),
and does not model the detailed accretion flow on to the protostar
on scales smaller than the sink radius. As discussed in Section 2.5.2,
the rate at which mass arrives at the protostar need not be the same
as the rate at which it enters the sink boundary, and this difference

in accretion rate would ultimately influence the evolution of feed-
back rates from the protostar, and the surrounding environment in
turn.

If fragmentation occurs frequently on these smaller scales as may
happen in gravitationally unstable discs (Kratter et al. 2010; Kratter &
Lodato 2016), then our predicted IMF will be incomplete for a given
set of physical assumptions. Our resolution study (Section 4.2.3)
does not show any hint of IMF incompleteness as ∼ au scales
start to become resolved, but our simulation assumes ideal MHD
and hence may overestimate magnetic braking (Li, Krasnopolsky &
Shang 2011). This likely exaggerates accretion on to the central star
and reduces its disc mass, suppressing any possible fragmentation.
The impact of disc properties and evolution on the IMF should be
investigated further with higher resolution simulations accounting
for non-ideal MHD and radiative transfer (e.g. Wurster et al.
2019).

5.2.4 Sub-grid accretion and feedback modelling

As previously discussed in Section 2.5.2, another caveat of not
following sub-au physics is that the rate at which mass arrives at
the protostar, and is launched in an outflow, must be assumed. We
show that our results are insensitive to our assumed accretion rate at
least the factor of 10 level in protostellar jet simulations (4.2.3), but
if the flow is angular momentum-supported at unresolved scales then
accretion may proceed slower still, regulated by the rate of angular
momentum transport. If accretion proceeds much more slowly, then
the rate of accretion-powered protostellar radiation and outflows will
be reduced in turn.

Another potential issue is our assumptions about the power and
collimation of protostellar outflows. We have assumed a simple
parametrized model following Cunningham et al. (2011), with
parameters chosen to roughly match observations, but in reality these
parameters may exhibit systematic scalings according to e.g. stellar
type and accretion rate, non-ideal MHD processes and the dust grain
distribution (Pudritz & Ray 2019), and the magnetic field geometry
(Gerrard, Federrath & Kuruwita 2019). Because protostellar outflows
can have such powerful effects upon SF, efforts should be made to
constrain sub-grid prescriptions.

5.2.5 Cooling and chemistry

Our treatment of cooling and chemistry assumes equilibrium abun-
dances, i.e. we do not explicitly follow the formation and destruction
of the various molecular species that can serve as coolants or useful
observational tracers. In principle this could affect the dynamics of
the simulations, if the molecular cooling rate was severely over-
or underestimated, but in practice the cold, dense initial conditions
we simulate can safely be assumed to be fully molecular, and even
if not the cooling rate is actually fairly insensitive to the specific
species into which e.g. C and O are locked (Glover & Clark 2012).
The presence of molecules is a consequence of gas collapse, not
a prerequisite (Orr et al. 2018). Rather, the main utility of self-
consistent chemistry in simulations is to enable the simulations to
predict molecular emission self-consistently, e.g. to help determine
which physical processes or which regions are being probed by
different lines. In future work will explore simulations adopting
detailed molecular networks such as CHIMES (Richings, Schaye &
Oppenheimer 2014a, b), which has been implemented in GIZMO
(Richings et al. in preparation).
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6 C O N C L U S I O N

We have presented and demonstrated the methods of the STAR-
FORGE, combining the physics of MHD, gas self-gravity, stellar
dynamics, thermodynamics, and all major dynamically important
(proto-) stellar feedback mechanisms into a detailed numerical model
of star formation. We have shown that the respective techniques for
each mechanism give satisfactory results in test problems with known
solutions. We also discovered a remarkable degree of robustness
in the sink particle prescription (Section 2.5.8), and found good
agreement when comparing with results in similar problems from
a code that implements the same physics with completely different
numerical methods (Section 4.2.3).

We found stable numerical results for the IMF down to a complete-
ness limit of ∼ 0.1M� at the modest (by SF simulation standards)
mass resolution of ≈10−3 M� (Section 4.2.3, Fig. 12), and in Paper 2
we scale this setup up to GMCs as massive as 2 × 105 M�, mapping
out exploring the effects of protostellar jets upon the IMF at this
scale for the first time. In subsequent works, we will present the full
results of radiation MHD simulations of those same massive GMC
models, with all feedback modules described in this work acting in
concert.

We anticipate that STARFORGE will be a useful theoretical
laboratory for disentangling the many physical mechanisms at work
in GMCs. By starting with a realistic picture and switching different
physics on and off in controlled experiments, it can help distil the
essential elements of a working theory of star formation. It can also
be used to calibrate sub-resolution prescriptions for effects such
as stellar kinematics and protostellar feedback for use in lower-
resolution star cluster and galaxy formation simulations, increasing
the predictive power of such simulations in the densest gas and star
clusters, where the details of prescriptions become important (e.g.
Hopkins et al. 2013b; Grudić & Hopkins 2019; Li et al. 2020). It
should also be useful as interpretive tool for observations, mapping
out the effects of different physics upon the relations between
observed gas tracer properties and star formation.

An important goal of this project is to reduce the dependence
of SF simulations upon sub-grid prescriptions, which must make
highly uncertain assumptions about how individual stars form. Our
setup helps to accomplish this, but it only peels back one layer.
To simulate feedback and the emergence of the IMF, we must
make assumptions about how various sub-au physics (accretion,
stellar winds, jet launching, protostellar and stellar evolution/death)
proceed, and we list various ways in which incorrect assumptions
about these processes could affect our results (Section 5.2). Hence, it
is crucial to continue to advance our understanding of the processes
governing the formation and internal evolution of individual stars
and star systems.
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Kereš D., 2018a, MNRAS, 475, 3511
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Tsang B. T. H., Milosavljević M., 2018, MNRAS, 478, 4142
Vaidya B., Mignone A., Bodo G., Massaglia S., 2015, A&A, 580, A110
Vaytet N., Haugbølle T., 2017, A&A, 598, A116
Vink J. S., de Koter A., Lamers H. J. G. L. M., 2001, A&A, 369, 574
Vogelsberger M., White S. D. M., Helmi A., Springel V., 2008, MNRAS,

385, 236
von Hoerner S., 1960, ZAp, 50, 184
Walch S. et al., 2015, MNRAS, 454, 238
Walch S., Naab T., 2015, MNRAS, 451, 2757
Wall J. E., Mac Low M.-M., McMillan S. L. W., Klessen R. S., Portegies

Zwart S., Pellegrino A., 2020, ApJ, 904, 192
Wang P., Li Z.-Y., Abel T., Nakamura F., 2010, ApJ, 709, 27
Wang L., Spurzem R., Aarseth S., Nitadori K., Berczik P., Kouwenhoven M.

B. N., Naab T., 2015, MNRAS, 450, 4070
Weaver R., McCray R., Castor J., Shapiro P., Moore R., 1977, ApJ, 218, 377
Weingartner J. C., Draine B. T., 2001, ApJ, 548, 296
Wheeler C. et al., 2019, MNRAS, 490, 4447
Whitworth A. P., Boffin H. M. J., Francis N., 1998, MNRAS, 299, 554
Wolfire M. G., Hollenbach D., McKee C. F., Tielens A. G. G. M., Bakes E.

L. O., 1995, ApJ, 443, 152
Wurster J., Bate M. R., Price D. J., 2019, MNRAS, 489, 1719
Zel’dovich Y. B., 1970, A&A, 5, 84
Zhang D., Davis S. W., 2017, ApJ, 839, 54
Zhu Q., Li Y., 2016, ApJ, 831, 52

APPENDIX A : LIST O F SINK PARTICLE TESTS

In Section 2.5.8 we re-run the M2e4 GMC simulation from Paper
0 with a large space of parameters and prescriptions for our sink
particle algorithm, with results shown in Fig. 7. These tests include
the following:

(i) Fiducial parameters and prescriptions, simply re-running the
simulation in Paper 0 with exactly the same code version as the other
tests, with the methods described in Section 2.

(ii) Simultaneously increasing Rsink and S� by ×10 and ×100
(from 18 au to 180–1800 au). These tests generally formed the
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upper envelope of the predicted IMF mass scale statistics because
accretion is made much easier and IMF incompleteness is introduced
by accreting independently-collapsing cores within the sink radius.
However, these effects are small.

(iii) Increasing Rsink and ×10 and ×100 without rescaling S�.
These had similar results to tests in which we scaled S� as well.

(iv) Decreasing S� from 18 to 1.8 au. This had negligible effects.
(v) Changing the sink formation density threshold ρ th by a factor

of 10−3 and 103. The ρ th × 10−3 test also neglected the thermal
term in the virial criterion (equation 21), which would otherwise
have effectively imposed a density threshold of its own. This has
the effect of rescaling the threshold number of Jeans wavelengths
per cell at the sink formation threshold from 0.5 to 1.58 and 0.15,
respectively [i.e. strongly violating versus satisfying the Truelove
et al. (1997) criterion]. All results of the ×103 run were difficult to
distinguish from the fiducial run, possibly because following collapse
far beyond ρJ is unlikely to reveal any new fragments (Section 2.4).
The ρ th × 10−3 run formed a slightly larger number of sinks than the
fiducial run, because the other sink formation criteria are not perfect
predictors of runaway collapse when looking at gas of modest density,
but effects were still quite small.

(vi) Rescaling Rsink from 18 to 9 au and 4.5 au, respectively, while
keeping the softening radius fixed at 18 au. The Rsink = 9 au run
had no clear systematic difference from the fiducial run. The 4.5 au
run (highlighted in Fig. 7) was the largest outlier of our survey,
forming stars with a slight delay with respect to the modal SFE,
and producing a noticeably larger (×2) number of sinks, affecting
the median and mean sink masses in turn. Mass-weighted statistics
such as M50 and Mmax were affected more modestly, but were also
systematically lower than the modal solution. Note that this is not a
particularly reasonable prescription: it forces sink particles to have a
volume 1/64 the volume of a gas cell at the resolution limit, resulting
in a gross mismatch between Rsink, S�, and the gas resolution scale
at the time of sink formation, making it very difficult to satisfy all
accretion criteria.

(vii) A minimal accretion prescription requiring only r < Rsink.
This had negligible effects.

(viii) A simple accretion prescription requiring boundedness
(equation 23) and r < Rsink. This had negligible effects.

(ix) Rescaling Rsink by a factor of 1/4 while also rescaling S� by
the same factor and ρ th by a factor of 64 so that the cell spacing at
sink formation matched Rsink. This was much closer to the reference
run than reducing Rsink alone.

(x) Running our fiducial sink formation prescription in conjunc-
tion with the simpler sink accretion prescription given in Bate et al.
(1995) (except neglecting the correction terms to the hydro force).
This amounts to neglecting thermal and magnetic pressure in the
boundedness calculation (equation 23), and not requiring that gas
cells physically fit inside the sink volume. This had negligible effects
because there is considerable redundancy between the different
checks.

(xi) Ignoring the ∇ · v, virial, density maximum, tidal, and infall
sink formation criteria in turn. These all had negligible effects except
for neglecting the density maximum and virial criteria, which were
at the upper envelope of number of sinks formed.

(xii) Including a version of the Hubber et al. (2013) angular
momentum return prescription, exerting a net torque τ = J s

tacc
upon

the surrounding gas to transfer angular momentum from the sink back
to the gas (taking tacc to be 500 yr, likely much faster than the actual
angular momentum transfer time-scale in a protoplanetary disc). This
had negligible effects, but may be more pronounced in problems

where protostellar discs are well-resolved and angular momentum
support is important.

(xiii) Enforcing the additional criterion of ‘collapse along all three
axes’, a stricter version of the ∇ · v criterion. We check that all three
eigenvalues of the symmetric component of ∇v are negative (as
opposed to merely their sum ∇ · v), similar to prescriptions used
in Federrath et al. (2010) and Gong & Ostriker (2013). This had
negligible effects.

APPENDI X B: R ESOLUTI ON D EPENDENCE O F
I MF STATI STI CS WI TH VA RI OUS MASS C UTS

In Section 4.2, we perform a resolution study of a 2000 M�
GMC with mass resolution ranging from 0.1 to 10−4 M� with
cooling, MHD, and protostellar jet physics enabled, and found
that the predicted IMF statistics stabilized at sufficient resolu-
tion (Fig. 12). In Figs B1 and B2, we remake the relevant
panels from Fig. 12 while cutting stars <0.1 M� and <1 M�,
respectively, to determine the resolution requirements for statis-
tics computed on different mass ranges of the IMF. Cutting at
<0.1 M� (Fig. B1), a mass resolution of ≈2 × 10−3 M� ap-

Figure B1. Effect of numerical resolution upon various IMF statistics in a
GMC simulation with cooling, MHD, and jets, as in Fig. 12, but computed
after cutting masses <0.1 M�.

Figure B2. Effect of numerical resolution upon various IMF statistics in a
GMC simulation with cooling, MHD, and jets, as in Fig. 12, but computed
after cutting masses <1 M�.

MNRAS 506, 2199–2231 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/2199/6276745 by C
alifornia Institute of Technology user on 20 O

ctober 2021



STARFORGE 2231

pears marginally sufficient to predict the mean stellar mass, and
10−3 M� is marginally sufficient to predict the median. Cutting
at 1 M� (Fig. B2), 0.01 M� is sufficient for all three statistics.
This suggests that the effect of numerical resolution is simply
to impose a lower completeness limit on the predicted IMF,
without seriously affecting larger masses (to a point). Rigorous
comparisons with the observed IMF should ideally take both ob-
servational and numerical incompleteness functions into considera-
tion.

APPENDIX C : DUST O PACITY FITS

For the opacities used in our RHD treatment of the IR band
(Section 4.5), we fit to results from Semenov et al. (2003) for
the ‘porous five-layered sphere’ composition as a function of both
dust temperature Tdust, which determines the dust composition, and
radiation temperature Trad, which affects the opacity seen by the
radiation. We assume a dust sublimation temperature of 1500 K,

above which we assume dust to be absent and the opacity to be zero.
Otherwise, if Tdust < 1500 K, we use the fit

κdust,IR = fd exp (0.57 max (x − 7, 0))

× exp
(
c1 + c2x + c3x

2 + c4x
3 + c4x

4
)
, (C1)

where x = 4 log10 (Trad/K) − 8, fd is the local dust-to-gas ratio and
the coefficients c vary with the dust temperature range as

c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.728, 0.751, −0.0722, −0.0116, 0.00249) Tdust < 160 K,

(0.166, 0.701, −0.0423, −0.0113, 0.00213) 160 K ≤ Tdust < 275 K,

(0.0358, 0.684, −0.0379, −0.0113, 0.00213) 275 K ≤ Tdust < 425 K,

(−0.766, 0.571, −0.0123, −0.0104, 0.00198) 425K ≤ Tdust < 680 K,

(−2.24, 0.812, 0.0801, 0.00862, −0.00272) 680K ≤ Tdust < 1500 K.

(C2)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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