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Abstract—Flexible phased arrays potentially enable diverse
applications not permitted by rigid systems; however, they
introduce ambiguity in antenna element positions. If this position
ambiguity can be overcome, flexible arrays can perform the full
suite of array functions: beam steering, wavefront engineering,
and beam focusing. Furthermore, shape reconstructions of arrays
can be used for applications beyond beamforming. We propose
a framework to reconstruct the shape of a flexible array that
only uses mutual coupling measurements and does not require
additional sensors or functionalities in the system. We discuss
the approach, a two-step algorithm, which is highly modular
and can be implemented in a variety of phased array systems.
To demonstrate the accuracy of the approach, we present results
from two passive 2.5-GHz phased array setups using dipole
and patch antennas, as well as a 10-GHz (active) integrated
circuit flexible phased array, and demonstrate the accuracy of the
approach in this system. In all cases, the algorithm reconstructs
the antenna shape accurately, with average position errors of
approximately 6% of the wavelength. This article can serve as the
beginning of the broad study of shape reconstruction algorithms
and their applications.

Index Terms— Conformal antennas, convex optimization,
Euclidean distance matrix (EDM), flexible electronics, integrated
circuits, phased array, semidefinite programming, shape calibra-
tion, shape reconstruction.

I. INTRODUCTION

NTENNA arrays continue to play a growing role in

a broad range of applications, from communications
[11, [2], sensing [3], [4], ranging [5], [6], power transfer
[71, projections [8], and imaging [9]. In addition to planar
arrays, conformal arrays, which are rigidly fixed to a nonplanar
surface, have long been used in low profile (aerodynamically
and/or visually) radio frequency (RF) systems [10], [11]
[12], mostly for streamlining purposes. In mechanically static
arrays, unusual shape and orientation of array elements are
analyzed and accounted for during the design phase as these
systems are used for a single, rigid shape. With an unusual
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but known shape array, pattern synthesis is well-studied and
has been accomplished using geometric analysis [13], [14]
and various optimization algorithms [15], including genetic
algorithms [16]-[18]. While these techniques are effective,
array shapes may not be static and known. Emerging applica-
tions using flexible microwave and mm-wave antenna arrays
in wearables and lightweight, deployable apertures in space
[19] change shape dynamically [20], requiring capabilities
beyond conventional static conformal arrays. Flexible phased
arrays, which can constantly change shape during deployment
and operation, also suffer from irregular element position
and orientation. However, their antenna positions may not be
known in advance and accounted for during design. As such,
flexible phased arrays must be able to determine their shape
and dynamically update phases to control beam coherence and
direction during operation.

An example of a flexible phased array is shown in Fig. 1.
Flexible arrays could operate while curling with biological and
mechanical joints or while fluttering in the wind if fast and
accurate array shape reconstruction can be achieved. In other
systems, an array that can accurately reconstruct its own shape
may be used as a sensor itself in applications involving gam-
ing, haptic human—machine interfaces, biomedical sensing,
and so on. Shape reconstruction is significantly more general
than shape calibration, instances of which have been shown
in the past [21]. Shape calibration refers to adjustments of
element excitation phases to account for changes in relative
element position and orientation within the array. Without
shape calibration, the beam-forming, beam-steering, beam-
focusing, arbitrary wavefront generation, and interference
suppression capabilities of a flexible phased array quickly
disappear. Shape calibration of flexible arrays using ancillary
resistive strain sensors was shown in [22]. These additional
sensors increase system complexity by incorporating a new
sensing domain and utilizing hardware not already present in
phased array systems. In addition, each resistive strain sensor
only offers a single measurement value. For an array with
complex bending geometry (having high sinuosity or lacking
bilateral symmetry), a single, localized measurement will not
accurately capture the array shape. Designing a flexible phased
array with a limited number of ancillary sensors requires
knowledge of the expected space of curvatures that the array
surface will experience during design, limiting the applications
of such an array.

Superseding prior calibration approaches, shape reconstruc-
tion describes a more complete and more difficult task: full
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Fig. 1.
antennas.

2-D flexible phased array antenna sheet with 256 10-GHz patch

determination of the shape of the array and the surface to
which it is confirmed. In this work, we propose a framework
for performing shape reconstruction only from local mea-
surements of mutual coupling between elements in a flexible
phased array. While phased arrays are typically designed to
direct an electronically steerable beam of microwave power
toward a far-field target, some fraction of the power radiated
by one element in the array is absorbed by the other elements.
This incidental power transmission is called mutual coupling.
While, in extreme cases, it may be detrimental to array
performance, mutual coupling provides information about the
state of elements within the array. Shipley and Woods [23] and
Bekers er al. [24] use mutual coupling measurements in an
array with known shape and symmetry to determine the phase
offset of elements within the array. Mutual coupling shape
reconstruction transposes the problem: using mutual coupling
measurements to determine the relative position of elements
in the array.

In most practical cases, mutual coupling measurements
contain sufficient information for array shape reconstruction,
but an analytical and algorithmic framework is required to
turn an interelement coupling matrix into element positions.
We previously presented an approach in [25]; in this article,
we propose a two-step, modular framework that is adaptable
to different algorithmic approaches accounting for different
sets of antenna properties and physical constraints. We pro-
pose an algorithm for each of these two steps. This article
represents a more comprehensive discussion of the general
framework, a more specific discussion of the algorithms, and
presents results from three different arrays instead of only
two.

The framework, wusing our proposed algorithms,
is successfully demonstrated on two different passive
arrays with different radiators. To demonstrate a realistic
system-level implementation of such algorithms, we designed
and built a flexible, active 10-GHz array using monolithic
RF integrated circuits (RFICs). RFICs provide timing
synchronization, frequency synthesis, signal amplification,
digitization, and a multitude of digital control functions with
a millimeter-scale footprint. With this density of complex
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functions, discrete components can be removed, avoiding
their bulk and rigidity, which would be prohibitive for a truly
flexible design. The integrated circuit-based flexible phased
array presented in Section VI represents a new paradigm in
array design, only recently enabled by the proliferation of
RFICs. Before discussing the RFIC array, we describe the
framework and the motivations guiding our implementation.

II. FRAMEWORK OVERVIEW
A. Overview

Fig. 2 illustrates the modular framework for mutual
coupling-based shape reconstruction. The framework begins
with mutual coupling data represented as a matrix. The first
step of the framework, called physical constraint mapping
(PCM), processes the mutual coupling information to produce
physical constraints of the array shape, such as element
distances, mutual angles, or local curvatures. These physical
constraints can be represented in different formats (matrix,
etc.), but all contain the necessary information to reconstruct
the shape. The second step, called array shape construction
(ASC), utilizes the physical constraints to generate the actual
positions of all elements and, thus, the array shape. This is,
of course, the goal and purpose of this framework.

In this article, we present the framework and specific exam-
ples of PCM and ASC algorithms. We define the following
terms: a mutual coupling matrix § € CM*V, a physical
constraint matrix B € R¥>*" and a position matrix X € R?*V,
where N denotes the number of array elements and d denotes
the number of physical dimensions that we expect our array
to live in.! While the framework is general, in this article,
we present results for flexible phased arrays with a single row
of N = 8 elements that we will assume can only live in
d =2 dimensions. We will demonstrate that the flexibility of
this framework allows for the reconstruction of planar phased
arrays with arbitrary N that can potentially live in d = 3
dimensions.

The choice of algorithm for PCM and ASC is almost
entirely dependent on the primary physical constraint that
we choose to use (e.g., relative distances or curvatures).
The freedom to choose B gives this framework much of its
modularity; different physical constraints will be better suited
for different antenna systems. In this work, we consider the
use of Euclidean distance matrices (EDMs) as candidates for
the physical constraint matrix [26].

An EDM, E € RV*N is defined as

Epn = IFm - 7_:n|2 (1)

where 7, (n € {1,2, ..., N}) is the position vector associated
with point n. The matrix describes the squared distance
between points in a d-dimensional point cloud. EDMs are
apt candidates for B because we can use known relationships
between coupling and distance to devise the PCM algorithm
and use existing algorithms for determining position from
relative distance.

As we will discuss in the following, distance impacts
both the phase and power of mutual coupling measurements.

ld e {1,2,3}.
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Fig. 2. Block diagram of our framework for mutual coupling-based shape reconstruction.

We propose an algorithm, called Spiral Match, as a candidate
for PCM. Moreover, the problem of solving for the relative
positions of an arbitrary number of points in an arbitrary num-
ber of dimensions given an EDM, E, is critical to a number of
applications and, thus, is well-studied [26]. We have a wealth
of options for ASC that each accounts for different types of
EDMs; for this system, we use a semidefinite optimization to
solve for the relative position.

B. Mutual Coupling Model

Accurate mapping of coupling measurements to physical
parameters of the array (PCM in Fig. 2) is critical for proper
shape reconstruction. The PCM algorithm presented in this
work is called Spiral Match (discussed in detail in Section III)
and maps the measured complex-valued coupling to a distance
between the phase centers of the elements. Near- and far-field
electromagnetic interactions among the elements and with
the environment can lead to a rich and sometimes nontriv-
ial behavior for mutual coupling. Reactive fields, occlusion
(blocked line of sight), surface waves, and multipath reflec-
tions of the ground plane, other elements, and nearby objects
could affect the observed coupling between elements. The
exact modeling of these effects is challenging in simple, ideal
scenarios and is impractical if not impossible in the continu-
ously changing context of a flexible phased array. Fortunately,
these effects are second order in many intra-array coupling
scenarios, where a far-field-like propagation mode dominates.
Instead of an electromagnetically complete coupling model,
we aim to create a simplified model with sufficient accuracy
for shape reconstruction and adaptability for use with a variety
of element radiator types.

The underlying philosophy behind Spiral Match is to match
the measured coupling to distance using far-field properties of
the element antennas as the individual antenna properties can
be easily measured and are relatively insensitive to array shape.
We start by approximating the coupling between antennas i
and j in terms of the electric field of a far-field propagating

plane wave, i.e.,

S(|l,;,,|) ~ 4e*j(wt+k|l,;n ) )

’mn’

where |l,;n| is the linear distance between antennas m and n,
k is the wavenumber, w is the angular frequency, and A is
an arbitrary amplitude scaling factor. It is assumed that phase
grows linearly with distance between antennas (|l,:m |), and the
coupled power falls off as (1/ |l,;n|2).

To evaluate this approximation, a simple study is performed
with two 2.5-GHz ground plane backed folded dipole antennas
(as described in detail in Section V-B). The coupling between
dipole antennas was measured versus their distance, as shown
in Fig. 3(a). Note that the ground plane is modified to maintain
continuity at all distances. The coupling power and phase are
plotted in Fig. 3(b) and (c). The measured coupling power
is accompamed by two trendlines: the first follows the Friis
(1/ |lm,l| ) trend, the second follows a (1/ |lmn| ) trend.”

The coupling phase measurements roughly follow the linear
trend predicted by the expression for a far-field propagating
wave. Fig. 4 compares the pair measurement results to the cou-
pling measurements between elements in a flat, eight-element
1-D array of the same folded dipoles with a pitch of 72 mm.
Since the element pitch is fixed, in-array phase measurements
only exist at multiples of 72 mm. These measurements also
follow the linear model, suggesting that the presence of other
elements in the array does not significantly disturb the phase
of the propagation. While the measured phases in the study

2This (1/|l,;,1|4) trend is commonly observed for communications systems
with signals traveling long distances over an infinite conductive or lossy
surface (usually the earth) [27]. For close distances, the measured coupling
follows the (1/ |l,,m| ) as the ground plane approximates an infinite conductive
surface. However, as the distance between antennas increases, the infinite
surface approximation no longer holds as the ground plane becomes relatively
narrow, and the measured coupling returns to the (1/ |lm,1| ) trend. This change
in the distance exponent has a relatively small effect on the final shape
reconstruction accuracy but emerges from a known, measurable phenomenon
and can be incorporated into Spiral Match for a given array without much
added modeling complexity.
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Fig. 3. (a) Antenna pair coupling study test setup. The continuous ground
plane is maintained for all antenna distances. (b) Coupling power measurement
compared with two different propagation models. Measurement averaged over
the bandwidth from 2.3 to 2.7 GHz. (c) Coupling phase measurement plot.
Antenna pair measurements compared with far-field linear phase propagation
model. Measurement is at 2.48 GHz. In both the power and phase plots, linear
model traces are normalized to the first measured distance.

do not match the linear model precisely, they do suggest that
the trend holds.

While a more accurate and complex phase model could
be developed, there is a fundamental tradeoff between the
specificity of the antenna models and the generality of the
algorithm; we have taken the position of keeping the model
more general.

Under the coupling scenarios of Fig. 3, the elements
experience relative position changes but no relative rotation.
However, when a flexible phased array is bent, its ele-
ments experience changes in both position and orientation.
To account for the change in coupling due to this rotation,
we employ the far-field radiation pattern of the element anten-
nas. Element radiation patterns can be determined through
analysis, simulation, or measurement.

We will demonstrate that, although far-field phase
propagation and radiation pattern are imperfect mod-
els of the coupling between elements within a phased
array, they can be wused to produce accurate shape
reconstructions.
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Fig. 4. (a) Ground plane backed dipole array. (b) Unwrapped coupling

phase measurement plot. In-array measured phased is compared to antenna
pair measurements and far-field linear phase propagation model. Measurement
is at 2.48 GHz. Traces are normalized to the first pair measurement distance.

With the motivation for and justifications of the Spiral
Match clarified, Section III details its implementation and the
nuances that emerge.

III. SPIRAL MATCH

In this section, we will discuss the details of Spiral Match,
which is a candidate for PCM. The name Spiral Match is
inspired by the spiral shape generated in a polar plot of
the decaying amplitude and rotating phase versus distance of
propagating waves.

A. Definitions and Assumptions

Our overall goal is to generate a bijection (i.e., a one-
to-one correspondence) between mutual coupling and dis-
tance. We begin by modeling the raw mutual coupling matrix
S € CN*N for a 1-D phased array® as

s = amDm(H,,‘l;Za‘an(@nm) e—j(¢m+¢n+k|lm-n ) 3)
mn

O = cos ! T2l )
[ |

where a,, is the total fixed amplitude offset (due to line
attenuation, mismatch, gain, and so on) in antenna m, D,,(0)
is the directivity of antenna m for an angle 6 relative to
broadside, /,,, is the vector pointing from the phase center of
antenna i to the phase center of antenna n, ¢,, is the total fixed
phase offset in antenna m, and 7, is the unit vector normal
to the surface of the array, which describes the orientation of

3The model for a 2-D phased array is very similar and involves only chang-
ing the directivity function to a function of two variables (i.e., D; (Gpun, @mn)):
the azimuth and elevation angles between elements m and n.
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Fig. 5. Visualization of forbidden and allowed regions of the 6, @ |I,;,l|
vector space for physically restricted phase arrays. The “constant curvature”
line is shown in dashed blue in the center of the allowed region. We also
illustrate an example of a shape that generates an allowed {6y, |l,,,,,|} pair
(top right) and a forbidden {0, |l,,,,,|} pair (bottom right). As we can see,
the forbidden {6, |lnn|} pair can only be generated if the array is cut in
half.

antenna m. We take D,,(0 = 0) = 1 for all m’s. We assume
no significant angle dependence for the phase response of the
antenna.

As is evident, there are amplitude and phase offset terms that
can prevent us from drawing a bijection between coupling and
distance. To isolate the distance terms, we perform a one-time
calibration of the array in the completely flat configuration.
The information gathered during this measurement is another
coupling matrix, S"at:

st — @ DuO)anDu ) (ool i]) (s
mn

153

Because the geometry of the flat configuration is fixed and
known, we can make some basic assumptions to simplify the
model for flat coupling. First, in a flat array, 01 = (7 /2)
when m # n. Moreover, assuming that our array is composed
of identical antennas, D,(#) = D, (#) = D(@) for all m’s
and n’s. Thus, we can simplify our flat coupling model to

('Ta!
Imn

2
ghlat am“"l}(%) o= (Pntduth

|1 fat

) (6)

Moreover, |l,‘jﬁ,‘| is known in advance. To eliminate the fixed
power and phase offsets, we define the normalized transfer

function, H

Sm
Hy, = S,%% @)
_ D(emn)D(enm) ’l;ﬁnz;: —]k( o l,,,,‘,‘|) )
= —
D(Z) il

B. Constant Curvature Assumption

The dependence of the transfer function, H, on the angle
matrix, 6, presents a complication. Angles 8,,, and 6,,, are
two additional degrees of freedom, theoretically independent
of |l,,n|, which presents a challenge to finding a bijection
between coupling and distance. In the case of two mechani-
cally detached radiators, each of the three variables |l,:,,, [, Opns
and #,,, can induce changes in the coupling independently.
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However, because our radiators are fixed to a nonstretch-
able ground plane,* mechanical constraints in this system
reduce the allowable space of parameters from all of R? to
a smaller subspace in R3. To illustrate this, let us consider
the special 2-D case of only |/,,,| and 6,,,; the mechanical
constraint has the effect of partitioning R> into “forbidden”
and “allowed” subspaces, where pairs of {|l,,|, Gun} in the
“forbidden” subspace are incompatible with the mechanical
constraint, as illustrated in Fig. 5. The “allowed” pairs occupy
a subspace in the shape of a triangular wedge: for some
distances, the angular freedom is highly restricted and for other
distances, the angular freedom is large.’

There are multiple methods of dealing with the problem
of optimizing over a high-dimensional space while respecting
the mechanical constraints at play. One is to computationally
simulate the array and generate the {|/,,|, @un,6Gum} triplets
through brute force. Another is to attempt to characterize this
subspace analytically. Finally, we have the option of assuming
this subspace is very thin and treating it as a line. This third
option is equivalent to assuming that the array ground plane
only takes on shapes of constant curvature, and this is the
option we elect to use for the purposes of this article.® This
is reasonable, as, in the most practical case, where the surface
bends smoothly without sharp kinks, the local curvature in
a small neighborhood of several adjacent antennas can be
considered constant. This allows our approach to be applied
locally even for nonconstant curvature cases.

Furthermore, the signal-to-noise ratio (SNR) of measure-
ments between elements that are far apart, with many inter-
vening elements, is lower than elements within a smaller
neighborhood (due to occlusion, reflections, attenuation, and
so on) and do not contribute a great deal to the overall quality
of the shape reconstruction.” As we will see in Section IV,
coupling measurements between far apart elements have a
diminishing impact on shape reconstruction, and thus, it is
not necessarily important how we model them.

Using the constant local curvature assumption, we have
reduced the space of independent variables to R' and have,
thus, found a bijection between 6,,,, and |/,,,,|. This implie§ that
we can replace our angle-dependent directivity, D (0., (|Lunl)),

4Even a stretchable ground plane places restrictions on antenna mobility
and introduces a mechanical constraint that reduces the allowable space of
independent variables, though to a lesser degree.

STwo caveats about the exact visualization presented;

1) This plot looks different for different antenna pairs and is characterized
by |/,

2) The exact appearance presented here is inaccurate: the allowed region
may not grow positively with increasing distance. The constant curva-
ture assumption is not guaranteed to be a line. The space may not be

symmetric.

61t should be noted that the general framework presented so far does not
depend on this assumption, and implementations of the first two options are
certainly possible.

"This assumption does not preclude an ability to reconstruct the shape of
phased array systems with large numbers of elements. We can instruct our
algorithm to only measure and model local measurements, which can each
have a different curvature. Although, for each small neighborhood of antennas,
a constant local curvature is assumed, the curvature for an adjacent (and
possibly overlapping set) can be different, leaving open the possibility for a
shape with varying curvature.
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Fig. 6. Side view of a flexible phased array (f = 2.5 GHz, 0.64
antenna spacing, and quarter-wave dipole antennas) with constant curvature,
R = —0.222 m. Ground plane and dipole feed are in black and antennas in
red.

with a distance-dependent directivity, D(|l,,:,, |). This simplifies
our transfer function model to
_ D(|lmn|)2 |l§ﬁzl|efjk(
n=— == 1
D)2 |1,

mn

bon *|13'}“J|). 9)

ﬁWe choose to determine the relationship between 6,,, and
|lun| computationally; we begin by geometric modeling of the
array. An example of the array model with a constant radius
of curvature is shown in Fig. 6, where a 2.5-GHz flexible
phased array with 0.64 antenna spacing and dipoles antennas
that extend 0.254 normal to the local ground plane is shown.

We iterate over a large number of radii of curvature,® where
R < 0 corresponds to convex array orientation and R > 0 to
concave array orientation. At each iteration, we generate one-

. N - pul
to-one mappings R — |[,,,] and R = 6,,,. To generate our
bijection, we simply invert R

Onn ([l ]) = 3" ([ma)-

Practically, this is implemented simply as a vector of
and a vector |/,,,|, which are paired and correspond to a vector
of curvature radii.

We now have a bijection between distance and angle,
pushing us one step closer to incorporating directivity in our
model. To quantify directivity, there are a number of options:
analytical antenna model, simulated directivity pattern, and
direct measured results. Any of these options yields a function
D (@), which completes our model for the transfer function, H.

(10)

C. Iterative Spiral Match

Armed with a model that draws a bijection between mutual
coupling and distance, we can theoretically execute Spiral
Match. The Euclidean distance between the elements m and
n, as defined by (1), can be estimated by minimizing the
magnitude of the difference between the measured transfer

function, M = gmeas bent /gmeas. flat | 4 the estimate of (9)

2

: meas N
Emn - arg min ’Hmn - Hmn(|lmn|)’ (11)
un | €[z ]
where d™n and d™ are the minimum and maximum phys-

ically possible distances for the antenna pair. This can be
envisioned as the projection of the measurement H**° onto

8In this example, R € +[0.025, 1] m.
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Fig. 7. Visualization of the Spiral Match algorithm. In black, the coupling
transfer function model, H,,;,(|lyn|), for variable distance is given. The red
“X” is our measured coupling, H,=®. It is “projected” onto the model via
the argmin function to give us the blue circle, which is the position on the
model that corresponds to our predicted distance, E,,;,.

the closest location on a spiral generated by H,,,, as shown
in Fig. 7, and is the essence of Spiral Match. This location
corresponds to the predicted distance, |l,;n|. Unfortunately,
because of measurement noise and imperfection, solving for
the Euclidean distance in a single step leads to errors, which
can result in potentially nonphysical solutions.

The single-step Spiral Match projection is prone to issues
in the presence of nonline-of-sight (NLOS) element coupling
for convex configuration, where NLOS and surface-mode
coupling can dominate. In this case, power changes do not
follow the simple directivity model. In addition, amplitude
ambiguity at a given phase for an imperfect measurement
can lead to erroneous projection of the measurement onto an
incorrect segment of the spiral (introducing distance error on
the order of 1).

Small distance error is acceptable and can potentially
be fixed in the second step of our framework semidef-
inite relation (SDR); large distance error, however, often
makes SDR unworkable and results in a completely erro-
neous shape prediction. Mitigating large distance error is
the intention of the iteration process discussed in the
following.

To mitigate these issues, we invoke Spiral Match in a
number of iterations, each time adding more constraints to the
system to help ensure the accuracy of the predicted Euclidean
distance. These iterations and the associated constraints are
shown in I. In the first iteration, we assume no curvature polar-
ity (concave/convex) to minimize constraints on the problem.
Without a polarity, we make no assumption of the geometry
and, thus, do not include direcjivity in the Enodel. For the
first pass, we assume that D(|l,,,|) = 1Vi, |l,,,| and use the
optimization function in 11 to compute the first prediction of
the EDM, E'. The result of this first iteration is a very crude
prediction of Euclidean distance that is sufficiently accurate to
determine the polarity of the shape. The polarity p € {—1, +1}
(—1 being convex and +1 being concave) is decided using a
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TABLE I
ITERATIONS OF SPIRAL MATCH

Iteration # Constraint(s) Action ‘ Result ‘ Calculation Output
1 - - Et Calculate polarity Polarity
2 Polarity Add directivity if concave E? Run RWC Phase wrap matrix
3 Polarity, Phase wrap matrix | Restrict distance search space E3 - -
voting scheme’ use the better one. An obvious candidate for this metric is the
“projection error,” A H, defined as
— Qi : flat| _ ml . . >
p = sign 251gn(|lmn Emn) (12) AH,,, = min H»® — H,,,n(’lmn’)’ (15)

i#]

In the second iteration, we use p to inform whether or
not to include directivity in the coupling model. The second
prediction of the EDM, E?, is computed using the optimization
function in (11). Having eliminated ambiguity about polarity
and including the directivity for concave shapes, we can
turn our attention to the problem of phase wrapping-induced
distance error. These errors are on the order of A, which
is often large enough to violate physical constraints, and
so it becomes germane to develop such a solution that will
intelligently identify violations. We call it “recursive wrap
correction” (RWC).

RWC, the details for which are provided in Appendix A,
is an algorithm that converts a matrix of integers, R € Z2,
representing the number of complete phase wraps associated
with the distances in E?, to a “corrected” phase wrap matrix,
R’. Tt can also correct for outlier measurements not caused by
phase-wrapping that may carry large distance error.

In the third iteration of the Spiral Match algorithm,
the search space for distance is truncated to a single
one-wavelength range as follows:

i | € [Rop s (RL, +1)2) (13)

mn

to ensure that all predicted distances have the same number of
wraps as RWC predicted. If R’ is correct, this has the effect
of ensuring that there are no phase wrapping-induced distance
errors, which improves Spiral Match’s accuracy. Spiral Match
culminates with a final minimization, using the reduced search
space

2
E} = arg min
mn
€[ Ry (R, +1)0)

‘HHT;aS - Hmn(|lr:;n|)‘ (14’)

bon

At this point, it is unlikely that E3 is perfectly symmetric.
This is acceptable for the purposes of the next step—ASC—
but it can be advantageous because we have two candidates for
distance for each element pair. We can leverage this advantage
by finding some metric to compare these two, and opting to

9N? — N pairs are an even number, and it is possible that p = 0. If this
happens, it is likely because |/faf| — E1 '~ 0, and a small degree of error
in E], is pushing the difference above and below zero for different (i, ;).
In this case, the array is likely in a flat or an approximately flat shape, and the
choice of polarity is almost irrelevant. In the algorithm, we overwrite p =0

cases to have p = +1 for these incredibly rare circumstances.

I | €[ Ry 2. (R}, +1)A)
which corresponds to the distance in the complex plane
between the measurement and the model at the predicted
point, E . A large projection error is an indication that
the model does not possess a complex value close to the
measurement—implying large measurement error. However,
this implication only holds some of the time; we have observed
that this correlation between prediction error and projection
error occurs for the patch antennas discussed below, but not
for the dipole antennas. Because this is another “switch,” we
can elect to turn flip it or not. To “flip it,” we force the EDM to
be symmetric using the projection error as the deciding metric

B E}  AHu, < AH,,

= 16
E} AHuy > AHyy, (16)

where E3 is the symmetrized version of E3. E? (or E*)
is the input to the second phase of the shape reconstruction
framework algorithm, as discussed in the following.

IV. CANDIDATE FOR ASC: SEMIDEFINITE RELAXATION

Using a prediction of the EDM corresponding to antenna
phase centers on a flexible phased array, E3, we can solve
the problem of reconstructing relative position or shape. Like
many other high-dimensional problems, this can be solved
with a single eigenvalue decomposition [26]. Solving the
position problem with an EDM in this way is called “Classical
Multidimensional Scaling” (MDS), which involves few matrix
operations. MDS, simple as it is, typically fails for imperfect
EDMs. If, for example, E,, = |, — rjl2 + o, wWhere
Oy 1S some noise-adding term, our eigenvalue decomposition
may yield complex (i.e., nonphysical) eigenvalues. In addi-
tion, sparse or mislabeled EDMs cannot be used with MDS.
A number of algorithms have been written and studied for
different purposes and qualify as candidates for the second
transformation, ASC [26].

In this system, we do not suffer from sparse or mislabeled
EDMs and choose to use semidefinite relaxation (SDR)'C as
the candidate for ASC, for the following reasons.

1) SDR offers the option to use a mask matrix W to weight
elements in the EDM individually. This allows us to

10we implemented SDR as recommended in [26]—written in MAT-
LAB using “cvx,” a framework for performing convex optimization in
MATLAB [28].
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TABLE II
EDM MASK MATRIX STRUCTURE CANDIDATES
Type Equation Knob(s)
Uniform Wn =1 -
Bina _ L Im=nl<a a
Y 0 jm—n|>a
Linear Win =alm—n|+0b a, b
Quadratic Winn =alm —nl2 +bm—n|+c | a, b, c
Exponential | Wy, = a=blm=nl 4 ¢ a, b, c

control how much each EDM entry “matters.” Because
local coupling measurements have higher quality than
distant measurements, we want to be able to weigh local
measurements more.

2) SDR searches a much smaller, convex vector space and,
thus, guarantees a physical result while also decreasing
runtime.

3) SDR showed the best performance along with multiple
metrics in [26].

The option to use a mask matrix W to window entries that
have not been collected (i.e., in mic/speaker localization in a
large theater) is an option that allows us to use this method for
large array systems or ones where some elements have only
either a receiver or a transmitter. In this work, we collect a
completely dense EDM, and we use a mask matrix to weight
entries based on SNR.

Recognizing that SNR(S,,,,)
EDM error, 0E, defined as

it is likely that the

L

L 12

OEmn = ||lmn| = E3, (17)
follows the general trend
SE,y o |1Mat]* (18)

where k is some unknown exponent. We can leverage this
known relationship by weighting higher quality EDM entries
more than lower quality ones. The intuitive approach to
implement this is to have entries in matrix W decrease as
we move away from the diagonal.

We have the freedom to design W as we choose, based on
the system, to minimize shape reconstruction error. We have
explored a number of structures for W, some of which are
presented in Table II. In most of these structures, we have a
design “knob” that can be turned to adjust for different systems
and optimized to minimize shape reconstruction error. We have
found the best performance with a mask matrix where entries
are uniform for close pairs and exponential for far pairs.

V. PASSIVE FLEXIBLE PHASED ARRAYS
A. Test Apparatus

In order to validate the proposed shape reconstruction
method, we built several connectorized flexible phased arrays.
While lacking the dynamic, multipurpose capabilities of an
integrated flexible phased array, connectorized arrays allow for
quick measurements of mutual coupling (e.g., by a standard
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Fig. 9. (a) Folded dipole antenna design dimensions. (b) Measured and

simulated folded dipole input matching and adjacent element coupling.

vector network analyzer). The connectorized array elements
are designed to have center frequencies close to 2.5 GHz with
an element pitch of 0.64. Results from eight-element, 1-D
arrays with folded dipole and patch antennas are presented
in the following.

A block diagram of the measurement setup of a connector-
ized array on the rigid frame is depicted in Fig. 8. In order to
measure the full coupling matrix of the array without changing
connectors, each element connects to an RF splitter then two
digitally controlled 8-to-1 RF multiplexers that are then con-
nected to the ports of a vector network analyzer. A computer
and script control the multiplexers, trigger the VNA, and log
the coupling measurements. To flex the connectorized arrays
into known shapes in a quick and repeatable fashion, rigid
wooden frames of known convex and concave bend radii were
designed and built. These frames are shown in the first column
of Fig. 12.

B. Folded Dipole Array Results

The folded dipole used in the measurements is shown
in Fig. 9. Ground plane-backed dipoles (folded or unfolded)
are well suited to mutual coupling shape reconstruction. Radi-
ation from a dipole originates from the current distribution
on the arms and is initially omnidirectional (except for the
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Fig. 10. Shape reconstruction results for passive 2.5-GHz folded dipole phased arrays. (a) Concave wooden frames with dipole antennas and curvature radii.
(b) EDM error heatmaps and mean EDM error (A E) for concave shapes. (c) Reconstructed antenna shapes (red), true antenna shapes (black), and mean shape
error (Ax) for concave shapes. (d) Convex wooden frames with dipole antennas and curvature radii. (f) EDM error heatmaps and mean EDM error (AE) for
convex shapes. (f) Reconstructed antenna shapes (red), true antenna shapes (black), and mean shape error (Ax) for convex shapes.

direction along the arms themselves) prior to reflection off of
the ground plane. Because this omnidirectional radiation orig-
inates well above the ground plane, the coupling is less sen-
sitive to occlusion and has propagation properties close to the
ideal far-field assumed by our simplified propagation model.
The folded dipole presents an input impedance of 275 Q
at its arms. A high-impedance edge-coupled quarter-wave
transmission line extends to the ground plane, transforming
the antenna input impedance and connecting to a 50-Q SMA
connector.

The folded dipole array shape reconstruction results are
shown in Fig. 10. The far-field radiation pattern used
in the algorithm was determined using a finite-difference
time-domain (FDTD) simulator. The accuracy of Spiral Match
is measured by A E, the mean element pair distance error. A E
is the mean difference between the predicted distances and
the “truth” distance predicted by the known physical design
dimensions of the frames. The accuracy of the shape recon-
struction is measured by Ax, which is the mean difference
between the reconstructed element position and the position
of the elements according to the frame design dimensions.
An exponential weighting matrix was used within the semi-
definite relaxation algorithm.

C. Patch Antenna Array Results

The next array used for testing the shape reconstruction
algorithm is an eight-element linearly polarized patch antenna
array. While the folded dipole antennas are near ideal candi-
dates for shape reconstruction, patch antennas present a greater
challenge. The challenges offered by patch antennas are a
bellwether for if shape reconstruction could be a ubiquitous
tool for a wide variety of flexible arrays or is limited to

—S11 meas

-20 —S21 meas
m --S11 sim
= - =821 sim

-40

-60 ‘

2 2.2 2.4 2.6 2.8 3
b. f [GHz]
Fig. 11. (a) Patch antenna design dimensions. The substrate extends 5 mm

around the copper patch. (b) Measured and simulated patch antenna input
matching and adjacent element coupling.

a narrow subset of ideal systems. Typical patch antennas
are low profile, highly resonant, and inherently directional
with radiation emerging from fields located at both ends
of the patch along its excitation axis (E-field line). In a
flexible array, their low profile means that they are more
susceptible to occlusion and do not share the pseudoomnidi-
rectionality of the ground plane backed dipoles. The highly
resonant nature (particularly when built on thin substrates)
leads to low matching bandwidth. Low matching bandwidth
can affect the quality of coupling measurements as a pair of
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Fig. 12.  Shape reconstruction results for passive 2.5-GHz patch antenna phased arrays. (a) Concave wooden frames with patch antennas and curvature radii.
(b) EDM error heatmaps and mean EDM error (A E) for concave shapes. (c) Reconstructed antenna shapes (red), true antenna shapes (black), and mean shape
error (Ax) for concave shapes. (d) Convex wooden frames with patch antennas and curvature radii. (¢) EDM error heatmaps and mean EDM error (A E) for
convex shapes. (f) Reconstructed antenna shapes (red), true antenna shapes (black), and mean shape error (Ax) for convex shapes.

patches could de-tune from each other as the array changes
shape.

The presented patch antenna, as depicted in Fig. 11, is made
with the 1.27-mm-thick high dielectric substrate (¢, 11.2) in
order to reduce their size and better facilitate bending. The
feed is inset by 6.35 mm in order to match to 50 Q. The
far-field radiation pattern used in the algorithm was determined
using an FDTD simulator. The results of the patch antenna
shape reconstruction are shown in Fig. 12. The patch antennas
shape reconstruction is as accurate as the dipole reconstruction
with the exception of the most convex shape. The final matrix
in Fig. 12 shows higher error in the off-diagonal element pair
distances, which would indicate that occlusion caused by the
extreme bend is the culprit. Despite this, the results show the
viability of the shape reconstruction algorithm for radiator with
the tightly confined near-field profile.

VI. ACTIVE INTEGRATED FLEXIBLE PHASED ARRAY
A. Array Design

While the passive, connectorized arrays presented above
are useful tools for understanding mutual coupling shape
reconstruction, they do not provide the utility of a fully
integrated flexible phased array. A truly self-contained flexible
phased array is enabled by RFICs, which combines array
element functions (frequency synthesis, phase shifting, power
amplification, and so on) in a compact and low-profile pack-
age. Conventional silicon ICs are rigid but are sufficiently
small as to not significantly change the flexibility of a larger
flexible phased array. An integrated circuit flexible phased
array prototype was created to demonstrate mutual coupling
shape calibration and reconstruction. The implemented array

is a 1-D, eight-element transmit and receive capable array
operating at 10 GHz built on a four-layer flexible printed
circuit board (PCB), as presented in [21] and shown in Fig. 13.
The circuit and radiator subcomponents are briefly described
below.

1) Element Circuit: Each element circuit consists of a
custom single-channel transmitter/receiver integrated circuit,
which is implemented in a standard 65-nm CMOS process.

The RF path of the RFIC starts with a 2.5-GHz phase
reference signal, which is shared by all elements in the array.
The phase reference is used by the phase-locked loop (PLL) to
synthesize 10-GHz IQ signals. The PLL uses programmable
divider current injection to provide 360°+ phase control to
its output, which is fed to both the transmit and receive paths.
An SPI digital interface controls all programmable subcircuits.
In the transmit path, the signal passes through a programmable
IQ summation phase shifter, which provides another indepen-
dent 360° phase control. The phase shifter is controlled by a
programmable SRAM, allowing for rapid phase shifting for
beam steering or data modulation. The phase shifter can be
disabled and bypassed to reduce power consumption. With
the PLL phase control and the IQ summer, the transmit and
receive phases can be set arbitrarily and independently. The
transmit path ends in a power amplifier (PA) and balun before
the signal is sent off-chip to the radiator.

The receive path begins at the same balun that the PA
is driving. A receive-enable switch between one side of the
balun and ground allows the receiver to measure the PA
output (switch closed) and allows the receiver to see higher
impedance when the PA is not operating (switch open).
A bypass-able amplifier ensures that the receive channel has
sufficient dynamic range to measure small signals and the large
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Fig. 13. (a) Integrated circuit-based flexible phased array with eight elements
bent in hand with front shown. (b) Array back with feed network, chips,
interposers, and circuitry shown.
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Fig. 14. Custom RFIC element circuit block diagram.

signals from self-loop or adjacent element measurements. This
amplifier is followed by a direct down-conversion IQ mixer.
The resulting baseband IQ signals are digitized and processed
off-chip.

Each element RFIC is mounted on a thin two-layer inter-
poser made from a traditional RF PCB substrate. While PCB
substrates are rigid when thick, a small, thin interposer does
not affect the flexibility of the larger board. The supply
filtering capacitors are aligned with the axis of bending to
minimize their effect on overall stiffness, ensuring that the
bend radius is limited by the plastic deformation of the flexible
PCB. The block diagram is shown in Fig. 14, and RFIC die
photograph and interposer are shown in Fig. 15.

2) Radiator: The radiator, built from a single sheet of cop-
per on polyimide, is a ground plane backed dipole. By align-
ing the dipole arms with the axis of bending, the array
can be flexed significantly without strongly affecting radiator
performance. In addition to having favorable properties for
shape reconstruction, ground plane backed dipoles provide the
wide, single-lobe pattern that is desirable for beam-steering
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Fig. 15. (a) RFIC die photograph. (b) Interposer with RFIC. (c) Three
interposers mounted on flexible PCB.

applications. The radiator, as shown in Fig. 16(a), is mounted
perpendicular to the surface of the ground plane, which avoids
the need for a thick, likely rigid, layer of the substrate. Element
pitch is 0.64. The measured and simulated far-field patterns
with and without bending are shown in Fig. 16(b) and (c). One
leg of the radiator connects to a single-ended transmission line,
while the other is grounded. The vertical feed acts as a balun to
convert the input to a differential drive for the radiating arms.
The residual asymmetry is observed in Fig. 16(b) as the pattern
tilts slightly toward the grounded leg. Overall, the simulated,
flat, and bent results match closely. The deviation between
bent and flat performance is present in the ¢ = 90° cut where
the bent result experiences slightly less lobe splitting than the
flat simulated and measured results. This is consistent with
the expectation that a convex bend increases element spacing,
decreasing the interelement coupling, which contributes to
lobe splitting. This pattern change with the array shape is
small and does not meaningfully affect the quality of the shape
reconstruction results.
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Fig. 16. Element radiator. (a) Radiators mounted on flexible PCB and radiator
dimensions. The feet beneath the fold line are soldered to the circuit board.
(b) Measured and simulated in-array element patterns for ¢ = 0° cut. Pattern
is measured flat and when the array is conformed to a 120-mm convex bend
radius. (c) Measured and simulated in-array element patterns for ¢ = 90° cut.
All measurements are normalized to their global maximum.

B. Active Integrated Flexible Phased Array Shape
Reconstruction

Shape reconstruction using the flexible integrated
circuit-based phased array is demonstrated in Fig. 17.
Eight rigid frames (R = 100, 150, 220, 400 mm) were used
to provide repeatable reference dimensions. The on-chip PAs
and receivers were used to collect the coupling measurements.
When adjusted by a factor of four to account for wavelength
difference between 2.5 and 10 GHz, the final shape error,
Ax, outperforms the connectorized 2.5-GHz dipole array.
The minimum, maximum, and average Ax’s are lower.
While some of this performance increase can be contributed
to a smaller ratio of bend radii to array length, it shows
the viability of shape reconstruction in integrated circuit
arrays. The shape reconstruction framework is shown to be
frequency agnostic by these results. While the framework
itself is agnostic, there are practical concerns for which
frequency is involved. The 10-GHz array is smaller, as such
nearby objects and reflectors are relatively farther away and
less likely to affect local coupling measurements through
reflections. As such, the higher frequency may be responsible
for the more accurate results. Improved quality of coupling
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Fig. 17.  Shape reconstruction results for integrated 10-GHz phased arrays
with dipole antennas for various radii of curvature. Left: EDM error heatmaps
and error mean (A E). Right: reconstructed antenna shapes (red), true antenna
shapes (black), and shape error mean (Ax).

measurements does come with a mechanical tradeoff. As the
operation frequency of the array rises, its flexibility could
decrease as the density of rigid or semirigid components, and
the complexity and thickness of signal routing increase with
finer antenna pitch.

VII. GENERALIZING FOR OTHER SYSTEMS

The framework presented in this work is multistaged and
multifaceted, offering many opportunities for modification and



4434

expansion. In this section, we will revisit how this framework
can easily be implemented when other antennas, sizes, or array
constraints are in use.

Our choice of EDMs as a physical constraint is a convenient
(perhaps obvious) one but by no means the only one. A system
that has other sensors or capabilities can easily accommodate
an algorithm relying on angle or curvature as the constraint.
Choosing another physical constraint necessitates modifica-
tions to or alternatives for PCM and ASC as well.

Spiral Match (the PCM algorithm in our implementation) is
rooted in a model for the coupling—this model can easily be
changed to include other constraints or known EM phenomena
to improve its versatility and accuracy. We used our simplified
model to predict the Euclidean distance in three iterations,
but, again, these iterations and the constraints they leveraged
were system-dependent. Additional iterations can be added if
a system is more or less constrained. Moreover, the parameters
of our iterations can be easily changed for new systems. For
example, the constraints used in the RWC algorithm can be
easily changed.

New candidates for PCM could leverage frequency diver-
sity if the system included broadband antennas. While
broadband systems could use the single frequency approach
presented in this work, frequency diversity would allevi-
ate phase wrapping ambiguity when determining distance.
Mutual coupling could be measured at multiple frequencies or
using a chirp similar to frequency-modulated continuous-wave
(FMCW) radar from which a distance matrix would then be
constructed.

EDM (the ASC algorithm in our implementation) algo-
rithms are well-researched, each meant to solve a different
type of problem. If we choose to implement this framework
in a massive 2-D array (say 100 x 100), we might choose
to only investigate coupling locally, leaving us with a sparse
EDM. This system might demand a different method to
deal with highly sparse EDMs. The freedom to choose the
ASC algorithm makes the framework highly modular to any
number of nonidealities in the EDM. Many EDM applications,
especially those discussed in [26], include a mask matrix as a
design parameter. We had success with banded mask matrices
that decay exponentially, but, perhaps, another system will
demand a different structure.

VIII. CONCLUSION

In this work, we presented a framework for reconstructing
the shape of flexible phased arrays based on mutual cou-
pling measurements among elements. This autonomous shape
reconstruction is implemented in two steps: we present Spiral
Match, a candidate for the first step, and discuss a semidefinite
programming solution for the second step. Both steps can be
replaced with other algorithms, enabling a level of modularity
that we hope will make this framework both flexible and
more accurate for particular systems. We demonstrated the
accuracy of this approach on two 2.5-GHz passive phased
arrays: one with a dipole and another with a patch antenna.
Finally, we also demonstrated our approach in a flexible RFIC
phased array. The accuracy achieved in the integrated circuit
array reconstruction was ~ 6% of one wavelength. We believe
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this will be sufficiently accurate for calibration-free, real-time
beamforming, beamsteering, or focusing arrays. This article
can serve as the beginning of a broad study into shape
reconstruction algorithms and the diverse applications that they
make possible. This is included but not limited to high-element
arrays, strongly asymmetric shapes, stretchable arrays, 2-D
arrays, and large distributed systems. We believe that mutual
coupling measurements are sufficient for reconstructing array
shapes in all of these circumstances and offering exciting
possibilities in the future.

APPENDIX

A. Recursive Wrap Correction

The input to RWC, R, is defined as

E2
R = ﬂoor(%).

The problem of phase wrapping implies that R, is occa-
sionally one or two phase wraps greater or less than the true
number.

RWC takes place in two steps: recursive error correction
and matrix selection.

1) Recursive Error Correction: The root method of this
step, ®(R), is a recursive algorithm, which inputs a (poten-
tially) erroneous phase wrap matrix, R, and outputs either.

19)

1) Itself, if R is free of errors. This is the canonical “base
case.”

2) [®(R"), ®(R?)], where R' and R? are two options for
matrices that correct a single rule violation in R.

A matrix, R, has potentially many rule violations; each
violation is associated with two potential corrections. Thus,
recursive error correction involves generating and traversing a
binary tree of matrices, where R is the highest parent node and
the terminal nodes form a set, {R’}, of error-free alternatives
to R.

®(R) begins by searching R, starting on the two inner
diagonals to the right and left of the main diagonal ({R,,,,,V|m —
n| = 1}) and ending at the two corner elements ({R,,,Y|m —
n| = N — 1}). Each element is checked for the following two
possible rule violations:

1) discontinuity (i.e., |Ryn — Runt1] > a);

2) wrong direction (i.e., Ry > Ry p+1)-

The exact conditions of these violations (how discontinuity
is defined, in what circumstances the direction is “wrong,”
and so on) will depend on the system that this algorithm
is being implemented. Our system consisted of antennas
separated by 0.6/, thus defining “discontinuity” as a difference
in wrap count between mutual matrix elements greater than
1 (a = 1). We also required that wrap counts strictly increase
for increases in |m — n| (“Wrong direction”).

When an error is discovered, the algorithm breaks out
of the search and begins a new iteration of ®(R) with
two alternatives as inputs. These two alternatives are new
matrices, R' and R?, each with a single element changed
that simultaneously corrects the rule violation and does not
introduce a new violation.



FIKES et al.: FRAMEWORK FOR ARRAY SHAPE RECONSTRUCTION THROUGH MUTUAL COUPLING

Recursion continues until all alternatives are error-free or a
stop condition is reached. The rule violations and corrections
are defined in a way that the stop condition is rarely reached.
The result of this process is a set, {R'}, of correct phase wrap
matrices that are alternatives to the original input, R. We then
move on to the next phase, matrix selection, to pick our final
phase wrap matrix, R’.

2) Matrix Selection: The first phase of matrix selection is to
cut matrices that violate any of the following “global” criteria
(ordered from most important to least):

1) duplication (i.e., R, = R}, k #1);

2) absolute distance limits;

3) symmetry (ie., R, # R,’(T).

Cuttings take place in these three stages. If any stage results
in the cutting of all but one option, that option becomes R’.
If any stage results in the cutting of all options, the cuts do
not take place, and the algorithm moves to the next stage.

If, after these three rounds of cuts, there are still multiple
options, voting takes place based on a set metric. Examples of
metrics include the following.

1) Curvature Discontinuity: Favor matrices that reflect con-

stant curvature conditions.

2) Symmetry: Favor the “most symmetric”’ matrix. This
obviously only applies if the third round of cuts does
not take place.

3) Change: Favor the matrix that is closest to the original.
If the system possesses constraints that can be leveraged,
a metric can be designed to pick the phase wrap map that
most aligns with that constraint. In our case, we opted to use
symmetry if the last cut does not take place and curvature
discontinuity otherwise.

As a final point, it is worth remembering that the conditions
for arriving at this point are rare. In the vast majority of cases,
the original input, R, is free of rule violations and, thus, is also
the output R’'—these metrics and conditions having absolutely
no impact on the outcome. RWC was so seldom used that
we failed to have a dataset large enough to accurately test
for the best metric. On the other hand, in the case where
an erroneous phase wrap matrix is produced by the second
iteration of Spiral Match, the best that we can hope for is
a realistic alternative that can correct for phase wrapping
errors.
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