Magnetic order, disorder, and excitations under pressure in the Mott insulator Sr$_2$IrO$_4$: Supplementary Information

Xiang Li,¹,² S.E. Cooper,² A. Krishnadas,² A. de la Torre,¹,³ R.S. Perry,⁴,⁵ F. Baumberger,³ D.M. Silevitch,¹ D. Hsieh,¹ T.F. Rosenbaum,¹,* and Yejun Feng¹,²,*

¹Division of Physics, Mathematics, and Astronomy,
California Institute of Technology, Pasadena California 91125, USA
²Okinawa Institute of Science and Technology
Graduate University, Onna, Okinawa 904-0495, Japan
³Department of Quantum Matter Physics,
University of Geneva, 1211 Geneva 4, Switzerland
⁴London Centre for Nanotechnology and Department of Physics and Astronomy,
University College London, London WC1E 6BT, UK
⁵ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK

* Correspondence and requests for materials should be addressed to T.F.R. and Y.F.
tfr@caltech.edu and yejun@oist.jp
Supplementary Fig. 1. Spatial correlation between structure and magnetic orders on the sample surface. (a) At 4.8 K and the fixed pressure of 16.1 GPa, Raman spectra were measured at several different spots on the sample surface and demonstrate a first-order phase coexistence between AFM-mix and AFM-c states. (b) Correspondingly, the lattice B_{2g} mode (~ 395 cm$^{-1}$ at ambient pressure) also demonstrates the phase coexistence.