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AFLT-TYPE SELBERG INTEGRALS

SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

Dedicated to the memory of Richard (Dick) Askey.

ABSTRACT. In their 2011 paper on the AGT conjecture, Alba, Fateev, Litvinov and Tarnopolsky
(AFLT) obtained a closed-form evaluation for a Selberg integral over the product of two Jack
polynomials, thereby unifying the well-known Kadell and Hua—Kadell integrals. In this paper we
use a variety of symmetric functions and symmetric function techniques to prove generalisations
of the AFLT integral. These include (i) an A, analogue of the AFLT integral, containing two
Jack polynomials in the integrand; (ii) a generalisation of (i) for v = 1 (the Schur or GUE case),
containing a product of n + 1 Schur functions; (iii) an elliptic generalisation of the AFLT integral
in which the role of the Jack polynomials is played by a pair of elliptic interpolation functions; (iv)
an AFLT integral for Macdonald polynomials.

Keywords: AGT conjecture, (complex) Schur functions, elliptic beta integrals, elliptic interpola-
tion functions, Jack polynomials, Macdonald polynomials, Selberg integrals.

1. INTRODUCTION

In 2010 Alday, Gaiotto and Tachikawa [3] conjectured a deep relationship between N = 2
superconformal field theory in four dimensions and Liouville conformal field theory on a punctured
Riemann surface. Their correspondence provides a dictionary between correlation functions in
Liouville field theory [36] 58] and the Nekrasov partition function in A/ = 2 superconformal field
theory [37, B8]. One entry of this dictionary relates the instanton part of the Nekrasov partition
function to conformal blocks in Liouville field theory. This relationship allowed Alday et al. to
derive an explicit combinatorial expansion for conformal blocks.

One particularly promising approach to the AGT conjecture was developed by Alba, Fateev,
Litvinov and Tarnopolsky [I]. Let Vir and &/ denote the Virasoro and Heisenberg algebras re-
spectively. Then Alba et al. considered representations L(P, Q) of central charge and conformal
dimension

(1.1) c=1+6Q? and A(P)=Q?*/4— P?

of Vir @ &7, and showed that L(P, Q) has a unique orthogonal basis {|Px)} indexed by bipartitions
A, such that in this basis the matrix element between L(P,Q) and L(P’, Q) corresponding to the
primary field indexed by « coincides with

Zbifund((Pla _P/)7A7 (P7 —P),[J/,Oé)

Here Zyifuna is the key building block — corresponding to the ‘bifundamental hypermultiplet’
— of the instanton part of the Nekrasov partition function, which admits the following explicit
combinatorial expression [13, [16] [52]
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(1.2) Zbifund((u1,UQ),A; (vl,vg),u;m) = H < H <E(u2 —’Uj,)\(i),,u(j),s) —m)

=1 N seA®

X H (Q —m—E(v; — ui,,u(j),)\(i),s))>,

sepld)
where A = (/\(1), /\(2)), n= (,u(l),,u(2)) and, for s = (4,7) € A,
(1.3) E(u, A i, 8) = u—b(pf — i) + b7 (A —j + 1)

with @ in (II) parametrised as Q = b+ b~'. In the above y is the conjugate of the partition s,
so that ,u;» — ¢ and \; — j may be recognised as the (generalised) leg-length [, (s) and arm-length
ax(s) of the square s € A, see (ZI)). Lifting the isomorphism [I2] 9] between Verma modules for
Vir and Fock space representations of < to the level of L(P, @), Alba et al. obtained a closed-form

2
expression in the spirit of [34} [50, 65] for the states [P), o in terms of Jack polynomials P/s_l/ ),
The more general states |P)y then follow recursively from [P), ,.

For & a symmetric Laurent polynomial in k£ variables and «, 8,y € C, define the Selberg average
of 0 as

k

ke 1 a-1 61 R S
<ﬁ>a7ﬁ;7 = m / ﬁ(tl,,tk)Htl (1 _tl) H |tl—tj| dtl dtk,

[071}k =1 1<i<j<k

where the normalisation Sk(a, ;) is given by the classical Selberg integral [14] [I5] 51, 57]

k
(1'4) Sk(a, B57) = / Hta_l 1 —t;) ﬁ_l H ‘ti - tj’?Y dtq - - - ditg
[0, 1}“ 1 1<i<j<k
k

Hr B+ (i — 1)y)T(a+ (i — )y)T(L + iv)

2t Tla+B+@k—i—1)I(1+y) 7

for Re(a) > 0, Re(8) > 0 and
Re(vy) > —min{1/k,Re(a)/(k — 1),Re(B8)/(k — 1)}.

A crucial step taken by Alba et al. was to show that for P+ P’ +a + kb= 0
(15) Zbifund((Pl7 _P,)a ()‘7 0)7 (P7 _P)7 (N7 0)7 Oé)

_ 2 _ _
:m(p),.@“(p')<P§ Y PV [t (20— 1 — )/bQ]>1 D(Q2P) 1—2basi—1?

In the above,

IT (66— X = D +07" 0 = ) (2P + bi +575) ),

(4,7)EN
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fit) = f(tl_l, . ,t,;l) and, for f a symmetric function which expands in terms of the power
sums py as f =Y, eapy, f[t + 2] is plethystic notation (see Section 2.4l for details) for

)

ZC)\H (p)\i(tl,... ,tk) —I—Z).
A =1
The verification of (L)) boils down to computing the Selberg average
k
<P)(\1/’Y) (t—l)Plgl/v) [t+ B/v— 1] >

and comparing this against the explicit form of Zp;pung provided by (IL2]). By the complementation
symmetry

o, By

o N
P = (1) NP((N/j;k,.~~7N—A1)(t)’

for A € Z (the set of partitions of length at most k) and N an arbitrary integer such that N > Ay,
this is achieved by the following integral evaluation [I] (see also [35]). Let & denote the set of
partitions.

Theorem 1.1 (AFLT integral). Let k be a positive integer, \,u € & and «, 3,y € C. Then

k
(1.6) / PP+ gy — 1 TTee @ — ) T 1t — 5 dey - diy,
[0,1]k

i=1 1<i<j<k

LB+ (i —1)y)(a+ (B —i)y+ X\)T(1 + i)
Tla+ B+ 2k—m—i—1)y+ X)) +7)

= PU PO+ 8y - 1]
i=1

m

B T(a+ B+ 2k —i—j — 1)y + A+ p15)
V00 G ey ey

)

i=1j=1

where m is an arbitrary integer such that m > l(u), and

Re(a) > =Xk, Re(B) >0, Re(y) >— min {

1<i<k—1

1 Re(a)+ A Re(B)
kW k—1 k-1 }

The arguments of the Jack polynomials on the right-hand side are again expressed using plethystic
notation, see Section 2.4] for details. Alternatively, both P)(\l/ ”) [k] and Pﬁl/ ”) [k + /v — 1] may be
written in fully factorised form by equation ([2.20]) below. When p = 0 the AFLT integral simplifies
to Kadell’s integral [24] (see also [31]) and for § = ~ it yields the Hua—Kadell integral [19] 23].
Theorem [[L1] is proved in [I] by generalising the Anderson-style recursive proof of Kadell’s integral
given in [61]. Key input in both these proofs is the Okounkov—Olshanski integral formula for Jack
polynomials [39, [41].

In the conclusion to their paper [1], Alba et al. remark that the generalisation of their construction
to WA,, requires a generalisation of the A, Selberg integral of [63] with two Jack polynomials
included in the integrandﬂ For A, such an AFLT-type integral was considered by Fateev and
Litvinov in [II], where they again used a recursion based on the Okounkov-Olshanski integral
to obtain a closed-form evaluation. They also claim a more general A,, AFLT integral, but the

1See also [7, 22] for the relation between A, Selberg integrals and the AGT conjecture.
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evaluation of this integral is only implicit and, unfortunately, the stated recursion relation that
needs to be solved to obtain the evaluation is incorrect for n > 3 (see also (4] in Section [7]).

The first main result of the present paper is the evaluation of the A,, AFLT integral for all
n. Before stating this result we introduce some notation. For k,¢ nonnegative integers and t =
(t1,...,tk), s = (s1,...,8¢) we define the Vandermonde products A(¢) and A(t,s) as

kL
(1.7) Ait)y:= J] (ti—t;) and A(ts):=]]

1<i<j<k i=1j
We also abbreviate dtq - - - dt as dt.
For n a positive integer, let kq, ..., k, be integers such that 0 < ky < - -+ < ky, and let ¢, ... ¢(™)

be a sets of variables (or alphabets) such that (") has cardinality k.. Further let a1, ..., an, 3 € C
such that

(tz' - Sj).
1

(1.82) Re(8) >0, [Re(y)| < ki Re(B + (kn — 1)7) > 0,

n

(1.8b) Re(ar+"'+as+(r—8+i—1)7) >0 forl<r<s<nandl<i<k —k._1,

where kg := 0 We then define the A, Selberg average of a polynomial & (t(l), e ,t(”)), symmetric
in each of the alphabets ¢("), as

Ay, . .
L [klj...,kn(ﬁﬂ A1y ..., 0n, /87 ’Y)

1.9 g\ ,
( ) < >a1,...,anﬂ;’y []?17:,]@”(170517 7an7/8;7)
where
(110) I]€A1?7kn(ﬁ7 al,...,an,,@;'}’)
n ky
= [ o T )
ijl """ n 0.1] r=1i=1
n n—1
y H ‘A(t(r)) |2*/ H |A(t(r),t(r+1)) ‘_V At ..o qe(m),
r=1 r=1
Here
(1.11) Br=-=Pp1:=1, pp:=p

and C’ffl"“’k" [0,1] is a real domain of integration described in Section Il The normalisation
127"'7kn(1;a1, .ooyap, B57) in (LA) is the A, Selberg integral of [63, Theorem 1.2] (see also [56),
Theorem 3.3] for the Ay case), which admits the evaluation

(1.12) Lo (Lo, om, B;9)
R R G R 0601 N Ca)
B 1311;[1 L'(y)

The condition Re(v) < 1/k, may be dropped when n = 1.
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—kr—1

H H rt e toas+(r—s+i—1)y)

X )
+as+ﬁs (ks —ksp1+7—5+1—2))

I<r<s<n =1
where, once again, kg = kpy1 := 0.
For n a nonnegative integer let (a), := I'(a + n)/T'(a) = a(a + 1) ---(a +n — 1) denote the
Pochhammer symbol, and let d,, be the usual Kronecker delta. Then the A, analogue of the
AFLT integral is given by the following identity for the Selberg average of the product of two Jack
polynomials.

Theorem 1.2 (A, AFLT integral). For n a positive integer, let ki, ..., k, be integers such that
0<k <---<ky. Then for aq,...,an, 3,7 € C such that (L)) holds and \,u € &, we have

@) (PRI [ + gy - 1)

K1yeesin

Q1,50 B5Y

_ P(l/“/) [k ]P(l/“/ [kn + B/y — 1]
Xﬁﬁ (a1_|_..._|_ar—|—(k‘1—T—i+1)7))\i
St + B (kR = ey — 1 = MO, — 0)7)),

(r+ - Fan+ B+ (kn+r—n—j—1)y),
o+ B+ (ke — ket kgt —n— L1~ —1)7),,

’,:13

<11

=1y

~x

<.
Il
—

XHH a1+”’+an+ﬂ+(kl"‘kn_n_i_j)’Y)Aﬁuj
041“‘ +an+ﬁ+(kl+kn_n_i_j+1)7))\i+uj.

i=17=1

In the expression on the right, £ and m are arbitrary integers such that £ > (X)), m = (),
ko = kp+1 := 0 and the 5, are as in (LII]).

Note that both sides of (I.I3)) trivially vanish unless I(\) < k; so that without loss of generality
it may be assumed that A € &, . Then the r = 1 term in the second double product on the right
simplifies to 1 upon choosing £ = k;.

Since

(1.14) CHO 1] ={teRM:0<ty <ty < <ty <1},

Theorem for n = 1 is equivalent to Theorem [Tl For p = 0 the theorem corresponds to the
A,, analogue of Kadell’s integral [63, Theorem 6.1], and for 8 = 7 it gives an A,, analogue of the
Hua—Kadell integral [19, 23]. Our proof of Theorem is not reliant on the Okounkov—Olshanski
integral formula for Jack polynomials and instead uses A, Cauchy-type identities for Macdonald
polynomials. One advantage of our approach is that it immediately implies a companion to the A,
AFLT integral, stated as Theorem .1l in Section Ml

Setting k1 = 0 in the A,, Selberg integral yields the A,,_; Selberg integral. The same is not true,
however, for the A,, AFLT integral. Setting k&; = 0 in (L.I3]) forces A = 0 for nonvanishing, thus
eliminating one of the two Jack polynomials in the integrand. In their work on the AGT conjecture
for WA,,, Matsuo and Zhang [66] formulated several conjectures for A,, Selberg integrals of AFLT
type that do have the desired reduction property, but unfortunately as stated their conjectures
appear to be false. In the v — 1 limit of Theorem [[.2] in which case the Jack polynomials

P/Sl/y) [t(l)] and P,Sl/y) [t(”) +8/y— 1] simplify to the Schur functions sy [t(l)] and s, [t(") +5— 1],
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we have managed to prove a corrected Matsuo—Zhang-type AFLT integral, containing a product of
n + 1 Schur functions in the integrand. Because ([.8al) implies that |Re(7)| < 1, in this integral we
must replace the real domain of integration Cé“""’k” [0,1] by the complex contour

(1.15) CFrrskn — C’fl x - x Ckn where Ckr=(C, x---xC,
D e
ky times

defined as follows. Each C). is a positively oriented Jordan curve which passes through the origin,
contains the interval (0, 1] in its interior, and has nonzero slope close to 0. Away from 0, the contour
C. for r > 2 is contained in the interior of C}._1 as shown in the figure below

(r)

For v = 1 we now redefine the A,, Selberg average as follows. In the complex ¢; ’-plane fix the
usual principal branch of the complex logarithm, with cut along the negative real axis and argument
in (—m,n]. Then for 0 < ky < --- < ky, and aq,...,ay, 3 € C such that
(1.16) Re(ap +--+as)>s—r forl<r<s<n
we define

An
Kiposkn Ikl, k (ﬁ; Ay ey Oy, B)

< >a17...,an75 [k-j"ll'rj’kn(l? Ofl, . 7047“ /8) )

where, assuming (LIT)),
(1.17) Ipr o (Oraa,.. . an, B)

n  kr
1 (r) ar—l (r) Br—1
= (2ri)kit R / o, U 1:[ (" —1)

" H A2 () H () 44D g0 g,

The integral (II7]) should be understood in the sense of indefinite integrals since the integrand is
not defined at tl(-r) = 0 € C,. Due to the change in contour, the normalisation is now given by (see

G.9)

(1.18) e (Lo, om, B)

B :1 <(_1)(k{) Zli_l L(krs1 — iﬂlr +2— z))




SELBERG INTEGRALS 7

H ﬁl ar+“‘+0¢s+r—3+i_1)

X . )
ot as+ Bst ks —ksy1+r—s+i—2)

1<r<s<n =1

where kg = kpy1 := 0.
Let (9 := 0. Then our next main result is a closed form evaluation of
klrnykn

(1.19) <<st ) — = >]>sw+1) [t<”)+5—1]> :

Qlyes0m, 8

generalising the 7 = 1 case of (ILI3])). The most concise way to state this is by using the duality
[32, p. 43]

(1.20) sl X] = (—1)Ms, [~ X],
and to instead give the evaluation of
n+1 Eiyeenkn
<H sy [t =20 1)]> ,
at,...,am,fB

where t*t) .= 173 B Before stating this evaluation we introduce the following shorthand notation.
For1<r<n+1let

(1.21a) Ay =+ +an+kr— kg +r
and A, s := A, — A, so that A, ; = —A,,. In particular,

(1'21b) Ar,s =ar+-tas—1t+kr— ko1 — kst kso1+r—s
forl<r<s<n+1.
Theorem 1.3. For n a positive integer, let 0 < k1 < < ky, be integers, aq,...,an, B € C such

that ([LI6) holds, and XV ... X+t e 22, Let t(0) .= 0 and tt) .= 11— 3. Then

n+1 k1yeskn
(1.22) < I 550 [t = t(r—l)]>
r=1

Qlyees0m, 3

ntl )\Zgr) B )\gr) gyl b (A — ko1 s — it 1)Al(_r>

=11 11

r=11<i<j<ly

j—i

r,s=11i=1

b L AN A g

DI 18]tk

1<r<s<n+1i=1j=1

where ko := 0 and kp41 := 1 — B, and where £, (1 <r < n+ 1) is an arbitrary nonnegative integer
such that £, > (A1),

The reader is warned that in order to obtain the above compact form for the right-hand side we
have used a different convention for k,; than in the previous two theorems. We also remark that

3For the evaluation of the average (LIJ) see equation (ZI) below.
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([L22]) displays a significant amount of nontrivial cancellation. For s = r the second triple product
on the right becomes
n+1 4 (kr — kr—l — 7+ 1))\(r)

(@r — Z + 1))\(7')

r=11i=1
Since £, > I(A\(")), this shows that the right-hand side vanishes unless I(A\")) < k, — k,_1 for all

1 < r < n. The integrand, however, only vanishes for I(A(Y)) < k; — kg = k1. Finally we note that
([L22]) has the desired rank-reduction property. If we denote either side of (L.22)) by

k1,....k
I)\(1) K(n+1)(a17"'7an75)7
then it is readily verified that
0 k27 7k k27 7k
I0 N ’;\(nﬂ)(al, ag,...,0p, ) = IA(Q) ’;\(nﬂ)(ag, cey Qi B).

Evaluating the Selberg integral (I4]) for v = 1 is not at all hard; it follows from Heine’s integral
formula for the Hankel determinant of moments of orthogonal polynomials on the real line applied
to the case of Jacobi polynomials, see e.g., [30][47]. We have not found a similarly elementary proof
of Theorem [[.3] and our proof hinges on a novel type of integration formula for Schur functions
indexed by sequences of complex numbers, see Theorem [5.3]

Our third main result applies to Aj, and is an elliptic generalisation of the AFLT integral (I.0)).
This integral, which also generalises the elliptic Selberg integral of [9, [10] [44], contains two elliptic
skew interpolation functions in the integrand. These play the role of the pair of Jack polynomials
in the AFLT integral.

For A\, v a pair of bipartitions, let Ri/u([vl, ..., Vam];a, by t,p, q) denote an elliptic skew interpo-

lation function [45], for which we use the shorthand notation
(1.23) Ri/y([uzli, .. ,usz,vl, ey Vo] a, byt q)
= Ri/u([uzl,uzl_l, . ,uzn,uzgl,vl, ooy Vamliay byt q).

Further let (aq,...,a5;q)00 = Hle [126(1 — arq") and let T'(z;p,q) denote the elliptic gamma
function [49], for which we adopt the usual multiplicative plus-minus conventions

L(z%p,9) =T(zp,9)T(z"";p,q),
T(z*w*;p,q) == T(zw; p, )T (zw™ 5 p, )T (2~ wi p, )T (= w5 p, q).
For A = (AN, X)) € 222 we define the following shorthand for the ratio of products of elliptic
gamma functions,
A()]\(a’bh e 7bk7 t7p7 Q) = A()]\(1) (a‘bl7 . bkv q, t; p)A (2) (a‘bla cee 7bk;p7 ta Q)a

with

T D g b p, )T (pgt'"a /by p, q)
L(t' s p, )T (pat'~'q*ia/br; p, q)

k
A()]\(a|b17" bk q,t; p H

In particular, for u € %,

i=1

1) i <1> @)
Dttt lgh i AP b: T(pati—i—m+1g=2" p=2" o /b:
Ao(a‘b< >n7t7PQ7q7tp HH p p’ ) (pq q CL/ p7 )

1) (2 .. (1) (2)
i1 jo1 D(gn—i=i+1gA pA b p, q)T (pgti—i—nt1g=H +“jp‘*i a/b;p,q)

)
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where

1 4@ (1) (2 (1) (2) (1) (2
(124) <A>n;t;p,q = (qA p>‘ tn 17q)‘2 p)‘2 tn 2 . q)\n 1p)‘n 1t q>‘n p>‘n )
is the spectral vector for the bipartition A. With the above notation we may state the following
elliptic analogue of (L6]), where we note that instead of k we use n to denote the number of
integration variables.

)

Theorem 1.4 (Elliptic AFLT integral). Let n be a positive integer, p,q,t,t1,ta,t3,t4,t5,t6 € C
such that the elliptic balancing condition

(1.25) t2 724 tg = g
holds and such that |p|,|q| < 1. Further let
(5 P)56 (43 VoI (0, @)

Kp i=

2nnl(2mi)n
Then, for A € P2 and p € P2,
(1.26) Kn / Ri/o([tl/zzm . t1/2 :l:] m=1/24 751/2152’15 p’q)
Crp
X R o (225, 022 7 20y 171 Pag) 473 Pagtats, 1 Pte; £ p, q)
+
< 11 thzﬂn fiHrl (boipa) dor e
1<i<jen LE 255 i) A n
n
=HO‘@ IIFﬂ%%nO
=1 1<r<s<6

x A"y o[t 1 Yty 0 ey by, £ s, £ Mt 5 p, q)
X A (8" Ptgtats [telt" M tsta, " Msts, " ats D, )
0

(t"_2t3t4t5/t6 [t 2ty t3tats (A)nstip,q)
Ag(t"_ztgtgm/ts [t =Lty tstats (N nitp.g)

X

where Cyy, is a deformation of T™ (with T the positively oriented unit circle) separating sequences
of poles of the integrand tending to zero from sequences of poles tending to infinity.

For g = 0 this may be viewed as an analogue of Kadell’s integral, and also follows by setting
p = 0 in (6II) below, a fact that was already noted by the second author in [44) Remark 2].
Imposing the constraint t4t5 = ¢, the integral may be viewed as an elliptic analogue of the Hua—
Kadell integral. In this case the integral is invariant under the simultaneous substitutions A < p
and (tl,tQ) — (tg,t(;).

By taking an appropriate p — 0 limit, Theorem [[.4] simplifies to the following AFLT integral
over a pair of Macdonald polynomials Py(q,t).

Corollary 1.5. For A € Z,, p € &, and a,b,q,t € C such that |bl,|q|, |t| <1,

e | e om (e =g
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Xﬁ(a/zi,qzz'/a;q)oo I (21/2), 2/ 73 0)00 dz1 dzn

i=1 (b/Zi, Ziy Q)oo 1<i<j<n (tZZ/ZJ,tZJ/ZZ’ q)oo 21 Zn,
11—t 1— b1
:bwt\u\pq } t>P q } t)
A 1—t 4, 2 1—¢ 54,

Xﬁ (t,at™ ™M at! 7 /b, gt 1b/aqwﬁﬁ
q,tl tz 1 atl zq /b (] P

tn i—j+1 )\—i-uj (])

I

tn i— ]qA it q)

where m is an arbitrary integer such that m > 1(p).

For A = p = 0 the above integral may also be found in [0, Section 6] as a special case of
the biorthogonality relation for multivariable Pastro polynomials. This special case also easily
follows by combining the ; ¥y summation for Macdonald polynomials [27] with the orthogonality
and quadratic norm evaluation of the Macdonald polynomials with respect to the scalar product

<'7 >;L7 see (m)

The remainder of this paper is organised as follows. In the next section we review some basic
material from the theory of symmetric functions. This includes a discussion of Schur, Jack and
Macdonald polynomials as well as the heavily-used plethystic notation. In Section [B] we present
some A, generalisations of the classical Cauchy identity for Macdonald polynomials. Then, in
Section 4 we show that such Cauchy identities are essentially discrete analogues of A, AFLT
integrals, leading to a proof of Theorem and its companion given in Theorem [l In Section
we use integral formulas of Cauchy-type for complex Schur functions to prove Theorem [[.3l In
Section [6] we review some of the theory of elliptic interpolation functions and use this to prove
the elliptic AFLT integral of Theorem [[.4l Finally, in Section [f, we discuss some open problems
stemming from our work.

2. PRELIMINARIES

2.1. Partitions. Throughout this paper N denotes the set of nonnegative integers.

A partition X is a weakly decreasing sequence of nonnegative integers (A1, Ag,...) with only
finitely many of the A; nonzero. The positive \; are called the parts of A, and the number of parts
is called the length, denoted by I(A). The sum of the ); is denoted by |A|, and if |A\| = n we say
that X is a partition of n and write A F n. With the possible exception of finitely many zeros, we
usually drop the infinite string of zeros of a partition so that A = (A1,...,\,) denotes a partition of
length at most n. The set of all partitions and the set of partitions of length at most n are denoted
by & and £, respectively. In particular, &y = {0} where, by mild abuse of notation, the unique
partition of zero is denoted by 0.

We identify a partition with its Young diagram, which is the set of all (i,7) € N? such that
1 <i<Il(A)and 1< j <A This may be visualised as a left-justified array of squares with \;
squares in row i. For example the Young diagram of the partition (6,4,3,1,1) is

[ ]
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The conjugate of A, which is denoted by ), is obtained by reflecting A in the main diagonal. Hence
(6,4,3,1,1) = (5,3,3,2,1,1). Given a square s = (i,j) € N? and a partition A\ we define the
(generalised) arm-length, leg-length, arm-colength, and leg-colength of s by
(2.1) ax(s) := A\ — 7, IA(s) == N — 1,

a(s)=j—1, U'(s):=i—1,
respectively. If s € A this reduces to the standard definition in [32 p. 337]. Note that with the
above notation the function E in (I3]) may also be written as

E(u, M\ 1,8) = u —bl,(s) + b Hax(s) + 1),

where s € \.
A frequently encountered statistic on partitions is

n(A) =Y (i—-Dhi=)_ <A2/> => 1(s).

i>1 i1 SEA

All of the previous notation regarding partitions is extended to bipartitions A € 2?2 in the
obvious way. In particular, p C A will be used as shorthand for x® C A and p® C A®), and
0:=(0,0).

2.2. Generalised shifted factorials. For n a nonnegative integer and b an indeterminate or
complex number, the Pochhammer symbol (b),, is defined as

n—1

(0)n = [T+,

i=0
where an empty product is to be taken as 1. We generalise this to complex z by

(2.2) (b). = %

where now it is assumed that b € C and neither b nor b + z are nonpositive integers. Similarly, for
indeterminate or arbitrary complex b and ¢, the g-shifted factorial is defined as

n—1

(2.3) (b q)n = [ (1 —bd"),

=0
where n € NU {oo} and where |¢| < 1 in the infinite product case. When 0 < ¢ < 1 this can again
be extended to complex z by

(b; @)oo
b;q), == .
(b:2)- (0g%; @)oo
This in particular implies that for n a positive integer,
1
2.4 = 0.
24) (4:9)-n

In terms of the ¢g-gamma function

_ @G @eo i
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and (for z € C\{0,—-1,—-2,...} and 0 < ¢ < 1),

Ly(b+n)
(@) =(1—q)" ~—
L (b)
A generalisation of (2.3)) to partitions is given by
(2.5) (bq,t)x =[] (1 = bg™ Oty = T (bt" 5 9,
SEX i>1

Setting t = ¢ and replacing b by ¢°, and then letting ¢ tend to 1 we obtain an analogue of the
Pochhammer symbol indexed by partitions

B =T 0+ @ =i)), -
i>1

Also frequently used in this paper are the generalised hook polynomials

n .
i F 5 )x -,

(2.6a) ex(git) = H (1 - qak(s)tlk(s)ﬂ) = H(tn “ a)x H W,

SEX i=1 1<i<j<n /IDVEDY

n o
_- (@),

(2.6b) Alg,t) =[] (1 =g =TTt 50 ] TR

sEX i=1 1<i<j<n q 1) M=)
(2.60) ba(q, 1) = LY.

C)\(q7t)

Note that the choice of n on the right of the first two equations is irrelevant as long as n > [()).
Finally, at the top-level we have the elliptic shifted factorials and gamma function. To define
the former we need the modified theta function
0(2;p) = (2:P)oo (P/ 2 D)oo
where z € C* and p € C such that |p| < 1. Then the elliptic shifted factorial is given by

n—1

(b:9,p)n == [ ] 0(bd'; p),

1=0

so that (b;q,0), = (b;q)n. If T'(2;p, q) denotes the elliptic gamma function [49]

00 . .

1 _pz-i-lq]—i-l/z

I'(z;p,q) == H -
= 1A

which satisfies the reflection formula I'(z; p, ¢)T'(pg/z; p, q) = 1, then, in analogy with (2.2]),

I'(bg"™;p,q)
biq,p)p = ———=.
( ) L'(b;p,q)

Similarly, the elliptic generalisation of (2.5 is

(bq,t:p)x = [ [ 0(bg™ Dt sp) = ]t 50, p)a,-

SEA i>1
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To shorten some of our expressions we also use the following shorthand for the “well-poised” ratio
of products of elliptic shifted factorials:

n

bi; q, ;)
AY(alby, ..., b iq,t;p) .
A o 21;[1 (pga/bis q,t;p)y’

from which it is clear that which it is clear that

1
(2.7) AR (alb, ..., bniq, t;p) =

AS(alpga/by, ... ,pqa/bn;q,t;p)

Finally we need

C (b:q,t;p) HQ bqak(s)tl*( s). p)
SEX

CY(b;q,t;p) H9 >‘+]12X_ip)7
(4,7)EX

so that cx(q,t) = C) (t;¢,t;0) and c\(¢,t) = C} (¢;¢,t;0).

2.3. Symmetric functions. Let X = {z1,29,...} be an alphabet of countably many variables
and X,, = {z1,...,2,} an alphabet of cardinality n. Then we denote the ring of symmetric
functions in X (resp. X,,) over the field F by A (resp. A,), see [32]. Typically, we will work with
F = Q, or the extensions Q(v) and Q(g, ).

Given a sequence o = (a1, ag,. .. ) of nonnegative integers such that |«| := oy + g+ - - is finite,
we write o for the unique partition obtained by reordering the o;. Then the monomial symmetric
function indexed by the partition A is defined as

= Z X,
at=X\
where X := z{"25? - - - . Further defining m(X,,) := mx(X)|z,20 for i>n it follows that my(X,) =0
if I(A) > n. The sets {mx(X)} and {mx(X,)}i(n)<n form bases of A and A,, respectively.

For k a nonnegative integer the kth complete and elementary symmetric functions are defined
by
hk(X) = Z xil-'-a:,-k,
1< <<
and
er(X) = Z Tiy - Ty,
1<y <<y,
respectively. For k a positive integer we set e_p = h_; = 0. The generating functions for the
complete symmetric functions is given by

1
=> (X)) =]] Tp—

k>0 =1

and

(2.8) S hey(X) = [[(1 + 221) = U_zl(X).

k>0 i>1
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We also require Newton power sums
k
Pk (X) = Z Ly
i1
for k a positive integer. These admit the generating function
Zpr(X)

PV, (X) = Z — = —Zlog(l — 2x;),
k>1 i>1
so that
(2.9) oo (X) = eV=X).

The most important family of classical symmetric functions are the Schur functions, defined by
the usual ratio of alternants
Aj+n—j
deti<; j<n (m-] )
2.10 sx(Xn) = == L
(2.10) A(X,) N0 S —

for [(\) < n and 0 otherwise. The Schur functions indexed by partitions of length at most n form
a basis of A,. From (2.I0]) it is not hard to derive the specialisation formula [32] p. 44]

' NEGALZENS § N i—i
n times i=1 P Ii<g<k

where k is an arbitrary integer such that k > I(\).

2.4. Plethystic notation. We extensively use plethystic or A-ring notation when dealing with
symmetric functions, see e.g., [18,29] [46]. For X = {x1,z2,...} an alphabet and f(X) a symmetric
function in X we use the additive notation

fzr,20,...) = f(X) = fIX] = flz1 + 22+ ].

Hence X + Y, the sum of the alphabets X and Y, is the disjoint union of these sets. The above
notation forces
(2.12) pr[X + Y] = pp[X] + pi[Y].
A symmetric function acting on the difference of two alphabets is then defined as

pk[X — Y] = pk[X] —pk[Y].
Observe that

pr[(X +Y) = Y] = py[X]

as it should. Inside plethystic brackets we denote the empty alphabet by 0. By (2.9) it follows that
o[ X]

(2.13) 0, X +Y]=0.[X]o.[Y] and o.,[X —-Y]= 7]

and hence o,[—X]o,[X]| = 1. Together with (2.8)) this implies
hi[~X] = (=1)" ey [X],

which, by the dual Jacobi-Trudi identity [32] p. 41], extends to Schur functions as (L20).
For the Cartesian product of two alphabets we have

pe[XY] = pr[X]pr[Y],
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which in particular implies that if X = z is an alphabet containing a single letter then
pr[Y] = 2" pi[Y].

However, from (2.12]) we also have

pr[nX] = pr[X + - + X] = npi[X],

n times
so that
n] = fll4--+1 = f(1,....1).
fln]=f f( )
n times n times

We extend the above to any z € F via
pr[zX] = zpi[X].

For X =1 we more simply write the above left-hand side as py [z]H Note that this leads to some
notational ambiguities, and whenever not clear from the context we will indicate if a symbol such
as x or z represents a letter or a binomial element.

Finally, since the Cartesian product of the alphabets {1,¢,#2, ...} =1+t+t>+--- and 1 —tis 1,
we adopt the standard convention of writing the former as 1/(1 —¢). An often occurring composite
alphabet is (a — b)/(1 — t) for which

[a — 0] _ak—bk
PRIT 4| =1

and
(2.14) o1 | 28] = Biteo

L 1- t_ (a; 75)00 '
2.5. Macdonald polynomials. In this section we work with the ring of symmetric functions A

over F = Q(q,t).
Let (-,-) : A x A = F be the ¢, t-Hall scalar product on A given by [32] p. 306]

. 1-q*
<p>\,pu> = 5A,p2’>\ H m7
i>1
where z) := [[;5, "#m;!. The Macdonald polynomials Py = Py\(q,t) = Px(X;q,t) are the unique
symmetric functions such that
(P\,P,) =0 if X#pu
and
Py=m)+ Z UnpMypy, Uy € I,
P
with respect to the usual dominance order on partitions. Like the Schur functions, {P\(X)} and
{Pr(Xn)}i(r)<n are bases for A and A, respectively, and Py(Xy;q,t) = 0if [(A) > n.
We also require the skew Macdonald polynomials defined by

(2.15) PA(X +Y]s0.:t) = > Pru(X;0,6)Pu(Ysq,),
I

n |29 p. 32] Lascoux refers to a single letter alphabet z as a rank-1 element of a A-ring and z € F as a binomial
element, since for the latter ex[2] = (7) and hi[z] = (*T} 7).
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where it should be noted that P,/ = Py. We also note that P,/ is homogeneous of degree [\/p|
and vanishes unless ;1 C X\ (cf. [32], p. 344]).

For ¢ = t the Macdonald polynomials reduce to the Schur functions (2I0). More generally, if
we set t = ¢7 and let ¢ tend to 1 we obtain the Jack polynomials [55]

P (x) = ;1_>ml P\(X;4,97).

Setting Q»/.(q,t) = bx(q,t)Pr/u(q,t)/bu(q,t), the Macdonald polynomials satisfy the (skew)
Cauchy identity [32] p. 345]

LY q)oo
(2.16) > PA(X;0,)Qxu(Yia,t) = Pu(X;0,t) [ (y%@

1
= P,(X;q,t)oy [1

where the second equality follows from ([2.13]) and (2.14]).

Let
ab 1.5 (@b i
2¢1|: c 34, Z:| = kzzo (C, q)k(q’ Q)k z

t
XY} ,
q

denote the usual g-analogue of the o} Gauss hypergeometric function [17].

Lemma 2.1. Let x and y be single-letter alphabets. Then
t=ha™" yq
(217) Pl = sliant) =" a0n |01 ).
q "t T
Proof. If we set p = 0 in (2.I6]) and then replace (X,Y) — (x — y, 1) this yields

(t:9)r S R el _ (t79)00 (V3 @) o
g;)(m)’“ Folle—dhet) = 1[1—q( y)]_(w;q)oo(ty;q)oo’

Using the ¢g-binomial theorem [I7, Equation (I1.3)] to expand the right-hand side as a power series
in x and y leads to

Z (t; Q)r P(T,)([x . y];q,t) _ Z w xe(ty)k.
;q)

= (&), o (@ @)eg @)

Equating terms of homogeneous degree r in x,y gives

T

M T — vyl _ (t;Q)r—k(t_IﬂJ)er_k k
Gy T = shied = o e T )

which is equivalent to (2.17)). O

For A € &2, define the spectral vector
(Mn = Nnige = (@272 g gt0),
which, depending on the context, we will also interpret plethystically as

<)\>n — q)qtn—l + qkztn—2 NI q’\”*lt + qA"tO.
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Then the principal specialisation formula for Macdonald polynomials [32] p. 337] can be written as

1— t”} N (#7; q, 1)

(2.18) PA[<O>"]:PA[1—t T o)

where from hereon we mostly suppress the dependence of the Macdonald polynomials on ¢ and t.
By a polynomial argument (2Z.I8)) is equivalent to [32], p. 338]

1—a]  "W(a;q,t)x
1-t¢ N C)\(q, t)

(2.19) Py [

Replacing (a,t) — (¢*7,¢") and letting ¢ tend to one in ([2.19)) yields the following expression for
the Jack polynomial evaluated at a binomial element z:

W/ E1a ((J =4+ Dy)r -
(2.20) Py [2] = R H (G — i)’Y)Ai—Aj

bl
1<i<j<k

where k is an arbitrary integer such that k > [()\). For v = 1 and z = n, with n a nonnegative
integer this reduces to (2.11]).

The evaluation symmetry of the Macdonald polynomials [32] p. 332] may expressed in terms of
spectral vectors as

(2.21) Bul(0)n] PA[{p)n] = PALO)n] Pul(A)n],

where A\, € #2,. We require a more general form of this symmetry, which is a nonsymmetric
version of [64, Proposition 2.1].

Lemma 2.2. For A € &, and u € P,

1-a m I—at™| 1-a n 1—at™
(2.22) PML—_JP)\[CM (K)m + ¢ }_P’\[l—t}P“[at (A)n + T3 }

Proof. For m = n and a — at™ this is [64, Proposition 2.1]

1—at™ 1—a 1—at" 1—a
2.2 P P — | =P P .
( 3) u|:1_t:| )\|:a<:u>n+1_t:| )\|:1_t:| u|:a<>‘>n+1_t:|
Fixing an integer m such that I(u) < m < n we have
_ a—at""m
afpyn = at"" (phm + =
Therefore ([2.23)) becomes
1—at" 1—at™™™ 1—at™ l1—a
P,|——— | Py|at"™™ — | =P\ |——| P, A .
[ ot + 25 = [ ot + 224

Scaling a — at™" results in (2.22]). Since this is symmetric in m and n the restriction m < n may
be dropped. O
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3. CAUCHY-TYPE IDENTITIES

An important special case of the Cauchy identity (2.I6]) — obtained by taking pu = 0, making
the plethystic substitution Y — (1 —a)/(1 —t) and using the specialisation formula ([2Z.19]) — is the
Kaneko-Macdonald g-binomial theorem [26] [33]

tn( )(CL q, ) _ (a$i;Q)oo
ZA: Jan K )_il;[l (25 @)oo

An A,, analogue of this formula is given in [63, Theorem 3.2] and then applied to prove the v =0
case of Theorem In order to prove Theorem in full we require an A,, Cauchy-type identity
which simultaneously generalises (2.16) and [63, Theorem 3.2]. This is the content of Theorem [3.4]
below.

3.1. Identities for skew Macdonald polynomials. For partitions A,y and k € N, £ € NU {oco}
such that k& > [(\) and ¢ > I(p), define 64|§y

kl, . —k|u| (agt/ ™"~ i — i
a;q,t) =1 .
f)\,u( q H]l_ll ath Z,q Ni—
By (a;q)-n/(b;q)—n = (b/a)™(q/b; Q)n/(q/a; q)n it follows that
f (CL q, ) by )\(t/a’q q, )

provided ¢ is finite. For infinite ¢, let t* := 0. Our proof of Theorem [3.4] given in Section B3]
hinges on the following summation formula for skew Macdonald polynomials [64, Theorem 3.4].

Proposition 3.1. For partitions A and p, we have

(3.1) ZV:MVPH/ [1 — UQ]QA/V [%/t] ~-p, [1 - tk/a]QA [1 - a_qte 1]f§vﬁ(a; q,1),

t 1 t
where k € N and ¢ € NU {oco} may be chosen arbitrarily, provided that k > 1(\) and € > I(u).

In [64] the right-hand side of ([B.1)) is stated with ¢ = k. Of course, since the left-hand side does
not depend on k and /¢, the above form of the identity is not actually more general. Indeed,

k¢
foulaia.t)

l()\ YA k l(l/« _7 —ie1
—(k=1(\) |l LN (e (agt? """ 15 q)x (aqt Q) —p
g o IT T Gt 11 11

i=1 j=I(p)+1 (agt’=*;q) =I(\)+1j=1 (agt’~"; q)-

A6 4 0 (agt'™=1; g, t)y (™) /a;q,t),

Ap B (agt*=Yiq,t)x  (tF/a;q,t)u
Substituting this in the right-hand side of ([B.I]) and using (2.19) yields the identity with & and ¢
replaced by [(\) and I(u). For later use we note that from the above and (2.19)) it follows that

k00 1 k0 1 —agt™!
(3.2) f/\u (asq, )QA[ } I “(a q,t)Qx [? )
where ¢ is an arbitrary integer such that ¢ > I(u).

5For the relationship between ff:i(a; q,t) and Nekrasov-type functions, see [20] Equation (B.4)].
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For our next result we would like to specialise a = t*~* (for k < £ and / finite) in (31]). Potentially
this could lead to problems with the double product on the right, and the following lemma serves
to show that such a specialisation is in fact permitted provided the resulting double product is
interpreted correctly.

Lemma 3.2. Let A and p be partitions and k,¢ € N such that k < £ and such that k > I(\) and
0= 1(pn). Then

3-3 1' k7£ btk_z. t

( ) b1—>Hi f)\7u( 34, )

is well-defined. Furthermore a necessary and sufficient condition for the nonvanishing of this limit
18

(3.4) Ai = pigae for1<i<k.

The inequalities (8.4]) may conveniently be visualised as:

A= A =z 2 M 2 A 2 o 2 0
(3.5) WV \Y WV
H1 2 Z k1l 2 fkt2 = =2 g = gy = oo = 0.

Remark. It is assumed in Lemma that ¢ and t are generic. For the Schur case ¢ = t the
equation (3.4)) has to be replaced by

A=, +1—gi+L0—k for1<i<k,
where 1 < j; < ja2 < -+ < ji <L

Proof. To see that the limit is well-defined, note that for fixed i the powers of ¢t in (B3] are zero
when j =i —k+£41 in the numerator and j = i —k+ ¢ in the denominator. Since j < /¢ this yields
k—/¢ < i< k-1 for the numerator and k — ¢+ 1 < i < k for the denominator, with both the lower
bounds automatically satisfied since k < ¢. Therefore, taking the product of the t-independent
g-shifted factorials in (3.3]) and making a shift in the indices yields
k—1 -1
(3.6) Uio 06 Driopssen 1 [T b e ).
ITim 1 (0 D —pi v (043 @)~ i=0—k+1

Since p is a partition, p; > pi+1, and hence the limit b — 1 exists.

The vanishing of the limit (8.3]) is completely determined by the vanishing of the right-hand side
of (3.6) when b — 1. Clearly the term 1/(q;q)x,—,, will vanish unless A\, > py by ([2.4). In order
for (3:6) to be nonvanishing, one of

(3.7a) Nitk—t 2 iy
(3.7b) Nijk—t < i = Pit1,

must hold for each i such that £ —k + 1 < i < ¢ — 1. Now assume that Ay > uy and one of (3.7al)

and (3.7D) holds. Consider the largest ¢ for which (3.7B]) holds but ([B.7al) does not. We cannot
have ¢ = ¢ — 1 as this would imply

Ak < pe—1 = pg
contradicting Ay > pg. Similarly, no such maximal i exists with ¢ < £ — 1 as we then would get

Nitk—t < Hi = Hit1-
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However, as (3.7al) must now hold with i +— i+ 1, this would give A;j1x_p < Ajrg_r¢+1, contradicting
that A is a partition. Therefore we conclude that (3.7a) must hold for all £ —k+1 < i< £ — 1.
This is equivalent to the desired conditions by a shift of indices, and hence we are done. O

By abuse of notation, we will write f)\ (tk ¢ q,t) instead of lim,_,; ff ﬁ( btk=¢: ¢, t) in the follow-

ing.

Corollary 3.3. Let k, ¢ € N such that k < {. Then, for partitions A, i such that [(\) < k,
, 1— tf k 1— qtk—Z—I 1— t@ 1— qtk 1 3
Zt 1P, [ }Qx/u[?] ZPM[l }Qx[ T3 ]ffﬁ(tk ba.t).

The above corollary is essentially |62, Theorem 4.1, u = 0]. It should be noted that the condition
[(1) < ¢ has been dropped in comparison with Proposition B.1] and |62, Theorem 4.1], since both
sides identically vanish when I(u) > ¢. To see this, note that the summand vanishes unless v C A,
v C pand pi_pye < v; for all ¢ > 1. This in particular implies that the summand vanishes unless
Wi—k+e < A; for all 4 > 1, in accordance with (3.4]). When ¢ = k + 1 this yields sy < A\gr1. Now,
since I(A) < k, A\gr1 = 0 so that pprq =0, ie., I(u) < £. Clearly, the right-hand side has this same
vanishing property.

3.2. A,, Cauchy-type identities. As we will see below, the Cauchy identity for Macdonald poly-
nomials may be viewed as a discrete analogue of the AFLT integral. For the purpose of generalisa-
tion it is convenient to think of the Cauchy identity (2.10) as an identity for the root system A in
which the two alphabets X and Y are attached to the single vertex of the corresponding Dynkin
diagram:

X

Y

Extending this to A,, we consider sums of the form

kTv'r
(3.8) > HPM (X Qe Y] H o e (@3 4,t),

A A r=1

where the functions f k[;) T;(j +1) Tepresent the edges of the A, Dynkin diagram:

x @ X2 X (-1 x (n—1) x(n)

vy v (2) y(r=1 y(n—1) y(n)

In (B8) we choose k1 < ky < -+ < kyp—1 to be nonnegative integers and k,, € NU {co}. Also, a, for
1 <r<n—2wil be fixed as a, = tk"_k”l, whereas a,_1 is an indeterminate. In the sum (3.8])
we also specialise the alphabets X@ ..., X" and YU .. y(=1) 44

xon Z L=t/ar eyt angth
1—t 7 1—¢

and fix the cardinalities of X(*) and Y™ to be

XD =k, Y™ =k,.

(3.9) for1<r<n-—1,
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It should be noted that since a, = t*~F+1 for r # n — 1 we have

1 —thr

(3.10) X = for2<r<n-1

so that [X(")| =k, forall 1 <r <n— 1.
Recall the convention that tk := 0 if &k = oo. Our first A,, Cauchy-type formula may then be
stated as follows.

Theorem 3.4 (A, Cauchy-type formula I). Let k; < ko < --- < ky—1 be nonnegative integers
and k, € NU {cc}. Then for a,_1 an indeterminate, a, := tFr=Fr+1 for 1 <r < n —2, XM =
oA dan, YO =y -y, and X X Yy y (=) s in 39), and

i, 1-1/a
W = Zl zn_lX(l) +le7‘+1 ...zn_l Ttr7
r—=

we have

(311) Z HP)\(T) 34, )Q)\(T)/H(T) 1q,t H k(v;y) T)Ij+1) ar; g, )

A A r=1

B = arqz - eru oo TT (Zr41 - 2n—1¥j/0r; @)oo
= P (Wha.t H(H L H .

*2rZiyq oo Zr—l—l © Zn—1Y5; Q)oo

kl k‘n r+1 k:r

% H H tzl CZn—1%4Yj55 4 ) H H Cqut Zr-l-l e ’. Zs; Q)OO,

“Zn—1T tlz ez
i=1j5=1 n—1TiYj: q )oo I<r<s<n—1 =1 r+1 SaQ)oo

where f(MV, .. =D =0 and p™ is an arbitrary partition.

For n = 1 the theorem reduces to (ZI6) with (X,Y,u) — (XM, YD 4™) and for n = 2, ky
finite and p(™ = 0 it coincides with [64, Theorem 1.2]. When n > 2 there is some mild redundancy
in ([BII) since the substitution X (1) s 271 X1 eliminates any reference to z;. We further remark
that we do not know how to evaluate the left-hand side Of (BII) in closed-form if one (or more)
of the a, for 1 <r < n — 2 is an indeterminate. Since |X(")| =k, for 1 <7 < n — 1 the summand
vanishes unless [(A(") < k, for this same range of r. If a, for some r < n — 2 is an indeterminate,
then A"t1) can have an arbitrarily large length, which prevents us from applying Proposition B:1]
in our proof. Requiring a, = t*~%r+1 for 1 < r < n — 1 allows us to use Corollary 3.3 in place
of the proposition. We are, however, allowed to keep a,_; an indeterminate since Y™ is either a
finite alphabet of cardinality k,,, or countably infinite, permitting us to apply Proposition B.Il For
more details we refer to the proof of the theorem contained in the next section.

There is a second, closely related, Cauchy-type identity, in which k&, is finite and no longer
corresponds to the cardinality of Y (™).

Corollary 3.5 (A, Cauchy-type formula II). Let k1 < ko < -+ < ky, be nonnegative integers.

Then for a, = tFr=Fr+1 for 1 < r < n—1, XM = g 4. + xp,, y(m = y1+y2 + -+ and

X@ X0 y®) L yeD gsin B3), and
n—1

W=z -z, 1 XY 4 er—i-l “tt Zp—1
r=1

1 — thr—kr1
1—¢t 7
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we have

§ : I | I | km r
(312) P)\(T) X( 34, )Q)\(T)/u(r) i, A )\T:Jrl) Qr; Q7t)
A, A r= 1

kr— k —k
. qt™r— T+1Zl c2rdiy q oo t THTE r4+1 " 2n—1Y5:4 )
- ) T ([T 2 I

o o * Zrdy; Q)oo (zr—l—l *2n—1Y5; Q)
= = j=1

kry1—kr k _1
(gt thsheni=la 1 25q)

" Cm
XHH ,:11 Gttiiae 7T ozl

*Zn—1T
i=1j>1 n—1%ilj5 q )oo I<r<ss<n—1  i=1

where pM ... pY 2= 0 and p" is an arbitrary partition.

We note that in the above corollary the range for which (8.I0) holds includes » = n. In par-
ticular | X("| = k, for all 1 < r < n. The corollary simplifies to the A,, g-binomial theorem [63,
Theorem 3.2] if we replace Y™ — z,tFn-1(1 —a)/(1 — t) and 2z, > ztF—1 "L forall 1 <r <n—1
where kg := 0.

Proof of Corollary [3.3. We take Theorem B4l with k,, = co. Then Y = y;+yy+- - - in accordance
with the corollary. Moreover, by ([B:2]) and the fact that p(=b =0,

— kn—1,kn
Qi) pun YOV fre 20 N (@n-13¢,1)

Znt En_1,
- QA(" 1)[ = J f)\(n 11) )\(n)(an 1,q,t)

Fon1,Jin
f)\(n 11) Al (an—1;9,t)

t— an—lqtkn
1-t¢

= Qx\(n-1) [zn

Y En—1,kn
— Q}\(n—l)/u(n—l) [Y(n )]f)\(n 11) )\(n) (CLn 154, t)

Here k,, is an arbitrary integer such that k, > [(A™) and Y"1 := 2, (t — a,,_ 1qtk")/(1 — 1), so
that Y (=1 corresponds to Y1) in B9) except that k, has been replaced by k. Of course,
since we are summing over all partitions A(™) there exists no integer k, such that k, > [(A() for
all A", To get around this problem we specialise a,_; = ¢*r—1~ —kn Then XM = =(1- tk") /(1 —1t)
of cardmahty |k: | so that without loss of generality we may assume that [(A() < ky. Finally
replacing kn by k, completes the proof. O

The proof of Theorem actually requires a plethystically substituted version of the u(™ = 0
instance of ([3I2)) obtained by replacing Y s Y 4 (¢ —d)/(1 —t). This substitution can easily
be carried out noting that the right-hand side of (3.12]) without P, [W] is expressible in terms of
o1 as

n-1 Er—kpp1—1 B q—k

1 — gtfr—Fr+1 1 — ¢hr+1—kr

01[§ <t21“‘2r ql_q X(1)+2T+1...2n_117_qy(w>+
r=1

1-— 1— tks_kerl—l 1— tk7'+1_k7‘
21 Ap— 11 X(l)Y(n) Z tzr—i-l"'Zs( a (1_ )()1(—t) ) .
q 1<r<s<n—1 q
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Corollary 3.6. With the same conditions as in Corollary[3.3,

—d
Z PA(%)([X(N)] NN <[Y(") + iﬁ] ; q,t>

A A(m)

n—1

<[] (Pm ([XT50,6) Qo ([YT]50,1) ff@’)k}*(iﬂ) (ar;q, t))

(qthr=hreiz, .. zr:cz, OOH (thrt Ry zn—lyst)oo>

(tzl *2r&iyq i1 Zr—l—l C Zn—1Y53 Q)oo

1
% H H (tZl R Zn—ll'iij OO H le *Zn— 1x27 )OO
. (21 CZl

* Zp— 1xzy]; * Zn— 1xz;Q)oo

n—1krt1—kr i1 kry1—Fkr itk ko1 —1
» H (dzrg1 - 215 Q)00 H (qt'ths=Fst1=dy 1 260 @)oo
r=1 =1 CZr+1 . ltl_l’ Q)oo 1I<r<s<n—1  i=1 (tZZT-H Tt Rss Q)OO

3.3. Proof of Theorem 3.4 We define two families of auxiliary alphabets {X "™ }o<,n<ren and
{20y as

(1) - 1—1/6Lu .
ZmX +Zzu+1---zm7 ifr=m+41,

X(T’m) = u—=1 1 —t

1-1/a,_

% otherwise,
and

y ™ if r =mn,

20 =4 t-aq therwi

Z otherwise.

"1t
The first family satisfies the simple recursion
(3.13) Zm+1X(m+1’m) + x (m+2,m) _ x(m+2,m+1)

Lemma 3.7. For n,m integers such that 0 < m <n—1, and () g partition, define

r+1 k?r

(3.14) g HH aizfl eri;q)oo I 11 (asqt'™ 2r+1~:zs;q)oo

Zr&i; Q)oo I<r<s<m  i=1 tlzr—"_l RS Q)oo

X Z H (Zry(r) Z Pyt jyr-1) ([x™];q,t) QA /) ([27];:4, t)>7

I/(m+1),...,l/(n71) r=m+1 ()

where V™) := 0. Then ¢m = gms1 for 0 <m <n— 2.
Proof. Since v(™ := 0, the sum over A1) in [@I4) is of the form ([2I8) with
(X, Y, A,,U,) — ()((WL-{-I,WL)7 Z(WL—l—l)7 )\(WL-{-I)7 V(m+1))
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and hence equates to

P (m+1) [X(m-l—l,m)]o.l ﬁX(m—Fl’m)Z(m“‘l) .
v 11— p
Since 0 < m < n — 2, it follows that
l—gq
L=ttt ) 4y (1= 1 5) (¢ — amirg)
= e e —— L Y 1 Zm
01[21 Zm+1 1—gq +T§::1z+1 Zm+1 TEnE

k‘l m kr-Jrl_kr i—1
t—a t'" 7 (t—a
_ H%,,%H [7%1‘1 4 11 oo { ( m+1q)]

1—q r=1 i=1 1-q
m kr+1 k'r
_ H (amy1q21 - Zm+1$17 )oo 11 (amp1qt" ™ 241 Zmi1; @)oo
tzl *Zm+1T45 4 =l el tlzr—l—l Ct ZmA1; Q)oo ’
where the Second equality follows from (2.I3]) and the last equality from ([2.14]). As a result,
m+1 ki kry1—Fr

HH (arqz1 - 2053 @)oo I I (asqt™ 21 263 @)oo
tZl“‘ L. N

2T (tizpgr -2
r=1 i=1 T zaQ)oo 1<r<s<m4+1  i=1 r+1 37(])00

% Z {Py(mﬂ) [Zm+1X(m+l,m)]

p(m+1)  p(n—1)
< ]I <Z'r”(r)'ZPA<~/u<H> [XE™]Q509 [Z(T)D}’

r=m+2 A(r)

After interchanging the order of the sum over v+ with those over the A\("), the former can be
summed using (2.I5) with

(X, Y, \ p) — (X(m—i-2,m)7 2m+1X(m+1,m)7 )\(m+2)7 I/(m+1)),
Thanks to the recursion (3.I3) this yields P A(m+2) (X (m+2’m+1)], resulting in g, = gm+1. g

k’f‘7 r+1

We are now ready to prove Theorem [3.4l As a first step we eliminate f A A+

the summand in (B.I1]) by applying Corollary B.3] with
Oy vy ke, ) = A ACTD L0 B k) for 1< r<n—2
and Proposition [3.1] with
(ay A, vy ky 0) = (an—1, A= A0 =) g kn,) forr=mn—1.

(ar;q,t) from

Then

e
> HPw) Ny jun [Y Hf (Aot (@r; ¢:1)

A ) r=1

= Z Z Py [XW] Qrm) /) [v™)]

AW LA m) () p(n=1)
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() t—a.q 1—-1/a

- Z H (Zry(r) Z P)\(T)/V(Tfl) [X(T’O)]QA(T)/V(T) [Z(T)]>

v pr=1) r=1 A

Zn:L y(”) :u(”)

= go‘znzl,y(n):u(nw

where in the fourth line »(®) := 0, and where gy is defined in ([I4). Using Lemma 3.7 we may
replace gg by g,_1, leading to

n
> TP [X7Que jue [V H k(T’)kT;(rlH) (ar;q,t)

AD) L) =1

kr+1 kr

-1 k1
H H arqzl * Zr&i; Q)oo H H asqt Z?“—i-l crt Zs; Q)oo
SR (tae zrxi;q)oo ;

{ e
I<r<s<n—1 i=1 tZr+1 237(])00

X Z Py [X(n’"_l)] Q)\(n)/u(n) [Y(")].

()
The final sum on the right can be carried out by (2.16]) with

(X, Y4, ) = (X070 y () A0y (),
Since W = X(mn=1) and

n—1

1t 1 1/a
(nn—1)y(n) | _ .. D)y (n) E 1-1/ar o)
0'1|:1_q Y :| o1 |:21 Zn_ll X Y —l—r 12’7»_;_1 n—1 1—q Y

k1 kn

_ H H tZle c Zp— 11'7,y]7 oo H H Zr—i—l Zn—lyj/?r; Q)oo

=1 =1 *Zn—1%4Yj55 4 r=1 g1 Zr—i—l Zn—ly]7Q)oo

the right-hand side of the theorem results.

4. THE A,, AFLT INTEGRAL

In this section we first give a description of the domain on integration of the A,, AFLT integral
(LI3) and then apply the A, Cauchy identity of Corollary to prove this integral. At the end
of the section we give a companion to the AFLT integral based on Theorem [3.4]

4.1. The domain C,’;l""’k" [0,1]. The domain of integration C’ffl"“’k" [0,1] of the integral (.I0])
takes the form of a chain in the usual sense of algebraic topology. Since this chain is the same as
that of the A, Selberg integral of [63, Theorem 1.2] (see also [56] where this chain first appeared
in the case of Ay), we refer to [63] for the details of exactly how it arises in the course of the proof
presented in Section

For n = 1 the domain C’fjl [0, 1] is the ki-simplex given in (I.14]). In order to describe 05 Lesknig ]
for n > 2, we first consider D¥1+%2[0,1] C [0, 1]¥1+ "+ as the set of points

(D@, my = (P DY) e o, 1Rt
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subject to
(r) 4™
0<ty’ < <tkr<1 for 1 <r <n,
and
1) <t for1<i<h, 1<r<n—1

Following (B.5]) this may be visualised as

(r) (r) (r)
0 < tl < t2 < e < tk’r‘ < 1
A N A
(r+1) (r+1) (r+1) (r+1)
0 <ty < e < Tk < b ke < <t 0 < L

We need to consider all possible total orderings between the integration variables ¢ and ¢"+1)

consistent with the above partial order. Each such total ordering may be described by a map
M, :{1,....k} —{1,... kry1}
such that M, (i) < M,(i+ 1) and 1 < M, (i) < i+ ky41 — k-, so that

(r+1) (r) (r+1)
(4.1) tni—1 <t <tapay
where téﬂrl) := (. In view of this we define the sets

Dﬁi.’:.’,’l’ﬂ&nil g Dk17"'7k7l [0, 1]

by requiring that (£1]) holds for fixed admissible maps Mj, ..., M, _1. Then DF1kn can be written
as the chain

DFtskn [07 1] — Z Dﬁ;-,-.-.7.],€£b/lnf1 [07 1]7
M1,...,Mn71
where the sum is over all admissible maps My,..., M, 1. Analytically continuing the weight
function
n—1 k . . .
1 + kyy1 — ky — M (3) + 1))

4.2 Flaetn = sin(n(é + krv1 = by = My for y € C\ Z
@ o T e ) o

to include v = 0, the chain Cﬁl"“’k” [0,1] is defined as
corkn ._ k1. kn k1,....kn
(4.3 Choblo )= 3 FiE Dk, 0]
Ml?"'anfl
Note that it follows from the above that
C’P/’kQ"“’k” [0’ 1] _ 0527~~~,kn [0’ 1]‘

4.2. Proof of Theorem We begin with the identity of Corollary B.6, where we note that the
alphabets X() and Y™ contain k; variables and countably many variables respectively. We now
fix a nonnegative integer m and set Yi(n) = 0 for i« > m. Next we fix a pair of partitions A € P,
and u € &, and carry out the specialisation

(X(l) ) y®) )G d) = (<)‘>k1 ) bzntl_m<ﬂ>ma Znt, bzntl_m) :
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Also replacing X, ... ™) by vy this leads to the identity

1-— bt‘m]

> PanlnlQue s + 1T

[/(1)7___7[/(”)
n k kr—1
() 1 —¢hrtt 1 — qt™
<= H( (M)[ 1—t ]Q”m[ 1—t
r=1

_ ”lif ﬁ (21 TR =k =icg) ﬁ (bzri1 - zngtithr e =R =3 q) o
- (zl . qu)\itkl—i‘l'l; q)oo (bzr+1 . znqujt_j; q)oo
m

kr,k kr—kri1.
fy(r);;(b‘l+1) (t 7~+17 q, t)>

jzl
.z q)\ +u3tk1+1 i—j. q

> (bzl H bZl ©Zn—19 Q)oo
] =1 (bZl 4 q>\ +M3tk1 =7, q =1 'Zn—lq)\itkl_i;Q)oo

Ai tkl —m—i;

kpry1—kr tk kg1 tie1

y | " (bzpgr e Zn_lti_-infl; q)oo H H

Zpg1 o Zp—1ttL
(T—"—l n—1 ’q)oo I<r<s<n—1 =1

z +1"'ZSQQ)00
tlzr—l—l cc ot Zs Q)oo

where we have dropped a, in favour of t*~%+1 in comparison with Corollary By virtue of the
evaluation symmetry (2.2I]) and the generalised evaluation symmetry of Lemma [2.2] we have

P 1—tk1
P [ ] = M

P[]

P)\[<V(1)>k1]

and

—kn,
" 1- bt

Qyem |0t () m + T |

1=bt™™]  Qum k=1
1—t | 1-

effectively allowing us to interchange the roles of ¥, v and X, y in the summand. Carrying this
out and multiplying both sides by

(4.4) fa{ﬂif?}fg[i:i}

the left-hand side of the above identity becomes

) gy L0
Z P)\[<I/ >k1]PM bt "<I/ >kn+ﬁ

]/(1) 7___7[/(”)

] (b;q,t),m)

(r) (r)
(L) (1 g, )

( v(r) kr—1. o ek
% qt - q ) (r)f T,r’ T+T (t T T+1. q t)
rl;Il Cy(n) (q,t)c l,(r)(Qa t) H V& VS () (1) 1q,1),

where we have also used the specialisation formulas ([2I8]) and (ZI9). The corresponding right-
hand side is as before, except for the additional factor (£4]). Next we use (2.0) and (2.0) in the
summand, make the further substitutions

bis ¢TEn=17 4y g7 and 2z ¢™ 7 for 1 <r < n,
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. e . () .
and introduce auxiliary variables (t0) ... t() as tlm = g% tE=)7 To more simply express
the resulting identity we introduce some additional notation, and for alphabets t = (¢1,...,t),
s=(s1,...,58¢) define

Ayt = [ &7 —t/t;) (¢ t/1550),,

1<i<j<k
and
~(t,s:9) H H S; qt /sj7 .
i=1j5=1
After multiplying through by (1 — ¢)¥1+kn this yields

i 1—gBf—
(1 o q)k1+ +kn Z P, (t(l); q, q’Y)Pu ( |:q5 ’Yt( ) + #] 1 q, q’Y>

(1) ’,“71/(”)

n—1

n k.,
< T (25(7:a) TT ) (at5a) 5y ) TT A4 (87,80 D1q)
r=1 i=1

r=1

— T (ar(5)+29()) =2 rot ke (P )
1 —

k1y 1 — Bt kn—1)y
q q
P _ . Y P S Y
X )\<|:1_q,},:|7Q7Q> u<|: 1_q.y :|7q7q>

(L (i = ki1 — Dy)Tg(i7) 125 Tg(B + (i — 1)7)Ty (i)
- HlH T,(7) H T,(7)

kr+1 kr

% H H (()ér+1+“‘+as+(7‘—8+’i)’7)
qItam+-Fas+ (ks —ks1+i+r—s—1)y)

I<r<s<n—1 =1

— kr kr .
H( b Folarir 4+ an+ (r—n+i)y)
r—1 (ar—l—l+"'+an+5+(kjn_m+r—n+i_1)7)

5||:]

I (a1+"'+ar+(k‘1—r—i+1)’y+)\,~)
Fjl+ar+-+ap+(kr+ ke —kegr =7 — i)y + Ng)

X
I
(3

é]s

Lolarpr + -+ an+ B+ (kn+17—n—j)v+ ) >

1Fq(ar+1+---—|—an—|—5+(k‘r+1—kr—i—k‘n—l-r—n—j)’y—l-,uj)

<.
Il

XH 041+ ot an+ (b —n—i+1)y+N)
a1+ ctan+ B+ (ki +khkn—m—n—i)y+\)

klm

XHH dlont - tant B4 (kithn—n—i—jlv+Ai+p)
Ly( a1+ ctop B+ kit ky—n—i—j+1)y+ N+ p;)’

i=1j=1

where 1 = --- = B,-1 := 1 and (5, := 5. The above is a restricted g-integral over the domain
DF1okn [0 1], To complete the proof we divide the above identity by its A = 4 = 0 case and then
take the ¢ — 17 limit. In this limit (1 — ¢*)/(1 — ¢”) becomes the binomial element z/v and the
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domain of integration becomes Cﬁl"“’k” [0,1], exactly as in the proof of the A, Selberg integral
(cf. [63, 85]). The resulting A,, Selberg average is the £ = k; case of Theorem It is a trivial
exercise to verify that the right-hand side of (LI3]) is independent of the choice of ¢, as long as
0= 1(N).

4.3. A companion to the A,, AFLT integral. In [64] the n = 2 case of Theorem [B.4] with
1? =0 is employed to prove an Ay Selberg integral with two Jack polynomials in the integrand,
but in a different form to that of the Ay AFLT integral (Theorem [[2 for n = 2). The two integrals
differ in that the argument of the second Jack polynomial in [64}, Theorem 3.1] is simply the alphabet
t(?) with cardinality ky and there is an additional parameter 3; subject to 1 + B2 = v+ 1 (here /3
is the 8 of the Ay AFLT integral). By the rank-n case of Theorem [B.4] we obtain an A,, analogue
of [64, Theorem 3.1] described below.
For aq,...,an, Bn—1, Bn,y € C such that

(4.5a) Bn-1+ B =7+1,
(4.5Db) Bn—1+ (i —kn—1)y¢Z for1<i<min{k,_1,k,},
and

1
max{ky,_1, kn}
(4.5d) Re(ap + -+ as+(r—s+i—1)y) >0

1<r n—land1<i<kr—kr_1,

n—1,s=nand 1 <i<min{ky,, kr —kr—1},

(4.5¢) Re(y) > — Re(Br + (i — kpy1 —1)7) >0 for 1 <r<nand1<i<k,

STr<s
for ¢1<r<

r=s=mnand1<1i<ky,,
where ky+1:=0 and 8; = -+ = fB,_2 := 1, we modify the A,, Selberg average (L9 to

An
k1,....kn . [k1,, (ﬁ'aly--wamﬂn—l,ﬂnﬂ)

n—1,0n; A, . )
0y--s0nBn—1,Bn57 - I kn(l aq, .. 7an7ﬁn—lyﬁn77)

(4.6) (0)

Here

11?17: Lk (ﬁ§a1,-"’a”7ﬁ”_1’5n;7)

= / oW, ﬁﬁ D I (R L

C"l """ " [0,1]
n n—1
v, H INGR) f“r H | A, D)7 @) L ge™)

and C’glvk" [0, 1] is the following S-deformation of the chain defined in Section Il Let

Ekh---,kn [0’ 1] C [0’ 1]k1+"'+kn

be the set of points
(tW,..t™)) e [0, 1]k +Hhn
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such that
O<t§r)<---<tg;)<1 fori1<r<n
and
( ) < tgr—zli_k for1<i<k,1<r<n—2

Ekukn[0 1] differs from the set D*1- ’k” [0,1] only in that the relative ordering between the vari-
ables t(= 1 and ¢(™ has been removed. Accordingly we replace the sum over the maps M,_; by a
sum over maps

1AL, k}—){l kg1 + 1}
subject to M/ _,(i) < M) _,(i + 1) for 1 <4 < ky—1 such that
(n) (n=1) _ ,(n)
(4.7) thr -1 < t" < tM, LGy
where t(()n) := 0 and t,i"{rl := 1. We then define Eﬁlkj\b/f oo 10,1 € E*u-kn [0, 1] by requiring
n yeeey dVin =23V 4

that (£1)) holds for My, ..., M,_o and (&1) holds for M,,_;. Hence

k 7'--7k7l — klv"'vkn
ERtkn 0, 1] = > By o 10,1,
Ml,..-,Mn,Q,M,,/171
We also replace the weight function (£2]) by
knfl

kiyeookn—1 sin(m (8 — (i 4+ kn — ko1 = M;,_1 (i) +1)7))
St A | I (e

Note that the condition (45D is necessary for this weight function to be free of poles. The new
chain is then defined as

k 7"'7k — k ERRE) ky k ,...,k&,
Cou™0.1):= > Gyt (D (0,1,
M1,...;My—o,M!

n—1

kl? 7kn
GM17 7Mn 27M/

n—1

i=1

We are now ready to state the counterpart to Theorem

Theorem 4.1. Forn > 2, let ky, ..., k, be nonnegative integers such that k1 < --- < kp—1. Then
foraq,...,an, Bn-1,Bn,7y € C such that [A5) holds and A\, u € &, we have

(4.8) <PA<1/V>( 10 LI/ (t<n>)> Ko o
A1, O0n, Pn—1,Pn5Y

+- a4 (k1 =719
_ P(l/v) P(l/y (a1
A H (a1 +- +ar+/8r (k1 +kr = krp1 — 7 = 1)7;7)a

n

XH (ap+-Fan+kn+r—n—1)v7),
s(Itar+tan— B+ (ke — kit ko +r—n—1)y7),

kl kn —|— — —71—7 ‘| 1 +u
X H H

al+...+an+(k~1+kn—n—i—j+2)’Y)/\i+uj

i=1j=1

49 Lo (Lo, om, B, Bui )
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n ky
LB+ (1 — kpyr — D))
1;{ 1;[ F(-;l) )7L (i)

" H (ar+ tas+(r—s+i—1)y)
ot as+ Bs+ (ks —ksp1+r —s+1i—2)y)

oy +--+an+(r—n+i—1)y)
Fl4+ar+-+an—Fr—1+ (ky — k1 +r—n+i—1))’

where kg = kpy1 = 0 and By == fp_9:=1.

It should be noted that the final product in (4£.9) may alternatively be expressed as
n k'r k’r . n .
Tf Hl ot (r—nti—1)y) 1’“—[ T(o + (i — 1))
+ozn (kn+7r—n+i—1)y) =% T + Bn + (kn —kp_1+i—2)y)
When 5 =vin (EI:I:{I) and (Bn—1,5n) = (1,7) in (£8) both integral evaluations coincide. For k,, =0
equation (L8] simplifies to the A,_; analogue of Kadell’s integral [63, Theorem 6.1].

Proof. We start with (3.I1I]) with k,, finite and, for A\, u € & with [(\) < k1 and () < k,,, make
the substitutions

(XY™ a1, 1) o (s g (g, g T =1 =k07 g7 )

and

Zp > @O for1<r<n-—1.
Then the resulting sum may be turned into an integral followmg the steps outlined in Section
For A = o = 0 this yields (£9)) and for general A and p it gives

(RN iy o)

Oél,---#%uﬁn—l,ﬁnW
5. COMPLEX SCHUR FUNCTIONS AND SELBERG INTEGRALS

In this section we introduce a complex analogue of the Schur function and show how complex
Schur functions may be utilised to prove A, Selberg-type integrals, such as Theorem [I.31 We
should remark that Kadell already observed in [25] that for v = 1 the evaluations of the Kadell and
Hua—Kadell integrals remain valid if one replaces the Schur functions in the integrand by Schur
functions indexed by sequences of complex numbers. His paper does not, however, provide the
necessary tools to attack integrals such as ([.22]), and we will not use any of his results for complex
Schur functions, such as Pieri and branching rules.

5.1. Complex Schur functions. In the following we fix the principal branch of the complex
logarithm with cut along the negative real axis and argument in (—m,7]. Accordingly we denote
the cut or slit complex plane [Im(log(x))| < 7 by .

For z = (x1,...,2,) € Q" and z = (z1,..., 2,) € C", we define the complex Schur functionld

deti<;j<n (2;”)
A(r) ’

S0 (2 2) =

60ur definition differs slightly from that of Kadell [25].
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where A(z) is the Vandermonde product (7). Clearly, for A € &,
(5.1) sax(x1, ... xn) = S(")(:El, e At — LA +n =200, A,).

By removing the singularities at z; = x; we extend S (") to a holomorphic function on Q". Since
the complex Schur function is symmetric in x, we may employ the usual plethystic notation and
we will sometimes write S ([z]; z) instead of S (x;z), where of course z should always be an
alphabet of cardinality n.

It follows immediately from the determinantal structure of S(™ that the following expansion
holds.

Lemma 5.1. For any 0 < m < n, we have
)

n .
St )(xl,...,a:n,zl,...,zn

S S ([Cierzils 215+ 2m) ST ([ Cigr #i]s 2m1s -+ 2n)
IC{1,...n} [Lies ngzl(xi — zj)

[I|=m

Like the ordinary Schur function, the complex Schur function satisfies a simple specialisation
formula.

Lemma 5.2. We have

2y — %4
(5.2) S(")(l, ez, zn) = S(”)([n];zl, . ,zn) = H iR )
n times I<i<j<n It
Proof. Since S(”)([n];zl, ...,2p) 1s a polynomial in z, the claim follows from the specialisation
formula (Z.I1]) and the fact that for arbitrary A € 27,
S(”)([n];)\l+n—1,)\2+n—2,...,)\n):SA[n]. O

For 0 < ¢ < mand r > 0, let Cy, denote the contour in C going counterclockwise around the
border of the angular sector |z| < 7, |Im(log(z))| < € as shown below.

Then the complex Schur function satisfies the following integral identity.

Theorem 5.3. For { a nonnegative integer, let y = (y1,...,y0) € Qf, and let 0 < 0 < 7, r > 0
such that y; € int(Cy,) for all 1 < i < L. For k a nonnegative integer, let z = (z1,...,2;) € Ok
such that Re(z;) > —1 for all 1 < i < k. Then, for A\ € 2,

1 k /

(5.3) m/s(k)(w;Z)SA[y—w] I @i—=)? T —y) " das - day,

1<i<j<k i=1j=1
k
09,7‘
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(_1)(2)5(6) (ya (Z, MALl—k—1,... A1 +1, Aﬁ—k)) Zfl()\) < l—k,
0 otherwise,
where C’g’r denotes the k-fold product Cg, x --- x Cy .

We repeat our remark from the introduction that the above integral should be understood in the
sense of indefinite integrals since the integrand is not defined at (0, ...,0) € C*.

Proof. The integral in (5.3)) is continuous in y, so that it suffices to prove the claim on the dense
subset of int(Cg’r) for which the y; are all distinct. In particular, the first three factors of the

integrand are holomorphic on QF, so that the integrand has only simple poles along the divisors

Ti = 1Yj.
To compute the integral we proceed recursively. For m an integer such that 0 < m < k, define

1))
o= s (T

IC{1,...0} \ i€l j¢I
[I|=m
1 k k
k .
< | ([ S Xl )a([Su- X w))
Chem icl i=m+1 il i=m+1
0,r
Y5)
X H i — xj) H HEI )dxm+1 -dzy |,
m+1<i<j<k i=m-+1 J%I

where we have suppressed the dependence on z and A. Observe that fo(k’z) (y) coincides with the
left-hand side of (5.3)) and that A (y) =0if m > ¢.

Now consider frg,,k’é)(y) for some fixed 0 < m < k—1. For a given term in the summand indexed
by I, we compute the integral over x,,,1 by shrinking the radius r of the corresponding contour Cl ,
to rg. Here g is sufficiently small so that y; € ext(Cy,,) for all j ¢ I. As a result, the integral over
Tm41 1s expressed as a sum over the residues in 2,41 at the £ —m (distinct) poles xy,41 = y; for
j ¢ I, plus a remainder x,,41-integral over Cp ,,. Since the integrand grows slower than 1/|x,41]
as 1 approaches 0 in the angular sector, this remainder converges to 0 as 19 — 0, and hence
(since it is independent of ry) is identically 0. Thus

<m+1>
sy = S 2 m 5 Z( I I w

IC{1,...6} r¢I \ ielu{r} j¢Iu{r}
[I|=m
1 k k
k .
ck—m—1 1elu{r} i=m-+2 i¢Iu{r} i=m—+2
0,r

" H H [lj