A Caltech Library Service

Building Better Spin Models for Merging Binary Black Holes: Evidence for Nonspinning and Rapidly Spinning Nearly Aligned Subpopulations

Galaudage, Shanika and Talbot, Colm and Nagar, Tushar and Jain, Deepnika and Thrane, Eric and Mandel, Ilya (2021) Building Better Spin Models for Merging Binary Black Holes: Evidence for Nonspinning and Rapidly Spinning Nearly Aligned Subpopulations. Astrophysical Journal Letters, 921 (1). Art. No. L15. ISSN 2041-8205. doi:10.3847/2041-8213/ac2f3c.

[img] PDF - Published Version
Creative Commons Attribution.

[img] PDF - Accepted Version
See Usage Policy.


Use this Persistent URL to link to this item:


Recent work paints a conflicting portrait of the distribution of black hole spins in merging binaries measured with gravitational waves. Some analyses find that a significant fraction of merging binaries contain at least one black hole with a spin tilt >90° with respect to the orbital angular momentum vector, which has been interpreted as a signature for dynamical assembly. Other analyses find that the data are consistent with a bimodal population in which some binaries contain black holes with negligible spin while the rest contain black holes with spin vectors preferentially aligned with the orbital angular momentum vector. In this work, we scrutinize models for the distribution of black hole spins to pinpoint possible failure modes in which the model yields a faulty conclusion. We reanalyze data from the second LIGO–Virgo gravitational-wave transient catalog (GWTC-2) using a revised spin model, which allows for a subpopulation of black holes with negligible spins. In agreement with recent results by Roulet et al., we show that the GWTC-2 detections are consistent with two distinct subpopulations. We estimate that 69%–90% (90% credible interval) of merging binaries contain black holes with negligible spin χ ≈ 0. The remaining binaries are part of a second subpopulation in which the spin vectors are preferentially (but not exactly) aligned to the orbital angular momentum. The black holes in this second subpopulation are characterized by spins of χ ∼ 0.5. We suggest that the inferred spin distribution is consistent with the hypothesis that all merging binaries form via the field formation scenario.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Galaudage, Shanika0000-0002-1819-0215
Talbot, Colm0000-0003-2053-5582
Nagar, Tushar0000-0002-2747-0497
Thrane, Eric0000-0002-4418-3895
Mandel, Ilya0000-0002-6134-8946
Additional Information:© 2021. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 2021 September 6; revised 2021 October 7; accepted 2021 October 11; published 2021 October 29. We thank Tom Callister for his helpful comments during the preparation of this manuscript. Several authors are supported by the Australian Research Council (ARC) Centre of Excellence for Gravitational-wave Discovery (OzGrav), project number CE170100004. I.M. is the recipient of the ARC Future Fellowship FT190100574. The authors are grateful for computational resources provided by the LIGO Laboratory and supported by National Science Foundation Grants PHY-0757058 and PHY-0823459. This is document LIGO-P2100318. Software: GWPopulation Talbot et al. (2019), Bilby Ashton et al. (2019); Romero-Shaw et al. (2020), dynesty Speagle (2020).
Funding AgencyGrant Number
Australian Research CouncilCE170100004
Australian Research CouncilFT190100574
Subject Keywords:Astrophysical black holes; Gravitational wave astronomy
Other Numbering System:
Other Numbering System NameOther Numbering System ID
LIGO DocumentP2100318
Issue or Number:1
Classification Code:Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Gravitational wave astronomy (675)
Record Number:CaltechAUTHORS:20211122-161454471
Persistent URL:
Official Citation:Shanika Galaudage et al 2021 ApJL 921 L15
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:111959
Deposited By: Tony Diaz
Deposited On:22 Nov 2021 18:45
Last Modified:07 Dec 2022 23:41

Repository Staff Only: item control page