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Manu Srivastava®"” and Yanbei Chen*"

1Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
*Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA

® (Received 18 August 2021; accepted 8 October 2021; published 1 November 2021)

Black hole perturbation theory for Kerr black holes is best studied in the Newman-Penrose formalism, in
which gravitational waves are described as perturbations in the Weyl scalars y, and 4, with the governing
equation being the well-known Teukolsky equation. Near infinity and near the horizon, y, is dominated by
the component that corresponds to waves propagating towards the positive radial direction, while v, is
dominated by the component that corresponds to waves that propagate towards the negative radial
direction. Since gravitational-wave detectors measure outgoing waves at infinity, research has been mainly
focused on y,, leaving y, less studied. But the scenario is reversed in the near horizon region where the
ingoing wave boundary condition needs to be imposed. For ingoing waves, the components of the tidal
tensor measured by observers near the future horizon depend mainly on y,. Thus, studying the near horizon
phenomena, e.g., tidal heating and gravitational-wave echoes from extremely compact objects (ECOs),
requires computing y. In this work, we explicitly calculate the source term for the y, Teukolsky equation
due to a point particle plunging into a Kerr black hole. We highlight the need to regularize the solution of
the yw, Teukolsky equation obtained using the usual Green’s function techniques. We suggest a
regularization scheme for this purpose and go on to compute the y, waveform close to a Schwarzschild
horizon for two types of trajectories of the in-falling particle. We compare the yw,, waveform calculated
directly from the Teukolsky equation with the y, waveform obtained by using the Starobinsky-Teukolsky
identity on 4. We also compute the first outgoing gravitational-wave echo waveform near infinity, using
the near-horizon yw, computed directly from the Teukolsky equation, and the Boltzmann boundary
condition on the ECO surface. We show that this outgoing echo is quantitatively very different (stronger)
than the echo obtained using previous prescriptions that did not compute the near-horizon v, directly using

the Teukolsky equation.

DOI: 10.1103/PhysRevD.104.104006

I. INTRODUCTION

Detection of gravitational waves [1,2] produced due to
mergers of compact astrophysical objects has opened up a
new approach towards testing the nature of black holes, in
particular the existence of the event horizon, as well as
possible deviations from Kerr geometry in the spacetime
region near the horizon. With these deviations, the gravi-
tational wave sources are not exactly Kerr black holes but
some other exotic compact objects (ECO) whose space-
times are identical to Kerr black holes except in the region
very close to the horizon. The existence of ECOs has been
motivated based on the effects of quantum gravity, exotic
matter equations of state, phase transitions, etc., in [3-9].
For a compact binary coalescence that results in an ECO as
its remnant object, the absence of horizon gives rise to
‘echoes’ in the outgoing gravitational waves that appear
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after the main general relativity wave [10-26]. A comple-
mentary way to model gravitational waves from ECOs, by
parametrizing the compactness of objects, is proposed in [27].
During the inspiral stage, the absence of horizon in ECOs also
modifies the tidal interaction within the binary, and leads to
additional signatures in gravitational waves [28-32].

In this paper, we shall use exotic compact object, or
ECO, to refer to the black-hole candidate that we are
studying. Two related ways of probing the ECO are: (i) to
study tidal interactions between an ECO and a companion
that spirals around it, and (ii) to search for gravitational
wave echoes from the ECO after the plunge of the
companion into the ECO. In both ways, one can apply
black hole perturbation theory to the ECO, assuming that
spacetime geometry outside the ECO is well described
by the Kerr geometry, except for a modified boundary
condition on a surface that floats above the horizon.

Perturbations about the Kerr geometry are best studied in
the Newman-Penrose (NP) formalism [33]. Adopting the
Kinnersley tetrad, gravitational waves in Kerr geometry are
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described in terms of perturbations in the Weyl scalars v,
and y,4. Teukolsky obtained equations [34] that describe the
radial and angular dependence of the perturbation wave-
forms. For vacuum solutions (pure gravitational waves),
and y, contain the same information about gravitational
waves propagating in Kerr [35]. However, both for near
null infinity and near the horizon, y, dominates over y, for
gravitational waves that propagate along the +r direction,
while y; dominates over y4 for waves that propagate along
the —r direction. For studies that focus on gravitational
waves generated by compact binary coalescence that
propagate toward future null infinity, it is natural to
compute 4. In further methods developed to solve the
Teukolsky equation more efficiently, e.g., the Sasaki-
Nakamura (SN) and the Mano-Suzuki-Takasugi formal-
isms [36,37] were eventually [38] developed for fields with
all values of spin, thus incorporating both w, and .
However, the corresponding equations were mainly applied
for y4 calculations in the literature since (e.g., in Ref [39]),
the authors have presented the scheme to calculate the
ingoing y, waveform due to a mass plunging into a Kerr
black hole based on the Sasaki-Nakamura formalism. Such
explicit calculations have not been done for ingoing
waves yet.

As discussed in Ref. [40], for fiducial observers floating
above the horizon (e.g., on the surface of an ECO), the
transverse components of the tidal tensors that they measure
depend on both v, and y, {See Eq. (12) of Ref. [40]}. For
ingoing waves, the y, contribution dominates that of y4. For
this reason, to study tidally-induced horizon deformations
and gravitational-wave echoes, one needs to obtain y near
the horizon. For vacuum solutions, it is possible to obtain yr,
from y, from the Starobinsky-Teukolksy (ST) identity.
This has indeed been applied by several works [10—
13,40]. However, in situations where the companion plunges
into the ECO, the ST identity may not apply—and it is the
goal of this paper to obtain y, for a plunging particle directly
from the Teukolsky equation, and compare it with the
previous prescriptions that use the ST identity.

In this paper, the source term of the radial Teukolsky
equation for v is explicitly calculated for a point particle
of mass y plunging into a Kerr black hole. Reference [41]
had explored the source term for the simple case of circular
trajectories in Schwarzschild background, in the context of
metric reconstruction, but the expression for the y source
term for a general geodesic trajectory in an arbitrarily
rotating Kerr background has not been available in the
literature so far.

Further, it is well known that computing solutions of
the Teukolsky equation using the usual Green’s function
approach can lead to nonconvergent integrals, when the
source term does not vanish fast enough near infinity or
near the horizon. Poisson [42] highlighted such an issue for
computing y, far away from a Schwarzschild black hole;
he subsequently resolved this issue by introducing a

regularization prescription. After obtaining the source term
for y generated by a particle moving along a geodesic
orbit in Kerr background, we show that a similar non-
convergence issue occurs when we try to compute y for
Kerr geometry. We introduce a regularization method in
which we first insert a ) that satisfies the ingoing boundary
condition near the horizon and the outgoing boundary
condition near infinity, but corresponds to a source term
S4 that only coincides with the source term S generated by
our plunging particle for up to two leading ordersin (r — r., ).
We then use the usual Green’s function approach to obtain
wo — i from the regular source term S — S%.

With our regularization method, we go on to compute the
W propagating towards horizon for two kinds of trajecto-
ries of the plunging particle in Schwarzschild geometry;
a radial in-fall and a quasicircular plunge from the EOB
formalism. [We emphasize that, even though we have
restricted to the simple Schwarzschild case, the source
term we obtain and the regularization approach both apply
to the general Kerr spacetime.] We will then compare
our directly-obtained horizon-going y, with those obtained
by applying the ST identity on yw,. We finally apply our
horizon-going v to the computation of gravitational-wave
echoes, by using formalism developed by Ref. [40]. These
echoes will be compared with those obtained from y,4 and
the ST identity.

This paper is organized as follows. In Sec. II, after a brief
introduction to the Teukolsky equation, we explicitly
calculate the source term of the y, Teukolsky equation
for a point particle of mass y plunging into a Kerr black
hole. We also highlight the need to regularize the solution
of the y equation computed using the Green’s function
approach. In Sec. III, we introduce our scheme to regularize
these solutions. In Sec. IV we go on to compute the v,
waveform close to a Schwarzschild horizon for the two
kinds of trajectories of the in-falling particle. In Sec. V we
show that the y, waveforms obtained directly from the
Teukolsky equation are different from those obtained by
using the ST identity on 4. In Sec. VI we show that the
first echo in the outgoing w4 waveform computed with the
aid of y directly computed from the Teukolsky equation
differs from the first echo obtained using y, and the ST
identity. Although the echoes calculated in the two ways
are qualitatively similar, there are significant quantitative
differences. Throughout the paper, we use geometric units
with G =1=rc.

II. TEUKOLSKY EQUATION—ITS SOLUTION
AND THE y, SOURCE TERM

In this section, after a brief overview of the Teukolsky
equation, we compute the source term of the radial
Teukolsky equation for y, due to a point particle plunging
into a Kerr black hole. The well-established calculations of
the source term for the y, Teukolsky equation can be found
in Appendix and in [43].
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A. Teukolsky equation and source term

For spherically symmetric scenarios like in the case
for the Schwarzschild spacetime, metric perturbation
(Einstein’s) equations are separable in radial and angular
equations, with the angular sector being described by
spherical harmonics, and radial sector divided into axial
and polar perturbations [44-46]. But in the case of Kerr,
with spherical symmetry no longer present, separable
equations were not found for metric perturbations.
However, in a groundbreaking work [34], Teukolsky
showed that we can use a single field, either vy or yy,
in the Newman-Penrose formalism (in the Kinnersley
J

47TTO =

where

To=(6+n" —a" =38 —47)[(D —2¢—2p*) T8

+(D=3e+e" —4p—p")(5+2n"=28)TH —

The different Newman-Penrose quantities (e, p, 7, 7, a,
p, 7, X), and the derivative operators (D, A, §), that appear
in the above equation are for the background Kerr metric in
Boyer-Lindquist coordinates; their expressions are given in
Appendix The expressions for the stress-tensor projections
(TB, T8, TB,) are also in Appendix. When Eq. (1) is
separated into radial and angular equations for a Kerr
background, the solutions of the angular equation are
spin-weighted spheroidal harmonics ,S;,, (aw, 8) [47] with
s = 2 for the y case. Thus, we can expand the solution and
the source in Eq. (1) in terms of ,S,, (aw, 6) as

wh = /da)ZR 58S (aw, 0)e™P et (4)

8aXTy = /da)ZTlmw »S,,(aw, 0)e™v et (5)

Im

In the angular sector, the above decomposition leads to
the spin-weighted spheroidal harmonics equation [47]

1
i (sin 0 dsSlm (aa)’ H))

sin 0 do@ do
2 2 0
+ | a’w? cos? 0 — .mz —2aws cosf — chos
sin“@ sin-@
—s?cot? O + &, — s2> +Sim(aw, 0) = 0. (6)

Here &, is the spheroidal eigenvalue [47] and s = 2 for
the y case. Henceforth, for simplicity, we drop the aw
dependence of S,,,.

(D—=3e+e —4p—p*)(A—dy+p) -

tetrad), to describe gravitational perturbations, and get
separate radial and angular perturbation equations for a
Kerr background; the so called radial and angular
Teukolsky equations. An underlying reason for such
separability was the fact that both the Schwarzschild and
the Kerr solutions are Petrov type-D spacetimes.

In the Newman-Penrose formalism, gravitational waves
are described in terms of perturbations in the Weyl scalars
W and . In terms of the Newman-Penrose quantities, the
decoupled equation [34] for the y perturbation (denoted

by Wo) is

(64 1° — a* — 3 — 42)(6" + 7 — 4at) — Sy lyk, (1)
— (64" —2a" —2p)TH) (2)
(D —2¢ + 2¢* = p*) ngm]' (3)

In the radial sector the decomposition (4)—(5) leads to the
radial Teukolsky equation

d dR K? = 2is(r— M)K
Astl 4 —1|R
dr{ dr} + { A + 4diswr — A
= AsTlman (7)
with s = 2.

A=rP+a=2Mr=(r—r)(r-r)), (8

= (r* + a*)w — am, 9)

A= Epy + a*w? —2amw — s(s + 1), (10)

with M and a being the mass and the specific angular

momentum, and r, = M + VM? — a?* the position of the
outer and inner horizon. Note that A =0 defines the
position of the horizon, and that near the horizon
A~ (r=ry)(ro+ro).

Next, we calculate the source term Tlma) (0 in the
superscript shows that it corresponds to v perturbation)
for a point particle (of mass y) plunging into the Kerr black
hole following an arbitrary geodesic trajectory. Detailed
calculation of the y source term is presented in Appendix.
We will just outline the result here. Using orthogonality
relations (A9) and (A10) in (5), we get

S, (6
T)(,"(I)1)1w(r) /det/)_I/)* ITO(I r, 2] (p) —img+iwt 25 Cm\" /) f;’zt( )

(11)
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As shown in Appendix, (11) can then be written as

T)(/p(:r)m(r/) _ Iu/oo d[eiwt—imw(t)
X [(All() + AlmO + Amm())é(r/ - F(t))
+ {(Alml +Amm1) 5(7'/ - r(t))}.r’

where u is the mass of the test particle; the A terms are
defined in the Appendix. Here the trajectory in the Boyer-
Lindquist coordinate system is parametrized by

(2,7 (1), 0(2), (1)) (13)

Similar source term for y, perturbation is available in the
literature [43]. Equation (12) can further be written as (after

(1) =

A0 (1 = r(1)} ], (12) integrating with respect to dr and then renaming ' as r)

|
0 — . . d
Tgm)w(r) = ﬂelw[ me (AIZO + AlmO + AmmO)t/ + (Alml + Amml)(t// + lw(t/)z - lmt/(p/) + t/E (Alml + Amml)
+ A (1" + 3iwt"t = 2imt" ¢ — &? () + 20m (1) — m?*t (¢')* — imt'¢")

dA d*(A

+ 2(1‘” + ia)(t’)2 _ imt’(p’) dmm2 + [/ (d rr;m2) ) (14)
r r

where ’ denotes derivative with respect to r. Note here that
we have switched to using r as the independent variable
along the trajectory with

(r) = (1(r). r.0(r). o(r)). (15)
We use this form of 7'")

ime tor all our numerical analysis in
Secs. IV and V.

B. Solutions of radial Teukolsky equation:
Need for regularization

In this section we will look at general solutions to the
radial Teukolsky equation (7). We will also highlight that
the naive solution that we expect from theory of differential
equations; for example in [48], leads to some convergence
issues, and that there is a need to regularize the naive
solution in order to get meaningful results. The general
solution of the radial Teukolsky equation (7), with the
appropriate boundary conditions (purely ingoing at horizon
and purely outgoing at infinity), can be written as

Ri(r) = “e”) / Rl (F) AT ()7
R [ g o psT (Par. (16)

where R (r) is the solution of the homogeneous
Teukolsky equation which satisfies the ingoing wave
boundary condition at the horizon and R{° (r) is the
solution of homogeneous Teukolsky equation which sat-
isfies the outgoing wave boundary condition at infinity.
The Wronskian W,,,,, defined as

W _As+1[RH R RH! R

Imo™ " Imw Imw lmw]

(17)

[
with ’ denoting r derivative, is conserved. (Here we have
s = 2 for the y equation.) Henceforth we shall often drop
the Imw dependence of R and W for simplicity.

The form of the homogeneous solutions near horizon and
at infinity is given by (see [34])

(0)hole

Ima —ikr*
vt r—r
H o A? ’ +
R(O) (r) O pOn (18)
]'rﬂiw ezwr + I;rlm e—za)r , r— w’
(0)in
lma) e—lkr + D( )Om +lkr r—r
R A? Imw + 19
(0)(r) ~ (0)c0 (19)
I’r.m) elwr r— m,
B(f )ho]eAz —zkr r—r,
me
Rl (r) = o B<4>m (20)
Bf 3 twr + frm() e—la)r* r — 00
(4 )oul ikr, 2 y(@)in e~ ikr.
R _ Dfmw +ADfmw A 21
(4)(1") - (4)o0 3 ( )
Dfmw twr*’ r — oo,

where the subscript 0 or 4 in the left-hand side indicates that
they are the homogeneous solutions of the y or the y,
equation. The other variables above are defined as

o=t 2Mr log =T+ _ 2Mr_ logr_r_,
ry—r_ 2M r—r_ 2M
am
k=w-— . 22
@ 2Mr, (22)

Calculating the conserved Wronskian (at co) for the
sector using (17), we get
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pWin (23)

‘mw*

WO = 2ipD®

‘mo
Putting in all the terms in (14), it can be shown that 7'’ is
O(A™?) near the horizon. We cannot directly use (16) to
calculate the waveform at the horizon because the integrands
in both the integrals diverge [O(A~2)] at the horizon which
makes the integrals nonconvergent. We suggest a regulari-
zation scheme to overcome this issue in Sec. III. From here
on, throughout the paper, all the functions like R”, R®, W,
T },0» €tc., with no 0 or 4 subscripts/superscripts correspond to
the v sector. We have suppressed the subscripts and super-
scripts of O for ease of notation. Any reference to the y4 sector
functions will explicitly have a subscript or superscript of 4.
All the functions without the 4 subscript or superscript are to
be understood to belong to the y, sector from here on.

III. METHOD OF REGULARIZATION

In this section we develop a scheme to get around the
problem of the nonconvergence of integrals in the general
solution of the radial Teukolsky equation, when the source
plunges into the horizon. In [42], Poisson developed a
regularization scheme to calculate the y, (s = —2) waveform
at infinity for a Schwarzschild black hole. Regularization was
done by keeping the limits of integration arbitrary (24) and
pushing the divergences in to the homogeneous pieces of the
general solution given by

RV r
lew(r) = M(r) |:H1 + / R?ma)(r/)AsTlnlaJ(r/>dr/:|
Ima a
RY b
+ lma)(r) H2 + / R?mw(r/)ASTlmw(r/)dr/ ’
Wlmw r
(24)
where R, (r) is the solution of the homogeneous Teukolsky

equation which satisfies a specific boundary condition at
r=a, RV (r)is the solution of homogeneous Teukolsky
equation which satisfies a specific boundary condition at
r = b, W,,,, is the Wronskian calculated using R* and R?,
while H; and H, are constants. In [42] the limits (a, b)
and the homogeneous pieces were fixed at the end using
boundary conditions. We found that extending the method of
regularization in [42] to s = 2 using the generalized Sasaki-
Nakamura equation [38] is not very straightforward for the
analysis near the horizon.

We try and overcome the nonconvergence of integrals
using a different scheme. We do so by breaking our general
solution into two parts. The first part (the ‘ansatz’ R,)
analytically accounts for the leading two orders of A in the

source term Tffn)w [recall here that (0) stands for y]. The
second piece then satisfies the radial Teukolsky equation
with a modified source term 7,,,. The modified source
term at the leading order has two powers of A less
(divergent) than the original source term. With this modi-

fied source term none of the integrands in the general solution

diverge close to the horizon. The scheme will become
clearer through this section. Let @ and f denote the right-
hand side and the left-hand side of Eq. (7) respectively for
s = 2. The integrands in the general solution of the radial
Teukolsky equation are of the form R « and R®a, where R
and R* are the solutions of the homogeneous Teukolsky
equation satisfying the ingoing boundary condition at the
horizon and the outgoing boundary condition at infinity
respectively. For the y case, the integrands diverge as
O(A~2) near the horizon. We expand the right-hand side
of Eq. (7) in powers of A near the horizon to get

a =@My + A+ aAZ 4 Ao (29)

To regularize the general solution, we would like to remove
the leading two orders of A in a. To achieve this, we try and
substitute an ansatz, with which the left hand side of
Eq. (7) matches the two leading orders of the right-hand
side. We attempt the following ansatz,

A A . .
Ralr) = (233 S5 el 2
with A, and \A; being constants, and #(r) and ¢(r) follow the
trajectory of the in-falling particle. This is a suitable ansatz in
order to compute the y, waveform close to the horizon
because it has a behavior demanded by the boundary
condition of a purely ingoing wave near the horizon. The
different powers of r explicitly put in the denominator of
terms in (26) are to make the ansatz contribution small far
away from the horizon. Substituting (26) in the left-hand side
of (7) we get

p = e Boo Ao + PorAr + (BroAo + BriAr)A
+ (Bao Ao + P21 AN)A? + -], (27)

Equating the two leading-order coefficients of A from (25)
and (27), we can fix Ay and A, to be

(Briag — Poray)
(Boobin —/)’10/301),

(Bro2 — Poo1)
(BroBor = PooB11)

With the choice of A, and .A; from equations (28) and (29),
we now write the general solution of the radial Teukolsky
equation (7) as

Ay =

(28)

./41:

(29)

R(r) = Ry(r) + R(r). (30)

Note that the total solution R(r) in the above equation must
satisfy the boundary conditions at the horizon and at infinity.
This can be ensured if R(r) and R,(r) both satisfy the
boundary conditions at horizon and at infinity individually,
but it is not clear from Eq. (260) that R,(r) satisfies the
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outgoing boundary condition at infinity. Hence, for the total
solution R(r) to satisfy the boundary condition at infinity,
apart from R(r) satisfying the boundary condition, R, (r)
must be cut off (become negligible) at some finite r,,,, . This is
automatically ensured if the trajectory of the plunging particle
begins at a finite 7,,,,, (and does not extend to infinity), as then
R, will simply vanish for r > r,,, and has no contribution
near infinity. In this work, all the trajectories considered are of
this particular nature. Substituting (30) in (7), we get

F[R, + R] = AT, (31)

where F' is the operator that gives the left-hand side of Eq. (7)
when applied to R. We can define a modified source term as

s T — F(R
Tlmw = lme A2 ( A) s (32)

which satisfies the equation
F(R(r)) = 8T - (33)

We observe that (33) is just the Teukolsky equation (7) (with
s = 2) for R with source T/,,,. Note that for this source, the
integrands R” A>T, and R® A>T, do not diverge near the
horizon. This is because A, and A, are chosen as in (28) and
(29) to make sure that T/, is suppressed by two orders of A
when compared to T, Also, as discussed above, R(r) must
satisfy the same boundary conditions as the total solution.
Therefore the general solution for R is

Rip(r) = VLVR“’(r) { / RH(r’)AZTlma,(r’)dr/}

+ %RH(},) Um R“(r’)Alemw(r’)drj} . (34)

where W is given by (23). Also as r — r,, the first integral
becomes negligible and (30) can be expressed as

A AN .
R(r N r+) ~ (7A02+ﬁ> ezwt(r)—zm(p(r)

B(O)hole o _
et | [ BT (| 35)
Thus we have been able to regularize the radial Teukolsky
equation (for s = 2) that involves sources near the horizon.
Further, (4) and (35) can be used to calculate the
perturbation close to the horizon.

IV. yy WAVEFORMS CLOSE TO THE HORIZON
OF A SCHWARZSCHILD BLACK HOLE

In this section, we display results of the near horizon
solution of the radial Teukolsky equation for two kinds of

trajectories of a test particle plunging into a Schwarzschild
black hole. The first trajectory is in a radial plunge in which
the test particle falls along a radial geodesic into the black
hole. The second is an EOB trajectory that transitions from
a quasicircular orbit into a plunge [49]. The regularization
ansatz that we have used is given in (26).

A. Radial in-fall

Let us consider a particle that falls radially from infinity,
initially at rest. The total solution of the radial Teukolsky
equation (i.e., the sum of the ansatz part and the integral
part) at the horizon (for / = m = 2) in this case has been
plotted in Fig. 2 in advanced time. The in-falling particle
follows a radial geodesic of the Schwarzschild background,
described by 8 = z/2, ¢ = 0, and

s e —

To obtain the waveform in Fig. 2, we made the following
modification to the geodesic trajectory (36) to cut off the
contribution in the integral in (35) from 7 > r,,, = 300M,

ar _
dr

r—80log (cosh(3%57))
1 +tanh(%)

2 —80log (cosh(4}))
1+ tanh(4¥)

Tmod = s

(37)

with r being the radial coordinate in the geodesic trajectory.
Fig. 1 shows how r,,4 depends on r. For small values of r,
Tmod 18 the same as r; r,q agrees very well with r when
r~ 2, but as r increases to larger and larger values, rq
asymptotically becomes r,x = 300M. Using r,,q as a
radial coordinate for the integral in (35) has enabled us to
cut off the contribution from ' > rp, = 300M in the
integral in (35).

Note that for a geodesic trajectory, t 4+ r, becomes a
constant, say v, as the particle reaches very close to the
horizon. This constant, v, is the property of the trajectory

300F .

200F .

3 [ ]
150 ]
E 150 ]

s0F ]

0 } 1 1 1 1 1 E

100 200 300 400 500
r

ok

FIG. 1. Variation of r,q with the geodesic radial coordinate.
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(

_3F N
— Re[A’R]
-4r — ma2Rry | 7

I
-20 0 20 40 60
t/M

FIG. 2. w, waveform for radial in-fall trajectory. The time
coordinate here is in advanced time, with # = 0 corresponding to
the plunge of the particle into the horizon.

and represents the location of the plunge, in advanced time,
of the in-falling particle into the black hole horizon. In
Fig. 2, and in subsequent Figs. 3—5, we have shifted the
location of the plunge to zero on the horizontal axis. (In the
frequency domain, this corresponds to pulling out a phase
factor /" from the total frequency-domain waveform.)

B. Effective one-body quasicircular plunge

In this section, we look at results for a more realistic and
general trajectory of the in-falling particle. The trajectory
we use is the EOB quasicircular plunge (decaying circular
orbits) following the analysis in [49]. The trajectory is not
exactly a geodesic because of the radiation reaction which
causes the decay of the circular orbits. The parameters used
to generate the EOB trajectory are: start point at ry = 15M.
The other initial conditions have been fixed using adiabatic
approximation conditions [49]. We have discussed results
for trajectories with symmetric mass ratios of 7 = 0.1, 0.16,
0.22. The expression for # in terms of the masses (m; and
m,) of the two merging objects is

mmp

== _. 38

! (my +my)? (38)
The dimensionless EOB Hamiltonian [rescaled using the
reduced mass (M .q) of black hole and the test particle] used

for the evolution of the trajectory is

I:Iimproved _ Himproved (r, P) _ l 1 i 27] Heff — Mred
M 9

M,y n red
(39)
where
%;p)— \/F(r) {1 - (Ml:ed>2 +(F(r)=1) <;1.:j>1 ;
(40)

and

F(r) =1 —L”j M. (41)

We then use the following Hamilton equations to evolve the
trajectory

dr ) I:Iimproved

i e GV ) (42)
‘fi‘gsd):al%;j:m(r,pr,p(p), (43)
A O p ()

% = F?[&(r, p,. Py)ls (45)

where F? is the radiation reaction that causes the slow
decay of the orbit. The procedure to calculate the radiation
reaction is highlighted in [50]. Note that 7 = 1/(M + u),
® = o(M + p). In this case, we have implemented the
same cutoff strategy, namely cutting off the source term T
at 7> roa (Fmax being different than the radial in-fall
value), in a slightly different way, without having to modify
the EOB trajectory. As we impose this cutoff on the full
source term T, the ansatz part R, and the integral part 7/,
will both be cut off at r > r,,,. In our practical calculation
though, the ansatz part will not be evaluated at locations
away from the horizon; therefore, an explicit cutoff on R, is
not necessary. We will only need to use a window function
when evaluating the integral part of (35) to remove any
contribution from r > ry,y in T, [Eq. (32)]. We specifi-
cally used a window of (1 —tanh(2(r — rp.))/M)/2.
Such windowing also helped eliminate numerical errors that
accumulate while integrating highly-oscillatory functions.
Fig. 3 contains the v, waveforms (for [ = m = 2) corre-
sponding to the test particle following an EOB quasicircular
trajectory while plunging into the Schwarzschild black hole.
The different rows are plots for trajectories with different mass
ratios. The two columns in Fig. 3 correspond to different
distances (7, = 10M and r,,,,, = 7M) at which the integral
part of the solution was smoothly cut off. Note that to evaluate
the yr waveform at the horizon, the ansatz piece does not need
to be evaluated at infinity, hence there is no windowing
required for the ansatz contribution. We found almost no
difference in the waveform in the relevant region (relevant
advanced time interval) for the two cases with different cutoff
radii. This can be seen by comparing the figures of the two
columns in Fig. 3. This reinforces our opinion that the
maximum contribution to the integral part in the waveform
should come from the region close to horizon (justifying the
use of windowing functions).
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FIG. 3. y, Waveforms for EOB quasicircular trajectories. The time coordinate here is in advanced time, with # = 0 corresponding to
the plunge of the particle into the horizon. The top panel is for # = 0.1, the middle panel is for # = 0.16, and the bottom panel is for
n = 0.22 trajectories. [Right column: Trajectory cutoff at r.,, = 7M; Left column: Trajectory cutoff at r,, = 10M].
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V. COMPARING OUR y, RESULTS WITH THOSE A. v, Computation using the
OBTAINED USING STAROBINSKY-TEUKOLSKY Starobinsky-Teukolsky identity
IDENTITIES

We can find the in-going v, from the y, waveform at the

In this section we first highlight how y, close to the  horizon via the Starobinsky-Teukolsky identity
horizon is related to the ingoing v, at the horizon via the ST
identity for a Kerr background. We then compare the Y = GmwZ® (46)
described in Sec. IV to the y, computed from y, via the ST
identity for the case of a Schwarzschild background. where
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64(2Mr, )*ik(k* + 4€?)(—ik + 4e)
Clmw ’

(47)

Olmw =

— R(O)inA2eikr* , Zin

Imw

Yin

Imw

— R(4)inA—Zeikr* . (48)

Note that R and R4 are the ingoing components of
R and R™ respectively close to the horizon, where R()
and R™ are related to the full y, and y, waveforms and are
defined in (A6) and (A7) respectively. Cy,, is the
Starobinsky constant, given by
|Cima|? = (0% + dawm — 4aw?)[(Q — 2)* + 36awm
—-36a’0’] + (20 — 1)(96a’w* — 48awm)
+ 1440* (M? — a?),
ImC,,,,, = 2Mw,

Reclmw = +\/|Clmw‘2 - (Imclmw)zﬂ (49)

with Q = &,,, + a*w? — 2awm, where £, is the spheroidal
eigenvalue [47]. Note that to compute v, at the horizon via
the ST identity, we need the y, waveform at the horizon.
For the radial in-fall case in a Schwarzschild background,
the w4 waveform expression can be found in [42]. For the
EOB trajectory case, we use the general solution of the
form (16) which results in an expression of the following
form (See [43])

B(4)holc o
Ziln _ Imo M / dteia)t—im(p(t)
ma . (4)in 5(0)c0
2la)Blma} Dlmw ®

X |:(An}10 + Anm*O + Am*m*O)R‘()Z)

dR% 2R
4) 4)
( nm*0 m*m 1) dr ( m*m 2) dr2

(50)

B. Waveform comparison

In this subsection we present our results, comparing the
o waveform (35) close to the horizon computed directly
from the Teukolsky equation with the y, waveform
computed from the y, waveform via the ST identity. As
it turns out, the waveforms obtained using the two
approaches are quite different from each other. Figure 4
shows the y waveforms (for [ = m = 2) computed using
these two different approaches for the radial in-fall trajec-
tory in Schwarzschild background. The superscript “ST” in
the legends implies that the corresponding waveform is
computed using the ST identity. The other legend without
the superscript corresponds to the waveform directly
computed from the Teukolsky equation. It is quite clear
that the two approaches predict very different y,, wave-
forms towards the horizon. A similar result is seen for the

1E ]

0 A [\ 7N\ =
V NS

1k ]
o
N~ =2F ]
<

-3F P AZRST

4k — A2R ]

I
-20 0 20 40 60
t/M

FIG. 4. y, waveform comparison for radial in-fall trajectory.
The time coordinate here is advanced time, with r = 0 corre-
sponding to the plunge of the particle into the horizon.

EOB trajectory case. Figure 5 highlights the differences in
the real and imaginary parts of the y, waveform (for
[ = m = 2) computed using the two approaches for EOB
trajectories of the in-falling particle. Once again, the
predictions of the two approaches are very different.

Our results in this section indicate that using the
Starobinsky-Teukolsky identity on , is not equivalent
to computing v, directly from the Teukolsky equation.
This is mainly due to the fact that the Staorbinsky-
Teukolsky identity holds only for vacuum spacetimes in
black hole backgrounds. With a particle plunging into the
black hole, the spacetime in the near-horizon region is no
longer a vacuum and the predictions of the Starobinky-
Teukolsky identity are no longer valid—although during
the inspiral, the particle is far away from the horizon and
one would still expect the Starobinsky-Teukolsky identity
to hold. Thus, the right way to compute the y, waveform,
during the plunge, is to begin with the Teukolsky equation
and compute its solution employing a relevant regulariza-
tion scheme as done in Sec. IV.

VI. COMPARISON OF ECHO WAVEFORMS

In several works [10-13], echoes in outgoing y, wave-
forms are computed with the aid of y waveforms at the
horizon computed via the Starobinksy-Teukolsky identity.
This is mainly done due to two obstacles; the unavailability
of the explicit source term for the y Teukolsky equation
and the convergence issues of solutions of the Teukolsky
equation. In this paper, we have derived the explicit v,
source term and have suggested a regularization scheme to
get convergent solutions of the Teukolsky equation, thus
overcoming both of the difficulties. Hence, we can now
compute the outgoing y, echoes at infinity using the
correct horizon y, waveform. In the subsequent sections
we will do some comparative analysis of such echoes in
the Schwarzschild background.

InRef. [40], the boundary condition for gravitational waves
near the ECO surface was formulated as a relation between
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FIG. 5. w, waveform comparison for EOB quasicircular trajectories. The time coordinate here is advanced time, with t =0

corresponding to the plunge of the particle into the horizon. The left column contains the real part comparisons while the right column
contains the imaginary part comparisons. The top panel is for 7 = 0.1, the middle panel is for # = 0.16, and the bottom panel is for

n = 0.22 trajectories.

ingoing y, and outgoing y, in that region; both are directly
connected to the tidal fields experienced by zero angular
momentum, near-horizon fiducial observers staying at con-
stant redshift (with respect to infinity) in Kerr spacetime. More
specifically, the first (also the most dominant) echo waveform
in the outgoing y, can be expressed as [10]

ooEcho _ o ECO in
Zz,’ma) - sz’mwjfmwyfmw’

(51)

where
( 1)m+1 D(4>°°
jt’mw = 4 Dégn(i;t ’ (52)
‘mw
where D(;Z‘;o and Dg')lz,ut are defined in Eq. (21). Here ZXEcho

are components of outgoing , at infinity, while Y2

defined in Eq. (48), are components of y, on the horizon.
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FIG. 6. w4 waveform at infinity for EOB trajectory. The left figure is for n = 0.1, the middle figure is for = 0.16, and the right figure
is for n = 0.22.
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The quantity REC is the reflectivity directly associated with
the tidal response of the ECO [40], and is modeled in several
ways [11,51]. In this work, we use the Boltzmann reflectivity

model [11,51] which is given by

|k| Ck -
R];g(a)) — ’Rgmw = exp (—m exp —lmlog(ﬂkl) g

(53)

where T’ is the Hawking temperature of the Kerr black hole,
and k is defined in (22). The quantity 7 is a free parameter of
the model that determines the separation between the main
wave and the echo. Note that Ty = 1/(8zM) andk = w fora
Schwarzschild black hole.

In this section we computed the first echo in the y,
waveform at infinity in two ways. In the first way, we use the
ingoing y( waveform at the horizon, Y ' computed directly
from the Teukolsky equation as in (35); insert it into Eq. (51)
to obtain the first echo at infinity. In the second way, we first
obtain the y, waveform at horizon, Y by applying the
Starobinsky-Teukolsky (46) to the y, waveform at horizon,
Zn . andtheninsert Y into Eq.(51). The latter approach
is more commonly followed in literature [10-13].

We use the same EOB trajectories for the particle
plunging in to the black holes as in Sec. IV B. Figure 6
contains the waveforms of the main outgoing v, wave (for
[ =m = 2) at infinity [given in Eq. (50)] for the three
different trajectories considered in this paper. The echo in
Eq. (51) adds to this main wave (48) to give the total y,
waveform. The comparative plots for the first echoes (for
[ = m = 2) computed using y, calculated directly from the
Teukolsky equation and using y4 with the ST identity are
illustrated in Fig. 7. The “ST” in the superscript corre-
sponds to the use of Starobinsky-Teukolsky identity. It is
evident that although the echoes are qualitatively similar,
there are significant quantitative differences between the
two. We believe the first way of using y, computed directly
from the Teukolsky equation is the correct way of comput-
ing echoes. As discussed in Sec. V, this is because the
Starobinsky-Teukolsky identity holds for vacuum space-
times, and a particle plunging in the black hole background
makes the spacetime nonvacuum.

Our results also suggest that the echoes calculated using
the y, waveforms computed directly from the Teukolsky
equation are slightly stronger than the ones calculated using
yw, waveform and the ST identity. For a quantitative

analysis, let
V125 Pt
/f |Z;°’5£E0h0|2d[

where the numerator in the above definition has the echo
waveform calculated using y, waveform directly from the
Teukolsky equation while the denominator has the echo
waveform calculated employing Starobinsky-Teukolsky

identity. For the three different trajectories, we get the
following values of y

x(n = 0.10) = 1.40222,
x(n =0.16) = 1.43018,
x(n =0.22) = 1.44997. (55)

This indicates that the echoes obtained using the
waveform directly computed from the Teukolsky equation
are stronger than those whose computation are involved the
ST identity. Equation (55) also indicates a trend that echoes
computed using v, directly computed from the Teukolsky
equation become stronger and stronger in comparison to
the echoes computed using y, and the ST identity with
increasing values of 7.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper we computed the source term of the v,
Teukolsky equation explicitly in terms of the trajectory
parameters for a point particle plunging into a Kerr black
hole. An analytic expression for the y, source term enables
us to compute the y, waveform directly from Teukolsky
equation. We also proposed a regularization scheme to
handle the divergences appearing in the integrals of
Teukolsky equation solutions for the v, sector.

We computed the y, waveform close to the horizon due
to a particle plunging into a Schwarzschild black hole via
different trajectories, including a purely radial in-fall and
other quasicircular trajectories. We also computed the first
echoes in the outgoing y, waveform employing the directly
computed y waveforms. We have explicitly shown that,
for a particle plunging into a Schwarzschild black hole,
there are significant quantitative differences in the
waveforms (and corresponding y4 echoes) when computed
directly from the Teukolsky equation compared to when
they are computed employing the Starobinsky-Teukolsky
identity on y,. We believe using the Teukolsky equation
directly to compute these waveforms is the more accurate
way in nonvacuum spacetimes, for example, in the scenario
of a particle plunging into the horizon. Our calculation is
not required when the particle stays far away from the
horizon; for example, when studying tidal interactions
between binary black holes during the inspiral stage.
Note that the derivation of the source term as well as
the proposition of the regularization scheme have been
done for a general arbitrarily rotating Kerr black hole. But
for numerical simplicity, the numerical computation of
waveforms and echoes has been done for a Schwarzschild
background. We aim to extend the computational analysis
to the case of a Kerr background in a future publication.
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APPENDIX: CALCULATING
THE SOURCE TERM

We would like to calculate the source terms for the radial
inhomogeneous Teukolsky Equation for y§. Similar source
term for y/% is available in the literature [43]. The decoupled
equations for the Weyl scalar perturbations are [34]

[(D=3e+e" —dp—p*) (A —dy +u)—(6+ 7* —a* =3B — 41)(5" + 7 — da) — 3y, |yl = 4xT,, (A1)

where

To=(6+n" —a* —3—47)[(D —2e —2p")TB — (6 + n* = 2a* —2f3)T?]
+ (D =3¢+ ¢ —4p —p*)[(64 2n* = 28)TE — (D —2¢ + 2¢* — p*)TE,]. (A2)
and

[(A+3y =y +4u+p)(D+4de—p)—(5" =" + p* + 3a+4r) (5 — 7 + 4B) = Sy,lyh = 4aT,, (A3)

where

Ty=(A+3y =7 +4p+p)[(8" = 20" + 20T, — (A +27 = 27" + W) o]

+ (6" =7 + 4+ 3a + 4x)[(A + 2y + 2u*)TE,, — (5" — 7* + 2% + 2a)T5]. (A4)

When we separate the decoupled equations into a radial and
angular equations, the solutions of the angular equation are
spin-weighted spheroidal harmonics ;S;,,(0). To get the
source term for the radial equation we write

473T = / Ao T, (r) SJ(0)e™ e (AS)
Lm

W= [ a0 ROGS©O)mee ., (a6)

Lm

vl =0 [ Aoy RO S@)emre (A7)

ILm

We know T [related to Ty and T4 in (A12)], from which we
need to find the form of T, (r) using (AS5).

1. Orthogonality relations and normalization

Following [52], the spin weighted spheroidal harmonics
are normalized as

A "2 (0)sin0do = 1. (A8)

So the orthogonality relation considered is

/ Sim€™ (Sp)e™ "0 dQ = 2815y (A9)
§%s

[

The 2z in the right-hand side is required to satisfy the
normalization (A8). The other relation to be used is the
Dirac-delta definition

1 [
5(x —a) =5 / "= gy, (A10)

2. General expression for T}, (r)

Using the orthogonality relations with (5), we get

T . X 'Sa{l)
Tfmu) e 4 / dgdtp—lp*—l - e—lm(p+l(1)lﬂ’ (A] 1)
2 2
where
T =2Ty,, fors=2
T =2p=*T,, fors=-2. (A12)
This gives
) ) Saw
T(;;)mz =4 / de[p_Sp*_l (T4)e—tm(p+twt —22 ‘m ) (A13)
4
X . Saw
TV —4 / dQdtp= p*= (T)e~motion 220m —(A14)
4
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3. Some definitions and algebraic tricks

The Boyer-Lindquist form of the Kerr metric is

ds* = (1 =2Mr/Z)dt* + (4Marsin*(0)/X)dtdp — (X/A)dr? — d6*
—sin?(0)(r? + a® + 2Ma’r sin*(0) /) dg?.

The NP tetrad basis chosen for this metric is
P =[(r*+a’)/A1,0,a/A],  n'=[?+a’ —A,0.4d]/(25),

m* = [iasin,0, 1,i/sin@]/[2"2(r + ia cos 6)],

>
L, [1, - (K) ,0,—a sinzt‘)] , n, = [A,%,0,—aAsin’0]/(2%),

= liasin0,0, =X, —i(r* + a*) sin 4]/ [2'/*(r + iacos §)],

my

with the nonzero spin coefficients being
p=—1/(r—iacos®), p=—p*cotd/(2V2), 7 = iap*sin0/V/2,
T=—iapp*sin0/V2,  pu=pp*AJ2,  y=p+pp*(r—M)/2,
a=rx-—p.
The directional derivatives are given by
D = 1#6,,, A= n"aﬂ, o= m“aﬂ.
The only nonzero Weyl Scalar for the Kerr metric is
= Mp?
Yo 2
while the other four Weyl scalars are zero. Here we have used the notation
T=r*+a’cos’0=plp,
A=r2+a*>-2Mr.
We also define the following differential operators
m .
L, =0p+——awsinf + ncotd,
sin@
L= Z(—w,—m),
2 =0, —-iK/A,
9" = P(~w,—m) = 0, + iK/A.

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)
(A24)
(A25)

(A26)

Now some of the algebraic tricks with these differential operators that are useful in calculating the form of 7/, are

[Z +iasin@(np* —mp)|¢ = (p*)"p"Z[(p*)"p™"E],
2j(r—M)

A&

AT g (o) D(ATp (p)E) = [@ mp+npt +

2,(55) -2

sin @ sin @
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Note that the above three equations are valid even for . and 2. And finally an integration by parts identity when ¢;
vanishes fast enough near & = 0 and 6 = ~,

/ " 400, 0(0) = — / "0 L (C). (A30)
0 0

4. Form of T4 and T in the metric

Using the equations, definitions, and tricks mentioned in section A 3, we can write T4 given by equation (A4) as

1 1 N
T4 — _ 5/)810*92&_1 [ﬂ—4$0(p—2p*—lT§n ] + ﬁpgp*Azg—l L0—4p*2@l </)—2/)*—2A—1Tf15’1*n)]
1 . 1 .
= PPN D T (pp T )] + z—ﬂpgﬂ*Az-@ p~tp A L (p2p TS ). (A31)

The sign difference in two terms (with prefactors 2#\/2) when compared with equation (2.15) of [43] is due to different sign in

the definition of p. Now using the equations, definitions, and tricks mentioned in section A 3, we can write Ty given by
equation (A2) as

1 1
To= =300 L= Lo i) = 0o L0 ™ p 2 (0T}, )]

1
=P D~ D Th)] — ﬁp“p*@ p=p 2L (02T ). (A32)

5. Stress-energy tensor components

The perturbation stress-energy tensor is due to a test particle of mass y moving with four velocity u* in the black hole
spacetime. Let x” be an event in spacetime and x(z) be the test particle’s world line, i.e., the geodesic along which the
particle is moving. The stress-energy tensor is given by (z is the proper time along the geodesic) [42]

T (x') = y/dr uu’slx' — x()], (A33)
where the delta function is normalized as
/ 8 (x)y/—gd*x = 1, (A34)
where
g = —X?sin? 0. (A35)

Therefore the delta function can be written as

6(r' = r(z))8(0' = 0(z))é(¢" — 9(x))5(t' — (7))

54 ! _ — s A36
(¥ = x(2)) o (A36)
Now integrating (A33) with respect to ' we get
dx® dx”
W= BT S0 (0))8(0 - 0(1)5(¢) — (1)) A37
S e (LOLCE O CRI) (437)
In the Newman-Penrose formalism
T8, = T%n,ny. T3, = T%n,mj, T, = T%mimy,
T =T%1,l, T8 =T%l,mg, T8, = Tm,my, (A38)
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we define

T = () Cardl? = H0)3(0 = 005t/ = 0(0), (439)

where a, b can be [, n, m, or m*.
To calculate the C coefficients we make use of the following geodesic equations [43] (Kerr metric)

i[ —cos26’{ - E?) + ,l% H 1/256)(9),

sinZ@

) —(E(r* + a*) —al,) = ¢,

sm29

P 2 2 —
0 asin’6 + A (E(r*+a*)—al)=T,
v 7

dT (A40)

where E, [,, C are the energy, the z component of angular momentum, and the Cartar constant of the test particle
respectively, and R is

R = [E(r* + a®) —al,)? = Al(Ea - 1)* + r* + C]. (A41)

Using (A15), (A16), (A37), (A38), and (A39) we can deduce that

C, = E(r? +a*) —al +zﬂ ’ (A42)
"4yt © Tde
p ) ) dar||. . [ do
Coin=—2—|E —al,+32= 0( aE - o A43
" 2y/2%% [ (4 a’)—al.+ df} {l o (a s1n2n9> T (A43)
c 2 ising(ap——5) 4 22T (A44)
Ip— = |1 S1 ar — -7 >
) sin? @ dr
Cr=< B+ a) —at, -z %] (A45)
= : r —al, —X—| ,
= w2 “ at dr
P 2 2 dri . L a9
Ciy = — E —al, -z 0( aE - -z, A46
o V2ZAL { (r+a) —al, dr] [l - (a sin2€> dr (A46)
Con =2 [isine(ap - ) 5 %) (A47)
mm = o5t | 520 dr|’

where 1 = %. The equations (A42)—(A44) match with those obtained in [43] for constant & modulo the opposite sign of p.
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6. Getting back to T,

We first focus on ngl)w. Substituting (A31) back in (A13) and integrating with respect to ¢’, we get

Tt =55 [ e [ a0 sing? Casin(@)

=32 (o (22 )t - rnote - o) )|

s an ot (pan (S Yo - oo - o)) |

2V2
_ZAz_@-;-[ 4@+<p p (C 9/)5(r’—r(t))(s(ﬁ/—l%t)))]
st pract (5 (S Yo - et -0 )|} (A%8)

Now integrating by parts and using some of the algebraic tricks, we get

4 o Lo
Tg:‘n)a):_'u/ dt/dglelwt—lm(p(t)
27 |

* {‘%-ﬂ{p—%(ﬁs)}cnnp—zp*-wr' — r{)8(e" - (1))

B (LY(S) + ialp - ) $in6S) T {C 2 A8 — r(1)5(E - 6(1)))

f 2p
2792” S S(p727) p Y Coen Ap™20728(r = 1(1))8(60 — O(1))
—i (P A28) 7 p=* D (p*p72 Copee 6(r = 1(1))8(6" = 0(1))) } |- (A49)

(In (A49), S'is _,S,,,.) In this form of (A49) we can readily integrate the delta function in . Again there is a sign difference
in two terms when compared to [43] due to different definition of p.

Similarly, for Tgm)w, substituting (A32) back in (A14) and integrating with respect to ¢’ we get

4 -
Tl 2K / dreir=ime) / o' (sin@'p* (,8,,,(¢)))

Imw %

{320 o2l (o (2 ot - e —o0) )|
-5 |2 (5= (S ot = ryao - o)) |
- 2|t (= (52 Yot = o -0t )|

=52t (2 (ot - e - o) | (A50)

In this case, integrating by parts and using the algebraic tricks gives
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Ty = ;—” / " ar / 4/ eior=mo(t
T J-co

x {_%gl{P_4$2(/)3S)}Cllp*5(rl —r(1))5(6" = 0(1))

2p*2

V2p

+%zzwswp-‘*),f}clmp*-zfs(r' — r(1))3(6 - 6(1))

—(0*)2{p™* D (p*~! Cpud(r’ — r(1))8(6" = 0(1))) } |- (AST1)

+

(L2(S) + ia(p = p*) sin 08) 2{Cpup™25(F = r(1))5(0' = 0(1))}

In (A51), S is ,S,,,. In this form of (A51) we can readily integrate the delta function in 6.

7. Calculating the A terms

After integrating (A49) with respect to @', we can express it as

T(fiia)(r/) = Iu/ dteiwt_im(ﬂ(l)Az[(AnnO + Am*nO + Am*m*O)é(r/ - r(t))

+{<Am*n1 + Am*m*l)é(r/ - r(t))}.r’ + {Am*m*Zé(r/ - r(t))},r’r’]’ (A52)

where the following A terms are evaluated at @ = 0(¢) with S =_, §,,,,.

4 -1 Cnnp_zp*_l —

am = (30)(3) = 21215 (A3
(AN -1\ Cpp”? v (1K i . K .
Ao = <%> <%> A {(325) <K pP=pP > asm GSX (p=r )}, (A54)
4\ (-1 (K K> . K

Am*m*O = (2_7[> (T)p_3p*cm*m*s |:_l (X) ) - p - 21/) Z:| ) (ASS)

4\ [=1\ Cppp™> .
Ayt = <E> <ﬁ> A” L3S + iasinO(p — p*)S], (A56)

4 -1 K
A o= [— — =3 - | — — AS57
m*m*1 <2]‘[><2>p pcmmS<lA p>v ( )

4 -1
A o= —])—)p73p*C,. -S. A58
m*m*2 (271_)(4):0 P Cowrm ( )

The above equations match those obtained in [43] modulo the opposite sign of p and an overall normalization factor.
Similarly integrating (A51) with respect to &', we can express it as

T<fon)1(u(r/) = ,Ll/ dteiwl_im(p([)[(AlZO + AlmO + AmmO)é(r/ - r(t))

[Se]

+ {(Alml + Amml) 5()”/ - r(t>)},r’ + {Amm25(r/ - r(t))}.r’r’]’ (A59)

where the following A terms are evaluated at &' = () with S =, S,,,.

Ao = (24—”> <_71> (Cup*) L\ L (p7S)}, (A60)
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4 2\ Gy, —iK . ) K .
Ao = (E) <\/—§> 71 [(.ZZS) (T —p—p > +a smHSZ(p —p )] , (A61)
—4 K K? K
A ==—|p ' CrmS|+il =] ——+2ip—|, A62
mmQ <2ﬂ_>p P mm |:+l (A)M A2 + p A:| ( )
4 2\ G )
Apn = [ = || —= | == LS + iasinO(p — p*)S], A63
Im1 <2n><\/§>p[2 (p—p")S] ( )
8 K
A =(—|plp*! — A64
mml (2”>p P CmmS<lA+p>v ( 6 )
—4
AmmZ = <_>p_1p*_lcmms' (A65)
2r
(A59) can further be written as (after integrating with respect to dr and then renaming r’ as r)
T;?n)a)(r ) = pelrme [(Azzo + Apmo + Apmo)?
1" ) /\2 sl o] / d
+ (Alml +Amm1)(t + lw(t) —iumrg ) + 1 E(Alml +Amml)
+ A (P + 3iwt"t = 2imt" ¢ — &? () + 20m(!)?¢' — m?*t (¢')* — imt'¢")
A d*(A
+2(¢" + io(F)? — iml ) =22 4 ¢ ( ";'"2) , (A66)
dr dr

where ’ denotes derivative with respect to r.
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