CaltechAUTHORS
  A Caltech Library Service

Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission

Kinch, K. M. and Madsen, M. B. and Bell, J. F., III and Maki, J. N. and Bailey, Z. J. and Hayes, A. G. and Jensen, O. B. and Merusi, M. and Bernt, M. H. and Sørensen, A. N. and Hilverda, M. and Cloutis, E. and Applin, D. and Mateo-Marti, E. and Manrique, J. A. and Lopez-Reyes, G. and Bello-Arufe, A. and Ehlmann, B. L. and Buz, J. and Pommerol, A. and Thomas, N. and Affolter, L. and Herkenhoff, K. E. and Johnson, J. R. and Rice, M. and Corlies, P. and Tate, C. and Caplinger, M. A. and Jensen, E. and Kubacki, T. and Cisneros, E. and Paris, K. and Winhold, A. (2020) Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Science Reviews, 216 (8). Art. No. 141. ISSN 0038-6308. doi:10.1007/s11214-020-00774-8. https://resolver.caltech.edu/CaltechAUTHORS:20211116-201235080

[img] PDF - Published Version
Creative Commons Attribution.

7MB
[img] PDF - Erratum
Creative Commons Attribution.

384kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20211116-201235080

Abstract

The Mastcam-Z Camera is a stereoscopic, multispectral camera with zoom capability on NASA’s Mars-2020 Perseverance rover. The Mastcam-Z relies on a set of two deck-mounted radiometric calibration targets to validate camera performance and to provide an instantaneous estimate of local irradiance and allow conversion of image data to units of reflectance (R∗ or I/F) on a tactical timescale. Here, we describe the heritage, design, and optical characterization of these targets and discuss their use during rover operations. The Mastcam-Z primary calibration target inherits features of camera calibration targets on the Mars Exploration Rovers, Phoenix and Mars Science Laboratory missions. This target will be regularly imaged during flight to accompany multispectral observations of the martian surface. The primary target consists of a gold-plated aluminum base, eight strong hollow-cylinder Sm₂Co₁₇ alloy permanent magnets mounted in the base, eight ceramic color and grayscale patches mounted over the magnets, four concentric, ceramic grayscale rings and a central aluminum shadow post (gnomon) painted with an IR-black paint. The magnets are expected to keep the central area of each patch relatively free of Martian aeolian dust. The Mastcam-Z secondary calibration target is a simple angled aluminum shelf carrying seven vertically mounted ceramic color and grayscale chips and seven identical, but horizontally mounted ceramic chips. The secondary target is intended to augment and validate the calibration-related information derived from the primary target. The Mastcam-Z radiometric calibration targets are critically important to achieving Mastcam-Z science objectives for spectroscopy and photometric properties.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1007/s11214-020-00774-8DOIArticle
https://doi.org/10.1007/s11214-021-00828-5DOICorrection
ORCID:
AuthorORCID
Kinch, K. M.0000-0002-4629-8880
Madsen, M. B.0000-0001-8909-5111
Bell, J. F., III0000-0002-2006-4074
Maki, J. N.0000-0002-7887-0343
Hayes, A. G.0000-0001-6397-2630
Cloutis, E.0000-0001-7301-0929
Ehlmann, B. L.0000-0002-2745-3240
Herkenhoff, K. E.0000-0002-3153-6663
Johnson, J. R.0000-0002-5586-4901
Rice, M.0000-0002-8370-4139
Corlies, P.0000-0002-6417-9316
Jensen, E.0000-0002-4625-7333
Additional Information:© The Author(s) 2020, corrected publication 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Received: 18 May 2020; Accepted: 17 November 2020; Published online: 3 December 2020. This project was supported by the Carlsberg Foundation grants CF16-0981, CF17-0979, and CF19-0023. The project has also benefitted enormously from the technical and financial support of the Mars 2020 Project, Payload, and Science Offices at JPL. M. Merusi is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801199. Thanks to Jesse Kuik, Alexis Parkinson, Nathalie Turenne, and Evan Stanish for their assistance with calibration target and Mastcam-Z testing at the University of Winnipeg. Calibration target testing at the University of Winnipeg was supported by the Canadian Space Agency (CSA), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Manitoba Research Innovations Fund (MRIF), and the University of Winnipeg. Acknowledgements to FORCE Technology for providing flight acceptance vibration test for the 2nd set of flight spare target free of charge, and to DuPont Electronic Materials for providing the Kapton® foils used as spacers during assembly of Primary Calibration Targets. The Mars 2020 Mission. Edited by Kenneth A. Farley, Kenneth H. Williford and Kathryn M. Stack. The original online version of this article was revised: two references were updated.
Errata:Kinch, K.M., Madsen, M.B., Bell, J.F. et al. Correction to: Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Sci Rev 217, 46 (2021). https://doi.org/10.1007/s11214-021-00828-5
Funders:
Funding AgencyGrant Number
Carlsberg FoundationCF16-0981
Carlsberg FoundationCF17-0979
Carlsberg FoundationCF19-0023
NASAUNSPECIFIED
JPLUNSPECIFIED
Marie Curie Fellowship801199
Canadian Space Agency (CSA)UNSPECIFIED
Natural Sciences and Engineering Research Council of Canada (NSERC)UNSPECIFIED
Canada Foundation for InnovationUNSPECIFIED
Manitoba Research and Innovation FundUNSPECIFIED
University of WinnipegUNSPECIFIED
Issue or Number:8
DOI:10.1007/s11214-020-00774-8
Record Number:CaltechAUTHORS:20211116-201235080
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20211116-201235080
Official Citation:Kinch, K.M., Madsen, M.B., Bell, J.F. et al. Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission. Space Sci Rev 216, 141 (2020). https://doi.org/10.1007/s11214-020-00774-8
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:111904
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:16 Nov 2021 20:33
Last Modified:16 Nov 2021 20:33

Repository Staff Only: item control page