
Gravitational radiation close to a black hole horizon: Waveform
regularization and the out-going echo

Manu Srivastava 1,* and Yanbei Chen2,†
1Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India

2Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA

(Received 18 August 2021; accepted 8 October 2021; published 1 November 2021)

Black hole perturbation theory for Kerr black holes is best studied in the Newman-Penrose formalism, in
which gravitational waves are described as perturbations in the Weyl scalars ψ0 and ψ4, with the governing
equation being the well-known Teukolsky equation. Near infinity and near the horizon, ψ4 is dominated by
the component that corresponds to waves propagating towards the positive radial direction, while ψ0 is
dominated by the component that corresponds to waves that propagate towards the negative radial
direction. Since gravitational-wave detectors measure outgoing waves at infinity, research has been mainly
focused on ψ4, leaving ψ0 less studied. But the scenario is reversed in the near horizon region where the
ingoing wave boundary condition needs to be imposed. For ingoing waves, the components of the tidal
tensor measured by observers near the future horizon depend mainly on ψ0. Thus, studying the near horizon
phenomena, e.g., tidal heating and gravitational-wave echoes from extremely compact objects (ECOs),
requires computing ψ0. In this work, we explicitly calculate the source term for the ψ0 Teukolsky equation
due to a point particle plunging into a Kerr black hole. We highlight the need to regularize the solution of
the ψ0 Teukolsky equation obtained using the usual Green’s function techniques. We suggest a
regularization scheme for this purpose and go on to compute the ψ0 waveform close to a Schwarzschild
horizon for two types of trajectories of the in-falling particle. We compare the ψ0 waveform calculated
directly from the Teukolsky equation with the ψ0 waveform obtained by using the Starobinsky-Teukolsky
identity on ψ4. We also compute the first outgoing gravitational-wave echo waveform near infinity, using
the near-horizon ψ0 computed directly from the Teukolsky equation, and the Boltzmann boundary
condition on the ECO surface. We show that this outgoing echo is quantitatively very different (stronger)
than the echo obtained using previous prescriptions that did not compute the near-horizon ψ0 directly using
the Teukolsky equation.
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I. INTRODUCTION

Detection of gravitational waves [1,2] produced due to
mergers of compact astrophysical objects has opened up a
new approach towards testing the nature of black holes, in
particular the existence of the event horizon, as well as
possible deviations from Kerr geometry in the spacetime
region near the horizon. With these deviations, the gravi-
tational wave sources are not exactly Kerr black holes but
some other exotic compact objects (ECO) whose space-
times are identical to Kerr black holes except in the region
very close to the horizon. The existence of ECOs has been
motivated based on the effects of quantum gravity, exotic
matter equations of state, phase transitions, etc., in [3–9].
For a compact binary coalescence that results in an ECO as
its remnant object, the absence of horizon gives rise to
‘echoes’ in the outgoing gravitational waves that appear

after the main general relativity wave [10–26]. A comple-
mentary way to model gravitational waves from ECOs, by
parametrizing the compactness of objects, is proposed in [27].
During the inspiral stage, the absence of horizon in ECOs also
modifies the tidal interaction within the binary, and leads to
additional signatures in gravitational waves [28–32].
In this paper, we shall use exotic compact object, or

ECO, to refer to the black-hole candidate that we are
studying. Two related ways of probing the ECO are: (i) to
study tidal interactions between an ECO and a companion
that spirals around it, and (ii) to search for gravitational
wave echoes from the ECO after the plunge of the
companion into the ECO. In both ways, one can apply
black hole perturbation theory to the ECO, assuming that
spacetime geometry outside the ECO is well described
by the Kerr geometry, except for a modified boundary
condition on a surface that floats above the horizon.
Perturbations about the Kerr geometry are best studied in

the Newman-Penrose (NP) formalism [33]. Adopting the
Kinnersley tetrad, gravitational waves in Kerr geometry are
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described in terms of perturbations in the Weyl scalars ψ0

and ψ4. Teukolsky obtained equations [34] that describe the
radial and angular dependence of the perturbation wave-
forms. For vacuum solutions (pure gravitational waves), ψ0

and ψ4 contain the same information about gravitational
waves propagating in Kerr [35]. However, both for near
null infinity and near the horizon, ψ4 dominates over ψ0 for
gravitational waves that propagate along the þr direction,
while ψ0 dominates over ψ4 for waves that propagate along
the −r direction. For studies that focus on gravitational
waves generated by compact binary coalescence that
propagate toward future null infinity, it is natural to
compute ψ4. In further methods developed to solve the
Teukolsky equation more efficiently, e.g., the Sasaki-
Nakamura (SN) and the Mano-Suzuki-Takasugi formal-
isms [36,37] were eventually [38] developed for fields with
all values of spin, thus incorporating both ψ0 and ψ4.
However, the corresponding equations were mainly applied
for ψ4 calculations in the literature since (e.g., in Ref [39]),
the authors have presented the scheme to calculate the
ingoing ψ4 waveform due to a mass plunging into a Kerr
black hole based on the Sasaki-Nakamura formalism. Such
explicit calculations have not been done for ingoing ψ0

waves yet.
As discussed in Ref. [40], for fiducial observers floating

above the horizon (e.g., on the surface of an ECO), the
transverse components of the tidal tensors that they measure
depend on both ψ0 and ψ4 {See Eq. (12) of Ref. [40]}. For
ingoing waves, the ψ0 contribution dominates that of ψ4. For
this reason, to study tidally-induced horizon deformations
and gravitational-wave echoes, one needs to obtain ψ0 near
the horizon. For vacuum solutions, it is possible to obtain ψ0

from ψ4 from the Starobinsky-Teukolksy (ST) identity.
This has indeed been applied by several works [10–
13,40]. However, in situations where the companion plunges
into the ECO, the ST identity may not apply—and it is the
goal of this paper to obtain ψ0 for a plunging particle directly
from the Teukolsky equation, and compare it with the
previous prescriptions that use the ST identity.
In this paper, the source term of the radial Teukolsky

equation for ψ0 is explicitly calculated for a point particle
of mass μ plunging into a Kerr black hole. Reference [41]
had explored the source term for the simple case of circular
trajectories in Schwarzschild background, in the context of
metric reconstruction, but the expression for the ψ0 source
term for a general geodesic trajectory in an arbitrarily
rotating Kerr background has not been available in the
literature so far.
Further, it is well known that computing solutions of

the Teukolsky equation using the usual Green’s function
approach can lead to nonconvergent integrals, when the
source term does not vanish fast enough near infinity or
near the horizon. Poisson [42] highlighted such an issue for
computing ψ4 far away from a Schwarzschild black hole;
he subsequently resolved this issue by introducing a

regularization prescription. After obtaining the source term
for ψ0 generated by a particle moving along a geodesic
orbit in Kerr background, we show that a similar non-
convergence issue occurs when we try to compute ψ0 for
Kerr geometry. We introduce a regularization method in
which we first insert a ψA

0 that satisfies the ingoing boundary
condition near the horizon and the outgoing boundary
condition near infinity, but corresponds to a source term
SA that only coincides with the source term S generated by
our plunging particle for up to two leading orders in ðr − rþÞ.
We then use the usual Green’s function approach to obtain
ψ0 − ψA

0 from the regular source term S − SA.
With our regularization method, we go on to compute the

ψ0 propagating towards horizon for two kinds of trajecto-
ries of the plunging particle in Schwarzschild geometry;
a radial in-fall and a quasicircular plunge from the EOB
formalism. [We emphasize that, even though we have
restricted to the simple Schwarzschild case, the source
term we obtain and the regularization approach both apply
to the general Kerr spacetime.] We will then compare
our directly-obtained horizon-going ψ0 with those obtained
by applying the ST identity on ψ4. We finally apply our
horizon-going ψ0 to the computation of gravitational-wave
echoes, by using formalism developed by Ref. [40]. These
echoes will be compared with those obtained from ψ4 and
the ST identity.
This paper is organized as follows. In Sec. II, after a brief

introduction to the Teukolsky equation, we explicitly
calculate the source term of the ψ0 Teukolsky equation
for a point particle of mass μ plunging into a Kerr black
hole. We also highlight the need to regularize the solution
of the ψ0 equation computed using the Green’s function
approach. In Sec. III, we introduce our scheme to regularize
these solutions. In Sec. IV we go on to compute the ψ0

waveform close to a Schwarzschild horizon for the two
kinds of trajectories of the in-falling particle. In Sec. V we
show that the ψ0 waveforms obtained directly from the
Teukolsky equation are different from those obtained by
using the ST identity on ψ4. In Sec. VI we show that the
first echo in the outgoing ψ4 waveform computed with the
aid of ψ0 directly computed from the Teukolsky equation
differs from the first echo obtained using ψ4 and the ST
identity. Although the echoes calculated in the two ways
are qualitatively similar, there are significant quantitative
differences. Throughout the paper, we use geometric units
with G ¼ 1 ¼ c.

II. TEUKOLSKY EQUATION—ITS SOLUTION
AND THE ψ0 SOURCE TERM

In this section, after a brief overview of the Teukolsky
equation, we compute the source term of the radial
Teukolsky equation for ψ0 due to a point particle plunging
into a Kerr black hole. The well-established calculations of
the source term for the ψ4 Teukolsky equation can be found
in Appendix and in [43].
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A. Teukolsky equation and source term

For spherically symmetric scenarios like in the case
for the Schwarzschild spacetime, metric perturbation
(Einstein’s) equations are separable in radial and angular
equations, with the angular sector being described by
spherical harmonics, and radial sector divided into axial
and polar perturbations [44–46]. But in the case of Kerr,
with spherical symmetry no longer present, separable
equations were not found for metric perturbations.
However, in a groundbreaking work [34], Teukolsky
showed that we can use a single field, either ψ0 or ψ4,
in the Newman-Penrose formalism (in the Kinnersley

tetrad), to describe gravitational perturbations, and get
separate radial and angular perturbation equations for a
Kerr background; the so called radial and angular
Teukolsky equations. An underlying reason for such
separability was the fact that both the Schwarzschild and
the Kerr solutions are Petrov type-D spacetimes.
In the Newman-Penrose formalism, gravitational waves

are described in terms of perturbations in the Weyl scalars
ψ0 and ψ4. In terms of the Newman-Penrose quantities, the
decoupled equation [34] for the ψ0 perturbation (denoted
by ψB

0 ) is

4πT0 ¼ ½ðD − 3ϵþ ϵ� − 4ρ − ρ�ÞðΔ̄ − 4γ þ μÞ − ðδþ π� − α� − 3β − 4τÞðδ� þ π − 4αÞ − 3ψ2�ψB
0 ; ð1Þ

where

T0 ¼ ðδþ π� − α� − 3β − 4τÞ½ðD − 2ϵ − 2ρ�ÞTB
lm − ðδþ π� − 2α� − 2βÞTB

ll� ð2Þ
þ ðD − 3ϵþ ϵ� − 4ρ − ρ�Þ½ðδþ 2π� − 2βÞTB

lm − ðD − 2ϵþ 2ϵ� − ρ�ÞTB
mm�: ð3Þ

The different Newman-Penrose quantities (ϵ, ρ, γ, π, α,
β, τ, Σ), and the derivative operators (D, Δ̄, δ), that appear
in the above equation are for the background Kerr metric in
Boyer-Lindquist coordinates; their expressions are given in
Appendix. The expressions for the stress-tensor projections
(TB

ll, T
B
lm, T

B
mm) are also in Appendix. When Eq. (1) is

separated into radial and angular equations for a Kerr
background, the solutions of the angular equation are
spin-weighted spheroidal harmonics sSlmðaω; θÞ [47] with
s ¼ 2 for the ψ0 case. Thus, we can expand the solution and
the source in Eq. (1) in terms of 2Slmðaω; θÞ as

ψB
0 ¼

Z
dω

X
l;m

RðrÞ2Slmðaω; θÞeimφe−iωt; ð4Þ

8πΣT0 ¼
Z

dω
X
l;m

Tð0Þ
lmωðrÞ2Slmðaω; θÞeimφe−iωt: ð5Þ

In the angular sector, the above decomposition leads to
the spin-weighted spheroidal harmonics equation [47]

1

sin θ
d
dθ

�
sin θ

dsSlmðaω; θÞ
dθ

�

þ
�
a2ω2 cos2 θ −

m2

sin2θ
− 2aωs cos θ −

2ms cos θ
sin2θ

− s2 cot2 θ þ Elm − s2
�

sSlmðaω; θÞ ¼ 0: ð6Þ

Here Elm is the spheroidal eigenvalue [47] and s ¼ 2 for
the ψ0 case. Henceforth, for simplicity, we drop the aω
dependence of sSlm.

In the radial sector the decomposition (4)–(5) leads to the
radial Teukolsky equation

d
dr

�
Δsþ1

dR
dr

�
þ
�
K2 − 2isðr −MÞK

Δ
þ 4isωr − λ

�
R

¼ ΔsTlmω; ð7Þ

with s ¼ 2.

Δ ¼ r2 þ a2 − 2Mr ¼ ðr − rþÞðr − r−Þ; ð8Þ

K ¼ ðr2 þ a2Þω − am; ð9Þ

λ ¼ Elm þ a2ω2 − 2amω − sðsþ 1Þ; ð10Þ

with M and a being the mass and the specific angular
momentum, and r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
the position of the

outer and inner horizon. Note that Δ ¼ 0 defines the
position of the horizon, and that near the horizon
Δ ∼ ðr − rþÞðrþ þ r−Þ.
Next, we calculate the source term Tð0Þ

lmω (0 in the
superscript shows that it corresponds to ψ0 perturbation)
for a point particle (of mass μ) plunging into the Kerr black
hole following an arbitrary geodesic trajectory. Detailed
calculation of the ψ0 source term is presented in Appendix.
We will just outline the result here. Using orthogonality
relations (A9) and (A10) in (5), we get

Tð0Þ
lmωðrÞ¼ 4

Z
dΩdtρ−1ρ�−1T0ðt;r;θ;φÞe−imφþiωt 2SlmðθÞ

2π
:

ð11Þ
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As shown in Appendix, (11) can then be written as

Tð0Þ
lmωðr0Þ ¼ μ

Z
∞

−∞
dt eiωt−imφðtÞ

× ½ðAll0 þ Alm0 þ Amm0Þδðr0 − rðtÞÞ
þ fðAlm1 þ Amm1Þ δðr0 − rðtÞÞg;r0
þ fAmm2δðr0 − rðtÞÞg;r0r0 �; ð12Þ

where μ is the mass of the test particle; the A terms are
defined in the Appendix. Here the trajectory in the Boyer-
Lindquist coordinate system is parametrized by

zμðtÞ ¼ ðt; rðtÞ; θðtÞ;φðtÞÞ: ð13Þ
Similar source term for ψ4 perturbation is available in the
literature [43]. Equation (12) can further be written as (after
integrating with respect to dr and then renaming r0 as r)

Tð0Þ
lmωðrÞ ¼ μeiωt−imφ

�
ðAll0 þ Alm0 þ Amm0Þt0 þ ðAlm1 þ Amm1Þðt00 þ iωðt0Þ2 − imt0φ0Þ þ t0

d
dr

ðAlm1 þ Amm1Þ

þ Amm2ðt000 þ 3iωt00t0 − 2imt00φ0 − ω2ðt0Þ3 þ 2ωmðt0Þ2φ0 −m2t0ðφ0Þ2 − imt0φ00Þ

þ 2ðt00 þ iωðt0Þ2 − imt0φ0Þ dAmm2

dr
þ t0

d2ðAmm2Þ
dr2

�
; ð14Þ

where 0 denotes derivative with respect to r. Note here that
we have switched to using r as the independent variable
along the trajectory with

zμðrÞ ¼ ðtðrÞ; r; θðrÞ;φðrÞÞ: ð15Þ

We use this form of Tð0Þ
lmω for all our numerical analysis in

Secs. IV and V.

B. Solutions of radial Teukolsky equation:
Need for regularization

In this section we will look at general solutions to the
radial Teukolsky equation (7). We will also highlight that
the naive solution that we expect from theory of differential
equations; for example in [48], leads to some convergence
issues, and that there is a need to regularize the naive
solution in order to get meaningful results. The general
solution of the radial Teukolsky equation (7), with the
appropriate boundary conditions (purely ingoing at horizon
and purely outgoing at infinity), can be written as

RlmωðrÞ ¼
R∞
lmωðrÞ
Wlmω

Z
r

rþ
RH
lmωðr0ÞΔsTlmωðr0Þdr0

þ RH
lmωðrÞ
Wlmω

Z
∞

r
R∞
lmωðr0ÞΔsTlmωðr0Þdr0; ð16Þ

where RH
lmωðrÞ is the solution of the homogeneous

Teukolsky equation which satisfies the ingoing wave
boundary condition at the horizon and R∞

lmωðrÞ is the
solution of homogeneous Teukolsky equation which sat-
isfies the outgoing wave boundary condition at infinity.
The Wronskian Wlmω, defined as

Wlmω ¼ Δsþ1½RH
lmωR

∞0
lmω − RH0

lmωR
∞
lmω�; ð17Þ

with 0 denoting r derivative, is conserved. (Here we have
s ¼ 2 for the ψ0 equation.) Henceforth we shall often drop
the lmω dependence of R and W for simplicity.
The form of the homogeneous solutions near horizon and

at infinity is given by (see [34])

RH
ð0ÞðrÞ ∼

8<
:

Bð0Þhole
lmω

Δ2 e−ikr
�
; r → rþ

Bð0Þout
lmω

r5
eiωr

� þ Bð0Þin
lmω
r e−iωr

�
; r → ∞;

ð18Þ

R∞
ð0ÞðrÞ ∼

8<
:

Dð0Þin
lmω

Δ2 e−ikr
� þDð0Þout

lmω eþikr� ; r → rþ
Dð0Þ∞

lmω

r5
eiωr

�
; r → ∞;

ð19Þ

RH
ð4ÞðrÞ ¼

8<
:

Bð4Þhole
lmω Δ2e−ikr� ; r → rþ

Bð4Þout
lmω r3eiωr� þ Bð4Þin

lmω
r e−iωr� ; r → ∞;

ð20Þ

R∞
ð4ÞðrÞ ¼

8<
:Dð4Þout

lmω eikr� þ Δ2Dð4Þin
lmωe

−ikr� ; r → rþ

Dð4Þ∞
lmω r

3eiωr� ; r → ∞;
ð21Þ

where the subscript 0 or 4 in the left-hand side indicates that
they are the homogeneous solutions of the ψ0 or the ψ4

equation. The other variables above are defined as

r� ¼ rþ 2Mrþ
rþ − r−

log
r − rþ
2M

−
2Mr−
rþ − r−

log
r − r−
2M

;

k ¼ ω −
am

2Mrþ
: ð22Þ

Calculating the conserved Wronskian (at ∞) for the ψ0

sector using (17), we get
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Wð0Þ ¼ 2iωDð0Þ∞
lmωB

ð0Þin
lmω: ð23Þ

Putting in all the terms in (14), it can be shown that Tð0Þ
lmω is

OðΔ−2Þ near the horizon. We cannot directly use (16) to
calculate thewaveform at the horizon because the integrands
in both the integrals diverge ½OðΔ−2Þ� at the horizon which
makes the integrals nonconvergent. We suggest a regulari-
zation scheme to overcome this issue in Sec. III. From here
on, throughout the paper, all the functions like RH, R∞, W,
Tlmω, etc.,with no0or4 subscripts/superscripts correspond to
the ψ0 sector. We have suppressed the subscripts and super-
scripts of 0 for ease of notation. Any reference to theψ4 sector
functions will explicitly have a subscript or superscript of 4.
All the functions without the 4 subscript or superscript are to
be understood to belong to the ψ0 sector from here on.

III. METHOD OF REGULARIZATION

In this section we develop a scheme to get around the
problem of the nonconvergence of integrals in the general
solution of the radial Teukolsky equation, when the source
plunges into the horizon. In [42], Poisson developed a
regularization scheme to calculate theψ4 (s ¼ −2) waveform
at infinity for a Schwarzschild black hole. Regularizationwas
done by keeping the limits of integration arbitrary (24) and
pushing the divergences in to the homogeneous pieces of the
general solution given by

RlmωðrÞ ¼
Rb
lmωðrÞ
Wlmω

�
H1 þ

Z
r

a
Ra
lmωðr0ÞΔsTlmωðr0Þdr0

�

þ Ra
lmωðrÞ
Wlmω

�
H2 þ

Z
b

r
Rb
lmωðr0ÞΔsTlmωðr0Þdr0

�
;

ð24Þ
whereRa

lmωðrÞ is the solution of the homogeneous Teukolsky
equation which satisfies a specific boundary condition at
r ¼ a, Rb

lmωðrÞ is the solution of homogeneous Teukolsky
equation which satisfies a specific boundary condition at
r ¼ b, Wlmω is the Wronskian calculated using Ra and Rb,
while H1 and H2 are constants. In [42] the limits (a, b)
and the homogeneous pieces were fixed at the end using
boundary conditions. We found that extending the method of
regularization in [42] to s ¼ 2 using the generalized Sasaki-
Nakamura equation [38] is not very straightforward for the
analysis near the horizon.
We try and overcome the nonconvergence of integrals

using a different scheme. We do so by breaking our general
solution into two parts. The first part (the ‘ansatz’ RA)
analytically accounts for the leading two orders of Δ in the

source term Tð0Þ
lmω [recall here that (0) stands for ψ0]. The

second piece then satisfies the radial Teukolsky equation
with a modified source term T̃lmω. The modified source
term at the leading order has two powers of Δ less
(divergent) than the original source term. With this modi-
fied source termnone of the integrands in thegeneral solution

diverge close to the horizon. The scheme will become
clearer through this section. Let α and β denote the right-
hand side and the left-hand side of Eq. (7) respectively for
s ¼ 2. The integrands in the general solution of the radial
Teukolsky equation are of the formRHα andR∞α, whereRH

and R∞ are the solutions of the homogeneous Teukolsky
equation satisfying the ingoing boundary condition at the
horizon and the outgoing boundary condition at infinity
respectively. For the ψ0 case, the integrands diverge as
OðΔ−2Þ near the horizon. We expand the right-hand side
of Eq. (7) in powers of Δ near the horizon to get

α ¼ eiωt−imφ½α0 þ α1Δþ α2Δ2 þ � � � � � � � � � ::�: ð25Þ
To regularize the general solution, we would like to remove
the leading two orders of Δ in α. To achieve this, we try and
substitute an ansatz, with which the left hand side of
Eq. (7) matches the two leading orders of the right-hand
side. We attempt the following ansatz,

RAðrÞ ¼
�
A0

rΔ2
þ A1

r3Δ

�
eiωtðrÞ−imφðrÞ; ð26Þ

withA0 andA1 being constants, and tðrÞ andφðrÞ follow the
trajectory of the in-falling particle. This is a suitable ansatz in
order to compute the ψ0 waveform close to the horizon
because it has a behavior demanded by the boundary
condition of a purely ingoing wave near the horizon. The
different powers of r explicitly put in the denominator of
terms in (26) are to make the ansatz contribution small far
away from the horizon. Substituting (26) in the left-hand side
of (7) we get

β ¼ eiωt−imφ½β00A0 þ β01A1 þ ðβ10A0 þ β11A1ÞΔ
þ ðβ20A0 þ β21A1ÞΔ2 þ � � ��; ð27Þ

Equating the two leading-order coefficients of Δ from (25)
and (27), we can fix A0 and A1 to be

A0 ¼
ðβ11α0 − β01α1Þ
ðβ00β11 − β10β01Þ

; ð28Þ

A1 ¼
ðβ10α0 − β00α1Þ
ðβ10β01 − β00β11Þ

: ð29Þ

With the choice ofA0 andA1 from equations (28) and (29),
we now write the general solution of the radial Teukolsky
equation (7) as

RðrÞ ¼ RAðrÞ þ R̃ðrÞ: ð30Þ

Note that the total solution RðrÞ in the above equation must
satisfy the boundary conditions at the horizon and at infinity.
This can be ensured if R̃ðrÞ and RAðrÞ both satisfy the
boundary conditions at horizon and at infinity individually,
but it is not clear from Eq. (26) that RAðrÞ satisfies the
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outgoing boundary condition at infinity. Hence, for the total
solution RðrÞ to satisfy the boundary condition at infinity,
apart from R̃ðrÞ satisfying the boundary condition, RAðrÞ
must be cut off (becomenegligible) at some finite rmax. This is
automatically ensured if the trajectory of the plunging particle
begins at a finite rmax (and does not extend to infinity), as then
RA will simply vanish for r > rmax, and has no contribution
near infinity. In this work, all the trajectories considered are of
this particular nature. Substituting (30) in (7), we get

F̂½RA þ R̃� ¼ Δ2Tlmω; ð31Þ

where F̂ is the operator that gives the left-hand side of Eq. (7)
when applied to R. We can define a modified source term as

T̃lmω ¼ Tlmω − F̂ðRAÞ
Δ2

; ð32Þ

which satisfies the equation

F̂ðR̃ðrÞÞ ¼ Δ2T̃lmw: ð33Þ

We observe that (33) is just the Teukolsky equation (7) (with
s ¼ 2) for R̃ with source T̃lmω. Note that for this source, the
integrandsRHΔ2T̃lmω andR∞Δ2T̃lmω donot diverge near the
horizon. This is becauseA0 andA1 are chosen as in (28) and
(29) to make sure that T̃lmω is suppressed by two orders ofΔ
when compared toTlmω. Also, as discussed above, R̃ðrÞmust
satisfy the same boundary conditions as the total solution.
Therefore the general solution for R̃ is

R̃lmωðrÞ ¼
1

W
R∞ðrÞ

�Z
r

rþ
RHðr0ÞΔ2T̃lmωðr0Þdr0

�

þ 1

W
RHðrÞ

�Z
∞

r
R∞ðr0ÞΔ2T̃lmωðr0Þdr0

�
; ð34Þ

where W is given by (23). Also as r → rþ, the first integral
becomes negligible and (30) can be expressed as

Rðr → rþÞ ∼
�
A0

rΔ2
þ A1

r3Δ

�
eiωtðrÞ−imφðrÞ

þ Bð0Þhole
lmω

WΔ2
e−ikr

�
�Z

∞

rþ
R∞ðr0ÞΔ2T̃lmωðr0Þdr0

�
: ð35Þ

Thus we have been able to regularize the radial Teukolsky
equation (for s ¼ 2) that involves sources near the horizon.
Further, (4) and (35) can be used to calculate the ψ0

perturbation close to the horizon.

IV. ψ0 WAVEFORMS CLOSE TO THE HORIZON
OF A SCHWARZSCHILD BLACK HOLE

In this section, we display results of the near horizon
solution of the radial Teukolsky equation for two kinds of

trajectories of a test particle plunging into a Schwarzschild
black hole. The first trajectory is in a radial plunge in which
the test particle falls along a radial geodesic into the black
hole. The second is an EOB trajectory that transitions from
a quasicircular orbit into a plunge [49]. The regularization
ansatz that we have used is given in (26).

A. Radial in-fall

Let us consider a particle that falls radially from infinity,
initially at rest. The total solution of the radial Teukolsky
equation (i.e., the sum of the ansatz part and the integral
part) at the horizon (for l ¼ m ¼ 2) in this case has been
plotted in Fig. 2 in advanced time. The in-falling particle
follows a radial geodesic of the Schwarzschild background,
described by θ ¼ π=2, φ ¼ 0, and

dt
dr

¼ −
1

ð1 − 2M
r Þ

�
r
2M

�
1=2

: ð36Þ

To obtain the waveform in Fig. 2, we made the following
modification to the geodesic trajectory (36) to cut off the
contribution in the integral in (35) from r0 > rmax ¼ 300M,

rmod ¼
r− 80 logðcoshð300−r

80
ÞÞ

1þ tanhð149
40
Þ þ 2−

2− 80 log ðcoshð149
40
ÞÞ

1þ tanhð149
40
Þ ;

ð37Þ

with r being the radial coordinate in the geodesic trajectory.
Fig. 1 shows how rmod depends on r. For small values of r,
rmod is the same as r; rmod agrees very well with r when
r ∼ 2, but as r increases to larger and larger values, rmod
asymptotically becomes rmax ¼ 300M. Using rmod as a
radial coordinate for the integral in (35) has enabled us to
cut off the contribution from r0 > rmax ¼ 300M in the
integral in (35).
Note that for a geodesic trajectory, tþ r� becomes a

constant, say v0, as the particle reaches very close to the
horizon. This constant, v0, is the property of the trajectory

FIG. 1. Variation of rmod with the geodesic radial coordinate.
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and represents the location of the plunge, in advanced time,
of the in-falling particle into the black hole horizon. In
Fig. 2, and in subsequent Figs. 3–5, we have shifted the
location of the plunge to zero on the horizontal axis. (In the
frequency domain, this corresponds to pulling out a phase
factor eiωv0 from the total frequency-domain waveform.)

B. Effective one-body quasicircular plunge

In this section, we look at results for a more realistic and
general trajectory of the in-falling particle. The trajectory
we use is the EOB quasicircular plunge (decaying circular
orbits) following the analysis in [49]. The trajectory is not
exactly a geodesic because of the radiation reaction which
causes the decay of the circular orbits. The parameters used
to generate the EOB trajectory are: start point at r0 ¼ 15M.
The other initial conditions have been fixed using adiabatic
approximation conditions [49]. We have discussed results
for trajectories with symmetric mass ratios of η ¼ 0.1, 0.16,
0.22. The expression for η in terms of the masses (m1 and
m2) of the two merging objects is

η ¼ m1m2

ðm1 þm2Þ2
: ð38Þ

The dimensionless EOB Hamiltonian [rescaled using the
reduced mass (Mred) of black hole and the test particle] used
for the evolution of the trajectory is

Ĥimproved ¼ Himprovedðr;pÞ
Mred

¼ 1

η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η

�
Heff −Mred

Mred

�s
;

ð39Þ
where

Heffðr;pÞ
Mred

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞ

�
1þ

�
p

Mred

�
2

þðFðrÞ− 1Þ
�
r̂ ·p
Mred

�
2
�s
;

ð40Þ

and

FðrÞ ¼ 1 −
2ðM þ μÞ

r
: ð41Þ

We then use the following Hamilton equations to evolve the
trajectory

dr
dt

¼ ∂Ĥimproved

∂pr
ðr; pr; pφÞ; ð42Þ

dφ
dt̂

≡ ω̂ ¼ ∂Ĥimproved

∂pφ
ðr; pr; pφÞ; ð43Þ

dpr

dt
¼ −

∂Ĥimproved

∂r ðr; pr; pφÞ; ð44Þ

dpφ

dt̂
¼ F̂φ ½ω̂ðr; pr; pφÞ�; ð45Þ

where F̂φ is the radiation reaction that causes the slow
decay of the orbit. The procedure to calculate the radiation
reaction is highlighted in [50]. Note that t̂ ¼ t=ðM þ μÞ,
ω̂ ¼ ωðM þ μÞ. In this case, we have implemented the
same cutoff strategy, namely cutting off the source term T
at r > rmax (rmax being different than the radial in-fall
value), in a slightly different way, without having to modify
the EOB trajectory. As we impose this cutoff on the full
source term T, the ansatz part RA and the integral part T̃lmω

will both be cut off at r > rmax. In our practical calculation
though, the ansatz part will not be evaluated at locations
away from the horizon; therefore, an explicit cutoff on RA is
not necessary. We will only need to use a window function
when evaluating the integral part of (35) to remove any
contribution from r > rmax in T̃lmω [Eq. (32)]. We specifi-
cally used a window of ð1 − tanhð2ðr0 − rmaxÞÞ=MÞ=2.
Such windowing also helped eliminate numerical errors that
accumulate while integrating highly-oscillatory functions.
Fig. 3 contains the ψ0 waveforms (for l ¼ m ¼ 2) corre-
sponding to the test particle following an EOB quasicircular
trajectory while plunging into the Schwarzschild black hole.
The different rows are plots for trajectorieswithdifferentmass
ratios. The two columns in Fig. 3 correspond to different
distances (rmax ¼ 10M and rmax ¼ 7M) at which the integral
part of the solutionwas smoothly cut off.Note that to evaluate
theψ0waveformat thehorizon, the ansatz piece does not need
to be evaluated at infinity, hence there is no windowing
required for the ansatz contribution. We found almost no
difference in the waveform in the relevant region (relevant
advanced time interval) for the two cases with different cutoff
radii. This can be seen by comparing the figures of the two
columns in Fig. 3. This reinforces our opinion that the
maximum contribution to the integral part in the waveform
should come from the region close to horizon (justifying the
use of windowing functions).

FIG. 2. ψ0 waveform for radial in-fall trajectory. The time
coordinate here is in advanced time, with t ¼ 0 corresponding to
the plunge of the particle into the horizon.
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V. COMPARING OUR ψ0 RESULTS WITH THOSE
OBTAINED USING STAROBINSKY-TEUKOLSKY

IDENTITIES

In this section we first highlight how ψ4 close to the
horizon is related to the ingoing ψ0 at the horizon via the ST
identity for a Kerr background. We then compare the ψ0

described in Sec. IV to the ψ0 computed from ψ4 via the ST
identity for the case of a Schwarzschild background.

A. ψ0 Computation using the
Starobinsky-Teukolsky identity

We can find the in-going ψ0 from the ψ4 waveform at the
horizon via the Starobinsky-Teukolsky identity

Y in
lmω ¼ σlmωZin

lmω; ð46Þ

where

FIG. 3. ψ0 Waveforms for EOB quasicircular trajectories. The time coordinate here is in advanced time, with t ¼ 0 corresponding to
the plunge of the particle into the horizon. The top panel is for η ¼ 0.1, the middle panel is for η ¼ 0.16, and the bottom panel is for
η ¼ 0.22 trajectories. [Right column: Trajectory cutoff at rmax ¼ 7M; Left column: Trajectory cutoff at rmax ¼ 10M].
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σlmω ¼ 64ð2MrþÞ4ikðk2 þ 4ϵ2Þð−ikþ 4ϵÞ
Clmω

; ð47Þ

Y in
lmω ¼ Rð0ÞinΔ2eikr

�
; Zin

lmω ¼ Rð4ÞinΔ−2eikr
�
: ð48Þ

Note that Rð0Þin and Rð4Þin are the ingoing components of
Rð0Þ and Rð4Þ respectively close to the horizon, where Rð0Þ

and Rð4Þ are related to the full ψ0 and ψ4 waveforms and are
defined in (A6) and (A7) respectively. Clmω is the
Starobinsky constant, given by

jClmωj2 ¼ ðQ2 þ 4aωm − 4a2ω2Þ½ðQ − 2Þ2 þ 36aωm

− 36a2ω2� þ ð2Q − 1Þð96a2ω2 − 48aωmÞ
þ 144ω2ðM2 − a2Þ;

ImClmω ¼ 12Mω;

ReClmω ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jClmωj2 − ðImClmωÞ2

q
; ð49Þ

withQ ¼ Elm þ a2ω2 − 2aωm, where Elm is the spheroidal
eigenvalue [47]. Note that to compute ψ0 at the horizon via
the ST identity, we need the ψ4 waveform at the horizon.
For the radial in-fall case in a Schwarzschild background,
the ψ4 waveform expression can be found in [42]. For the
EOB trajectory case, we use the general solution of the
form (16) which results in an expression of the following
form (See [43])

Zin
lmω ¼ Bð4Þhole

lmω μ

2iωBð4Þin
lmω Dð0Þ∞

lmω

Z
∞

−∞
dteiωt−imφðtÞ

×

�
ðAnn0 þ Anm�0 þ Am�m�0ÞR∞

ð4Þ

− ðAnm�0 þ Am�m�1Þ
dR∞

ð4Þ
dr

þ ðAm�m�2Þ
d2R∞

ð4Þ
dr2

�
:

ð50Þ

B. Waveform comparison

In this subsection we present our results, comparing the
ψ0 waveform (35) close to the horizon computed directly
from the Teukolsky equation with the ψ0 waveform
computed from the ψ4 waveform via the ST identity. As
it turns out, the waveforms obtained using the two
approaches are quite different from each other. Figure 4
shows the ψ0 waveforms (for l ¼ m ¼ 2) computed using
these two different approaches for the radial in-fall trajec-
tory in Schwarzschild background. The superscript “ST” in
the legends implies that the corresponding waveform is
computed using the ST identity. The other legend without
the superscript corresponds to the waveform directly
computed from the Teukolsky equation. It is quite clear
that the two approaches predict very different ψ0 wave-
forms towards the horizon. A similar result is seen for the

EOB trajectory case. Figure 5 highlights the differences in
the real and imaginary parts of the ψ0 waveform (for
l ¼ m ¼ 2) computed using the two approaches for EOB
trajectories of the in-falling particle. Once again, the
predictions of the two approaches are very different.
Our results in this section indicate that using the

Starobinsky-Teukolsky identity on ψ4 is not equivalent
to computing ψ0 directly from the Teukolsky equation.
This is mainly due to the fact that the Staorbinsky-
Teukolsky identity holds only for vacuum spacetimes in
black hole backgrounds. With a particle plunging into the
black hole, the spacetime in the near-horizon region is no
longer a vacuum and the predictions of the Starobinky-
Teukolsky identity are no longer valid—although during
the inspiral, the particle is far away from the horizon and
one would still expect the Starobinsky-Teukolsky identity
to hold. Thus, the right way to compute the ψ0 waveform,
during the plunge, is to begin with the Teukolsky equation
and compute its solution employing a relevant regulariza-
tion scheme as done in Sec. IV.

VI. COMPARISON OF ECHO WAVEFORMS

In several works [10–13], echoes in outgoing ψ4 wave-
forms are computed with the aid of ψ0 waveforms at the
horizon computed via the Starobinksy-Teukolsky identity.
This is mainly done due to two obstacles; the unavailability
of the explicit source term for the ψ0 Teukolsky equation
and the convergence issues of solutions of the Teukolsky
equation. In this paper, we have derived the explicit ψ0

source term and have suggested a regularization scheme to
get convergent solutions of the Teukolsky equation, thus
overcoming both of the difficulties. Hence, we can now
compute the outgoing ψ4 echoes at infinity using the
correct horizon ψ0 waveform. In the subsequent sections
we will do some comparative analysis of such echoes in
the Schwarzschild background.
InRef. [40], the boundarycondition forgravitationalwaves

near the ECO surface was formulated as a relation between

FIG. 4. ψ0 waveform comparison for radial in-fall trajectory.
The time coordinate here is advanced time, with t ¼ 0 corre-
sponding to the plunge of the particle into the horizon.
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ingoing ψ0 and outgoing ψ4 in that region; both are directly
connected to the tidal fields experienced by zero angular
momentum, near-horizon fiducial observers staying at con-
stant redshift (with respect to infinity) inKerr spacetime.More
specifically, the first (also themost dominant) echowaveform
in the outgoing ψ4 can be expressed as [10]

Z∞Echo
lmω ¼ RECO

lmωJ lmωY in
lmω; ð51Þ

where

J lmω ¼ ð−1Þmþ1

4

Dð4Þ∞
lmω

Dð4Þout
lmω

; ð52Þ

whereDð4Þ∞
lmω andDð4Þout

lmω are defined in Eq. (21). Here Z∞Echo
lmω

are components of outgoing ψ4 at infinity, while Y in
lmω,

defined in Eq. (48), are components of ψ0 on the horizon.

FIG. 5. ψ0 waveform comparison for EOB quasicircular trajectories. The time coordinate here is advanced time, with t ¼ 0
corresponding to the plunge of the particle into the horizon. The left column contains the real part comparisons while the right column
contains the imaginary part comparisons. The top panel is for η ¼ 0.1, the middle panel is for η ¼ 0.16, and the bottom panel is for
η ¼ 0.22 trajectories.
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FIG. 6. ψ4 waveform at infinity for EOB trajectory. The left figure is for η ¼ 0.1, the middle figure is for η ¼ 0.16, and the right figure
is for η ¼ 0.22.

FIG. 7. Outgoing echo comparison (γ̃=M ¼ 10−6) for EOB quasicircular trajectories. The left column contains the real part
comparisons while the right column contains the imaginary part comparisons. The top panel is for η ¼ 0.1, the middle panel is for
η ¼ 0.16, and the bottom panel is for η ¼ 0.22.
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The quantityRECO
lmω is the reflectivity directly associated with

the tidal response of the ECO [40], and is modeled in several
ways [11,51]. In this work, we use the Boltzmann reflectivity
model [11,51] which is given by

RECO
lmω ¼ RB

lmω ¼ exp

�
−

jkj
2TH

�
exp

�
−i

k
πTH

logðγ̃jkjÞ
�
;

ð53Þ
where TH is the Hawking temperature of the Kerr black hole,
and k is defined in (22). The quantity γ̃ is a free parameter of
the model that determines the separation between the main
wave and the echo.Note thatTH ¼ 1=ð8πMÞ andk ¼ ω for a
Schwarzschild black hole.
In this section we computed the first echo in the ψ4

waveform at infinity in two ways. In the first way, we use the
ingoingψ0waveformat the horizon,Y in

lmω, computeddirectly
from the Teukolsky equation as in (35); insert it into Eq. (51)
to obtain the first echo at infinity. In the second way, we first
obtain the ψ0 waveform at horizon, Y in

lmω, by applying the
Starobinsky-Teukolsky (46) to the ψ4 waveform at horizon,
Zin
lmω, and then insert Y

in
lmω into Eq. (51). The latter approach

is more commonly followed in literature [10–13].
We use the same EOB trajectories for the particle

plunging in to the black holes as in Sec. IV B. Figure 6
contains the waveforms of the main outgoing ψ4 wave (for
l ¼ m ¼ 2) at infinity [given in Eq. (50)] for the three
different trajectories considered in this paper. The echo in
Eq. (51) adds to this main wave (48) to give the total ψ4

waveform. The comparative plots for the first echoes (for
l ¼ m ¼ 2) computed using ψ0 calculated directly from the
Teukolsky equation and using ψ4 with the ST identity are
illustrated in Fig. 7. The “ST” in the superscript corre-
sponds to the use of Starobinsky-Teukolsky identity. It is
evident that although the echoes are qualitatively similar,
there are significant quantitative differences between the
two. We believe the first way of using ψ0 computed directly
from the Teukolsky equation is the correct way of comput-
ing echoes. As discussed in Sec. V, this is because the
Starobinsky-Teukolsky identity holds for vacuum space-
times, and a particle plunging in the black hole background
makes the spacetime nonvacuum.
Our results also suggest that the echoes calculated using

the ψ0 waveforms computed directly from the Teukolsky
equation are slightly stronger than the ones calculated using
ψ4 waveform and the ST identity. For a quantitative
analysis, let

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR jZ∞Echo

lmω j2dt
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR jZ∞STEcho

lmω j2dt
q ; ð54Þ

where the numerator in the above definition has the echo
waveform calculated using ψ0 waveform directly from the
Teukolsky equation while the denominator has the echo
waveform calculated employing Starobinsky-Teukolsky

identity. For the three different trajectories, we get the
following values of χ

χðη ¼ 0.10Þ ¼ 1.40222;

χðη ¼ 0.16Þ ¼ 1.43018;

χðη ¼ 0.22Þ ¼ 1.44997: ð55Þ
This indicates that the echoes obtained using the ψ0

waveform directly computed from the Teukolsky equation
are stronger than those whose computation are involved the
ST identity. Equation (55) also indicates a trend that echoes
computed using ψ0 directly computed from the Teukolsky
equation become stronger and stronger in comparison to
the echoes computed using ψ4 and the ST identity with
increasing values of η.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper we computed the source term of the ψ0

Teukolsky equation explicitly in terms of the trajectory
parameters for a point particle plunging into a Kerr black
hole. An analytic expression for the ψ0 source term enables
us to compute the ψ0 waveform directly from Teukolsky
equation. We also proposed a regularization scheme to
handle the divergences appearing in the integrals of
Teukolsky equation solutions for the ψ0 sector.
We computed the ψ0 waveform close to the horizon due

to a particle plunging into a Schwarzschild black hole via
different trajectories, including a purely radial in-fall and
other quasicircular trajectories. We also computed the first
echoes in the outgoing ψ4 waveform employing the directly
computed ψ0 waveforms. We have explicitly shown that,
for a particle plunging into a Schwarzschild black hole,
there are significant quantitative differences in the ψ0

waveforms (and corresponding ψ4 echoes) when computed
directly from the Teukolsky equation compared to when
they are computed employing the Starobinsky-Teukolsky
identity on ψ4. We believe using the Teukolsky equation
directly to compute these waveforms is the more accurate
way in nonvacuum spacetimes, for example, in the scenario
of a particle plunging into the horizon. Our calculation is
not required when the particle stays far away from the
horizon; for example, when studying tidal interactions
between binary black holes during the inspiral stage.
Note that the derivation of the source term as well as
the proposition of the regularization scheme have been
done for a general arbitrarily rotating Kerr black hole. But
for numerical simplicity, the numerical computation of
waveforms and echoes has been done for a Schwarzschild
background. We aim to extend the computational analysis
to the case of a Kerr background in a future publication.
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APPENDIX: CALCULATING
THE SOURCE TERM

Wewould like to calculate the source terms for the radial
inhomogeneous Teukolsky Equation for ψB

0 . Similar source
term for ψB

4 is available in the literature [43]. The decoupled
equations for the Weyl scalar perturbations are [34]

½ðD − 3ϵþ ϵ� − 4ρ − ρ�ÞðΔ̄ − 4γ þ μÞ−ðδþ π� − α� − 3β − 4τÞðδ� þ π − 4αÞ − 3ψ2�ψB
0 ¼ 4πT0; ðA1Þ

where

T0 ¼ ðδþ π� − α� − 3β − 4τÞ½ðD − 2ϵ − 2ρ�ÞTB
lm − ðδþ π� − 2α� − 2βÞTB

ll�
þ ðD − 3ϵþ ϵ� − 4ρ − ρ�Þ½ðδþ 2π� − 2βÞTB

lm − ðD − 2ϵþ 2ϵ� − ρ�ÞTB
mm�; ðA2Þ

and

½ðΔ̄þ 3γ − γ� þ 4μþ μ�ÞðDþ 4ϵ − ρÞ−ðδ� − τ� þ β� þ 3αþ 4πÞðδ − τ þ 4βÞ − 3ψ2�ψB
4 ¼ 4πT4; ðA3Þ

where

T4 ¼ ðΔ̄þ 3γ − γ� þ 4μþ μ�Þ½ðδ� − 2τ� þ 2αÞTB
nm� − ðΔ̄þ 2γ − 2γ� þ μ�ÞTB

m�m��
þ ðδ� − τ� þ β� þ 3αþ 4πÞ½ðΔ̄þ 2γ þ 2μ�ÞTB

nm� − ðδ� − τ� þ 2β� þ 2αÞTB
nn�: ðA4Þ

When we separate the decoupled equations into a radial and
angular equations, the solutions of the angular equation are
spin-weighted spheroidal harmonics sSlmðθÞ. To get the
source term for the radial equation we write

4πΣT ¼
Z

dω
X
l;m

TlmωðrÞsSml ðθÞeimφe−iωt; ðA5Þ

ψB
0 ¼

Z
dω

X
l;m

Rð0ÞðrÞ2SlmðθÞeimφe−iωt; ðA6Þ

ψB
4 ¼ ρ4

Z
dω

X
l;m

Rð4ÞðrÞð−2ÞSlmðθÞeimφe−iωt: ðA7Þ

We know T [related to T0 and T4 in (A12)], from which we
need to find the form of TlmωðrÞ using (A5).

1. Orthogonality relations and normalization

Following [52], the spin weighted spheroidal harmonics
are normalized asZ

π

0
sS2lmðθÞ sin θdθ ¼ 1: ðA8Þ

So the orthogonality relation considered isZ
S2 s

SlmeimφðsSl0m0 Þe−im0φdΩ ¼ 2πδll0δmm0 : ðA9Þ

The 2π in the right-hand side is required to satisfy the
normalization (A8). The other relation to be used is the
Dirac-delta definition

δðx − αÞ ¼ 1

2π

Z
∞

−∞
eitðx−αÞdt: ðA10Þ

2. General expression for TlmωðrÞ
Using the orthogonality relations with (5), we get

Tlmω ¼ 4

Z
dΩdtρ−1ρ�−1

�
T
2

�
e−imφþiωt sS

aω
lm

2π
; ðA11Þ

where

T ¼ 2T0; for s ¼ 2

T ¼ 2ρ−4T4; for s ¼ −2: ðA12Þ

This gives

Tð4Þ
lmω ¼ 4

Z
dΩdtρ−5ρ�−1ðT4Þe−imφþiωt −2S

aω
lm

2π
; ðA13Þ

Tð0Þ
lmω ¼ 4

Z
dΩdtρ−1ρ�−1ðT0Þe−imφþiωt 2S

aω
lm

2π
: ðA14Þ
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3. Some definitions and algebraic tricks

The Boyer-Lindquist form of the Kerr metric is

ds2 ¼ ð1 − 2Mr=ΣÞdt2 þ ð4Mar sin2ðθÞ=ΣÞdtdφ − ðΣ=ΔÞdr2 − Σdθ2

− sin2ðθÞðr2 þ a2 þ 2Ma2r sin2ðθÞ=ΣÞdφ2: ðA15Þ

The NP tetrad basis chosen for this metric is

lμ ¼ ½ðr2 þ a2Þ=Δ; 1; 0; a=Δ�; nμ ¼ ½r2 þ a2;−Δ; 0; a�=ð2ΣÞ;
mμ ¼ ½ia sin θ; 0; 1; i= sin θ�=½21=2ðrþ ia cos θÞ�; ðA16Þ

lμ ¼
�
1;−

�
Σ
Δ

�
; 0;−a sin2θ

�
; nμ ¼ ½Δ;Σ; 0;−aΔ sin2θ�=ð2ΣÞ;

mμ ¼ ½ia sin θ; 0;−Σ;−iðr2 þ a2Þ sin θ�=½21=2ðrþ ia cos θÞ�; ðA17Þ

with the nonzero spin coefficients being

ρ ¼ −1=ðr − ia cos θÞ; β ¼ −ρ� cot θ=ð2
ffiffiffi
2

p
Þ; π ¼ iaρ2 sin θ=

ffiffiffi
2

p
;

τ ¼ −iaρρ� sin θ=
ffiffiffi
2

p
; μ ¼ ρ2ρ�Δ=2; γ ¼ μþ ρρ�ðr −MÞ=2;

α ¼ π − β�: ðA18Þ
The directional derivatives are given by

D ¼ lμ∂μ; Δ̄ ¼ nμ∂μ; δ ¼ mμ∂μ: ðA19Þ

The only nonzero Weyl Scalar for the Kerr metric is

ψ2 ¼ Mρ3; ðA20Þ

while the other four Weyl scalars are zero. Here we have used the notation

Σ ¼ r2 þ a2 cos2 θ ¼ ρ−1ρ�−1; ðA21Þ

Δ ¼ r2 þ a2 − 2Mr: ðA22Þ

We also define the following differential operators

L n ¼ ∂θ þ
m

sin θ
− aω sin θ þ n cot θ; ðA23Þ

L †
n ¼ L nð−ω;−mÞ; ðA24Þ
D ¼ ∂r − iK=Δ; ðA25Þ

D† ¼ Dð−ω;−mÞ ¼ ∂r þ iK=Δ: ðA26Þ
Now some of the algebraic tricks with these differential operators that are useful in calculating the form of Tlmw are

½L i þ ia sin θðnρ� −mρÞ�ζ ¼ ðρ�ÞnρmL i½ðρ�Þ−nρ−mζ�; ðA27Þ

Δ−jρ−mðρ�Þ−nDðΔjρmðρ�ÞnζÞ ¼
�
D þmρþ nρ� þ 2jðr −MÞ

Δ

�
ζ; ðA28Þ

L n

�
ζ

sin θ

�
¼ L n−1ðζÞ

sin θ
: ðA29Þ
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Note that the above three equations are valid even for L † and D†. And finally an integration by parts identity when ζ1
vanishes fast enough near θ ¼ 0 and θ ¼ π,Z

π

0

dθζ1L nðζ2Þ ¼ −
Z

π

0

dθζ2L
†
−nðζ1Þ: ðA30Þ

4. Form of T4 and T0 in the metric

Using the equations, definitions, and tricks mentioned in section A 3, we can write T4 given by equation (A4) as

T4 ¼ −
1

2
ρ8ρ�L −1½ρ−4L 0ðρ−2ρ�−1TB

nnÞ� þ
1

2
ffiffiffi
2

p ρ8ρ�Δ2L −1½ρ−4ρ�2D†ðρ−2ρ�−2Δ−1TB
m�nÞ�

−
1

4
ρ8ρ�Δ2D†½ρ−4D†ðρ−2ρ�TB

m�m� Þ� þ 1

2
ffiffiffi
2

p ρ8ρ�Δ2D†½ρ−4ρ�2Δ−1L −1ðρ−2ρ�−2TB
m�nÞ�: ðA31Þ

The sign difference in two terms (with prefactors 1

2
ffiffi
2

p ) when compared with equation (2.15) of [43] is due to different sign in

the definition of ρ. Now using the equations, definitions, and tricks mentioned in section A 3, we can write T0 given by
equation (A2) as

T0 ¼ −
1

2
ρ4ρ�L †

−1½ρ−4L †
0ðρ�TB

llÞ� −
1ffiffiffi
2

p ρ4ρ�L †
−1½ρ−4ρ�2Dðρ�−2TB

lmÞ�

− ρ4ρ�D ½ρ−4Dðρ�−1TB
mmÞ� −

1ffiffiffi
2

p ρ4ρ�D ½ρ−4ρ�2L †
−1ðρ�−2TB

lmÞ�: ðA32Þ

5. Stress-energy tensor components

The perturbation stress-energy tensor is due to a test particle of mass μ moving with four velocity uα in the black hole
spacetime. Let x0 be an event in spacetime and xðτÞ be the test particle’s world line, i.e., the geodesic along which the
particle is moving. The stress-energy tensor is given by (τ is the proper time along the geodesic) [42]

Tαβðx0Þ ¼ μ

Z
dτ uαuβδ½x0 − xðτÞ�; ðA33Þ

where the delta function is normalized as Z
δ4ðxÞ ffiffiffiffiffiffi

−g
p

d4x ¼ 1; ðA34Þ

where

g ¼ −Σ2 sin2 θ: ðA35Þ
Therefore the delta function can be written as

δ4ðx0 − xðτÞÞ ¼ δðr0 − rðτÞÞδðθ0 − θðτÞÞδðφ0 − φðτÞÞδðt0 − tðτÞÞ
Σ sin θ

; ðA36Þ

Now integrating (A33) with respect to t0 we get

Tαβ ¼ μ

Σ sin θdt=dτ
dxα

dτ
dxβ

dτ
δðr0 − rðtÞÞδðθ0 − θðtÞÞδðφ0 − φðtÞÞ: ðA37Þ

In the Newman-Penrose formalism

TB
nn ¼ Tαβnαnβ; TB

nm� ¼ Tαβnαm�
β; TB

m�m� ¼ Tαβm�
αm�

β;

TB
ll ¼ Tαβlαlβ; TB

lm ¼ Tαβlαmβ; TB
mm ¼ Tαβmαmβ; ðA38Þ
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we define

Tab ¼
�

μ

sin θ

�
Cabδðr0 − rðtÞÞδðθ0 − θðtÞÞδðφ0 − φðtÞÞ; ðA39Þ

where a, b can be l, n, m, or m�.
To calculate the C coefficients we make use of the following geodesic equations [43] (Kerr metric)

Σ
dθ
dτ

¼ �
�
C − cos2θ

�
a2ð1 − E2Þ þ l2z

sin2θ

��
1=2

≡ ΘðθÞ;

Σ
dφ
dτ

¼ −
�
aE −

lz
sin2θ

�
þ a
Δ
ðEðr2 þ a2Þ − alzÞ≡ φ;

Σ
dt
dτ

¼ −
�
aE −

lz
sin2θ

�
a sin2θ þ r2 þ a2

Δ
ðEðr2 þ a2Þ − alzÞ≡ T;

Σ
dr
dτ

¼ �
ffiffiffiffiffi
R

p
; ðA40Þ

where E, lz, C are the energy, the z component of angular momentum, and the Cartar constant of the test particle
respectively, and R is

R ¼ ½Eðr2 þ a2Þ − alz�2 − Δ½ðEa − lzÞ2 þ r2 þ C�: ðA41Þ

Using (A15), (A16), (A37), (A38), and (A39) we can deduce that

Cnn ¼
1

4Σ3_t

�
Eðr2 þ a2Þ − alz þ Σ

dr
dτ

�
2

; ðA42Þ

Cm�n ¼
ρ

2
ffiffiffi
2

p
Σ2_t

�
Eðr2 þ a2Þ − alz þ Σ

dr
dτ

��
i sin θ

�
aE −

lz
sin2θ

�
þ Σ

dθ
dτ

�
; ðA43Þ

Cm�m� ¼ ρ2

2Σ_t

�
i sin θ

�
aE −

lz
sin2 θ

�
þ Σ

dθ
dτ

�
2

; ðA44Þ

Cll ¼
1

ΣΔ2_t

�
Eðr2 þ a2Þ − alz − Σ

dr
dτ

�
2

; ðA45Þ

Clm ¼ −
ρ�ffiffiffi
2

p
ΣΔ_t

�
Eðr2 þ a2Þ − alz − Σ

dr
dτ

��
i sin θ

�
aE −

lz
sin2θ

�
− Σ

dθ
dτ

�
; ðA46Þ

Cmm ¼ ρ�2

2Σ_t

�
i sin θ

�
aE −

lz
sin2 θ

�
− Σ

dθ
dτ

�
2

; ðA47Þ

where _t ¼ dt
dτ. The equations (A42)–(A44) match with those obtained in [43] for constant θ modulo the opposite sign of ρ.
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6. Getting back to Tlmω

We first focus on Tð4Þ
lmω. Substituting (A31) back in (A13) and integrating with respect to φ0, we get

Tð4Þ
lmω ¼ 4μ

2π

Z
dteiωt−imφðtÞ

Z
dθ0ðsin θ0ρ3ð−2Slmðθ0ÞÞÞ

×
�
−
1

2
L −1

�
ρ−4L 0

�
ρ−2ρ�−1

�
Cnn

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

��

þ 1

2
ffiffiffi
2

p Δ2L −1

�
ρ−4ρ�2D†

�
ρ−2ρ�−2Δ−1

�
Cnm�

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

��

−
1

4
Δ2D†

�
ρ−4D†

�
ρ−2ρ�

�
Cm�m�

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

��

þ 1

2
ffiffiffi
2

p Δ2D†
�
ρ−4ρ�2Δ−1L −1

�
ρ−2ρ�−2

�
Cnm�

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

���
: ðA48Þ

Now integrating by parts and using some of the algebraic tricks, we get

Tð4Þ
lmω ¼ 4μ

2π

Z
∞

−∞
dt

Z
dθ0eiωt−imφðtÞ

×

�
−
1

2
L †

1fρ−4L †
2ðρ3SÞgCnnρ

−2ρ�−1δðr0 − rðtÞÞδðθ0 − θðtÞÞ

−
Δ2ρ�2ffiffiffi

2
p

ρ
ðL †

2ðSÞ þ iaðρ − ρ�Þ sin θSÞD†fCm�nρ
−2ρ�−2Δ−1δðr0 − rðtÞÞδðθ0 − θðtÞÞg

−
1

2
ffiffiffi
2

p L †
2fρ3Sðρ�2ρ−4Þ;r0 gCm�nΔρ−2ρ�−2δðr0 − rðtÞÞδðθ0 − θðtÞÞ

−
1

4
ðρ3Δ2SÞD†fρ−4D†ðρ�ρ−2Cm�m�δðr0 − rðtÞÞδðθ0 − θðtÞÞÞg

�
: ðA49Þ

(In (A49), S is −2Slm.) In this form of (A49) we can readily integrate the delta function in θ. Again there is a sign difference
in two terms when compared to [43] due to different definition of ρ.

Similarly, for Tð0Þ
lmω, substituting (A32) back in (A14) and integrating with respect to φ0 we get

Tð0Þ
lmω ¼ 4μ

2π

Z
dteiωt−imφðtÞ

Z
dθ0ðsin θ0ρ3ð2Slmðθ0ÞÞÞ

×

�
−
1

2
L †

−1

�
ρ−4L †

0

�
ρ�
�

Cll

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

��

−
1ffiffiffi
2

p L †
−1

�
ρ−4ρ�2D

�
ρ�−2

�
Clm

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

��

−D

�
ρ−4D

�
ρ�−1

�
Cmm

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

��

−
1ffiffiffi
2

p D

�
ρ−4ρ�2L †

−1

�
ρ�−2

�
Clm

sin θ0

�
δðr0 − rðtÞÞδðθ0 − θðtÞÞ

���
: ðA50Þ

In this case, integrating by parts and using the algebraic tricks gives
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Tð0Þ
lmω ¼ 4μ

2π

Z
∞

−∞
dt

Z
dθ0eiωt−imφðtÞ

×

�
−
1

2
L 1fρ−4L 2ðρ3SÞgCllρ

�δðr0 − rðtÞÞδðθ0 − θðtÞÞ

þ 2ρ�2ffiffiffi
2

p
ρ
ðL 2ðSÞ þ iaðρ − ρ�Þ sin θSÞDfClmρ

�−2δðr0 − rðtÞÞδðθ0 − θðtÞÞg

þ 1ffiffiffi
2

p L 2fρ3Sðρ�2ρ−4Þ;r0gClmρ
�−2δðr0 − rðtÞÞδðθ0 − θðtÞÞ

−ðρ3SÞDfρ−4Dðρ�−1Cmmδðr0 − rðtÞÞδðθ0 − θðtÞÞÞg
�
: ðA51Þ

In (A51), S is 2Slm. In this form of (A51) we can readily integrate the delta function in θ.

7. Calculating the A terms

After integrating (A49) with respect to θ0, we can express it as

Tð4Þ
lmωðr0Þ ¼ μ

Z
∞

−∞
dteiωt−imφðtÞΔ2½ðAnn0 þ Am�n0 þ Am�m�0Þδðr0 − rðtÞÞ

þfðAm�n1 þ Am�m�1Þδðr0 − rðtÞÞg;r0 þ fAm�m�2δðr0 − rðtÞÞg;r0r0 �; ðA52Þ

where the following A terms are evaluated at θ0 ¼ θðtÞ with S ¼−2 Slm.

Ann0 ¼
�
4

2π

��
−1
2

�
Cnnρ

−2ρ�−1

Δ2
L †

1fρ−4L †
2ðρ3SÞg; ðA53Þ

Anm�0 ¼
�
4

2π

��
−1ffiffiffi
2

p
�
Cnm�ρ−3

Δ

�
ðL †

2SÞ
�
iK
Δ

− ρ − ρ�
�
− a sin θS

K
Δ
ðρ − ρ�Þ

�
; ðA54Þ

Am�m�0 ¼
�
4

2π

��
−1
4

�
ρ−3ρ�Cm�m�S

�
−i
�
K
Δ

�
;r0
−
K2

Δ2
− 2iρ

K
Δ

�
; ðA55Þ

Anm�1 ¼
�
4

2π

��
−1ffiffiffi
2

p
�
Cnm�ρ−3

Δ
½L †

2Sþ ia sin θðρ − ρ�ÞS�; ðA56Þ

Am�m�1 ¼
�
4

2π

��
−1
2

�
ρ−3ρ�Cm�m�S

�
i
K
Δ
− ρ

�
; ðA57Þ

Am�m�2 ¼
�
4

2π

��
−1
4

�
ρ−3ρ�Cm�m�S: ðA58Þ

The above equations match those obtained in [43] modulo the opposite sign of ρ and an overall normalization factor.
Similarly integrating (A51) with respect to θ0, we can express it as

Tð0Þ
lmωðr0Þ ¼ μ

Z
∞

−∞
dteiωt−imφðtÞ½ðAll0 þ Alm0 þ Amm0Þδðr0 − rðtÞÞ

þ fðAlm1 þ Amm1Þ δðr0 − rðtÞÞg;r0 þ fAmm2δðr0 − rðtÞÞg;r0r0 �; ðA59Þ

where the following A terms are evaluated at θ0 ¼ θðtÞ with S ¼2 Slm.

All0 ¼
�
4

2π

��
−1
2

�
ðCllρ

�ÞL 1fρ−4L 2ðρ3SÞg; ðA60Þ
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Alm0 ¼
�
4

2π

��
2ffiffiffi
2

p
�
Clm

ρ

�
ðL 2SÞ

�
−iK
Δ

− ρ − ρ�
�
þ a sin θS

K
Δ
ðρ − ρ�Þ

�
; ðA61Þ

Amm0 ¼
�
−4
2π

�
ρ−1ρ�−1CmmS

�
þi

�
K
Δ

�
;r0
−
K2

Δ2
þ 2iρ

K
Δ

�
; ðA62Þ

Alm1 ¼
�
4

2π

��
2ffiffiffi
2

p
�
Clm

ρ
½L 2Sþ ia sin θðρ − ρ�ÞS�; ðA63Þ

Amm1 ¼
�
8

2π

�
ρ−1ρ�−1CmmS

�
i
K
Δ
þ ρ

�
; ðA64Þ

Amm2 ¼
�
−4
2π

�
ρ−1ρ�−1CmmS: ðA65Þ

(A59) can further be written as (after integrating with respect to dr and then renaming r0 as r)

Tð0Þ
lmωðrÞ ¼ μeiωt−imφ

�
ðAll0 þ Alm0 þ Amm0Þt0

þ ðAlm1 þ Amm1Þðt00 þ iωðt0Þ2 − imt0φ0Þ þ t0
d
dr

ðAlm1 þ Amm1Þ
þ Amm2ðt000 þ 3iωt00t0 − 2imt00φ0 − ω2ðt0Þ3 þ 2ωmðt0Þ2φ0 −m2t0ðφ0Þ2 − imt0φ00Þ

þ 2ðt00 þ iωðt0Þ2 − imt0φ0Þ dAmm2

dr
þ t0

d2ðAmm2Þ
dr2

�
; ðA66Þ

where 0 denotes derivative with respect to r.
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