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ABSTRACT

Context. Planet formation remains an open field of research, and many fundamental physical processes regarding planetary formation
in protoplanetary disks are still imperfectly understood. It remains to be investigated how different conditions in these protoplanetary
disks affect the emergence of different types of observed systems. An elusive phenomenon is the turbulence in these disks. Observations
are available of planetary systems and of some protoplanetary disks, which can serve as a starting point for these investigations. The
detected systems reveal different architectures of planets. One particularly interesting case to consider is the Kepler-223 system, which
contains a rare configuration of four planets in a resonance chain. This implies a certain migration history.
Aims. We aim to use the orbital configuration of the Kepler-223 planets to constrain the parameters of the protoplanetary disk that
allow the formation of a chain of mean-motion resonances that resembles the resonances of Kepler-223. We primarily investigate the
disk viscosity and surface density.
Methods. We used the swift_symba N-body integrator with additional dissipative forces to mimic planet-disk interactions.
Results. We constrained the surface densities and viscosities that allow the formation of a resonant chain like that of Kepler-223. We
find that surface densities of up to a few minimum mass solar nebula surface densities and disk viscosity parameters α of a few 10−3 up
to 10−2 are most successful at reproducing the architecture of this particular planetary system. We describe the connection of these two
quantities with each other, considering the success of reproducing the chain. We find that higher disk surface densities in turn require
lower viscosities to build the chain.
Conclusions. Our results show that well-characterized observed planetary systems hold information about their formation conditions
in the protoplanetary disks and that it is possible to extract this information, namely the initial disk surface density and viscosity. This
helps to constrain planet formation.

Key words. protoplanetary disks – planet-disk interactions – planets and satellites: dynamical evolution and stability –
methods: numerical

1. Introduction

The study of exoplanetary systems is a key element for under-
standing the formation and evolution of planets, as well as
the assembly of planetary systems and their dynamical evolu-
tion. Currently, the exoplanet sample is largely dominated by
data from the Kepler mission, which provided well-constrained
planetary radii and orbital periods using the transit detection
method. Out of all detected planets, small and close-in plan-
ets, the so-called super-Earths and mini-Neptunes, are thought
to be orbiting up to 50% of Sun-like stars (Howard et al. 2012;
Mayor et al. 2011; Mulders et al. 2018), and they often occur in
multiplanetary configurations, in which the planets within each
system mostly have similar masses and radii (e.g., Millholland
et al. 2017; Weiss et al. 2018).

A notable example is the planetary system hosted by Kepler-
223, which is a G5V star with a mass of 1.1 M�. Four sub-
Neptunian planets in mean-motion resonance (MMR) are orbit-
ing it (Mills et al. 2016). In addition to orbital periods and
radii, Mills et al. (2016) used transit-timing variations (TTVs) to
obtain masses, eccentricities, and inclinations of the planets. The
masses are given by 7.4+1.3

−1.1 MEarth, 5.1+1.7
−1.1 MEarth, 8.0+1.5

−1.3 MEarth,
and 4.8+1.4

−1.2 MEarth for planets b-e, respectively. The period ratios

of the planets are 8:6:4:3 starting from the innermost planet
Kepler-223 b. This suggests the existence of individual MMRs
of the pairs of planets in the MMR chain, that is, a 4:3 reso-
nance for the first pair, a 3:2 resonance for the second pair, and a
4:3 resonance for the third pair. Mills et al. (2016) confirmed the
resonant nature of the system, showing librating Laplace angles.
More detailed information about the planets orbiting Kepler-223
is presented in Table 1.

While capture into an MMR is a natural outcome of type
I migration, this is found very infrequently in the exoplanetary
sample. It was suggested that capture into a resonance chain
does not often produce dynamically stable systems if the disk
in inviscid (McNally et al. 2019). Another frequently studied
reason for the rarity of MMRs is their instability during (e.g.,
Liu et al. 2017) or after the dispersal of the protoplanetary disk
(e.g., Izidoro et al. 2017, 2021; Pichierri & Morbidelli 2020;
Lambrechts et al. 2019). Thus, the existence of the particular
configuration of the Kepler-223 system, as well as other reso-
nant chains such as that of Trappist-1 (Gillon et al. 2016, 2017;
Luger et al. 2017) or GJ-876 (Marcy et al. 2001; Rivera et al.
2005), poses a definite challenge to formation scenarios of plan-
etary systems. For Kepler-223, the resonant state appears to be
long-term stable (it is, e.g., protected from instabilities due to the
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Table 1. Parameters of the planets orbiting Kepler-223 (Mills et al. 2016).

Parameter Kepler-223 b Kepler-223 c Kepler-223 d Kepler-223 e

Eccentricity 0.078+0.015
−0.017 0.150+0.019

−0.051 0.037+0.018
−0.017 0.051+0.019

−0.019

Mass (MEarth) 7.4+1.3
−1.1 5.1+1.7

−1.1 8.0+1.5
−1.3 4.8+1.4

−1.2

Orbital period (d) 7.38449+0.00022
−0.00022 9.84564+0.00052

−0.00051 14.78869+0.00030
−0.00027 19.72567+0.00055

−0.00054
Period ratio 4:3 3:2 4:3

emergence from secondary resonances; Pichierri & Morbidelli
2020), raising the question of which condition brought about
this particular configuration. These exotic orbital configurations
indeed offer a unique opportunity, as the current state can be
used to constrain the parameters of models that describe the
protoplanetary disk in which they formed.

Important disk parameters that could be constrained this way,
for example, are the surface density or a description of turbulent
viscosity in the disk. The surface density is a measure for the
mass, which in turn is an important parameter for the migration
speed (Kley & Nelson 2012; Baruteau et al. 2014) and is also rel-
evant, for example, for gravitational instabilities. Turbulence in
disks can arise from different hydrodynamical instabilities, for
instance, the global baroclinic instability (Klahr & Bodenheimer
2003) or the vertical shear instability (Richard et al. 2016; Flock
et al. 2017; Manger et al. 2020), or from the magnetorotational
instability (MRI) (Balbus & Hawley 1991). Turbulent viscosity
is a key element of many planet formation scenarios and disk
evolution models. It is supported by Atacama Large Millime-
ter/submillimeter Array (ALMA) data of disks that might show
still ongoing planetary formation (Teague et al. 2018; Pinte et al.
2018; Keppler et al. 2018), and is typically described in terms
of the α parameter (Shakura & Sunyaev 1972). Despite its sig-
nificance and recent improvements, the α parameter is not very
well constrained observationally, with values typically ranging
between 10−4 and about 4 × 10−2, as studies of disks observable
by ALMA have shown (Rafikov 2017; Dullemond et al. 2018;
Flaherty et al. 2017, 2018). These values are also consistent with
hydrodynamical and MRI simulations (e.g., Turner et al. 2014).

In this work, we use the fact that turbulence causes stochastic
fluctuations of the disks density structure, leading to stochas-
tic forces on the planets, to study its effects on the formation
of the Kepler-223 resonance chain. The main idea is that turbu-
lence can be a reason for destroying or preventing the formation
of an MMR chain even before the disk has dissipated (e.g.,
Batygin & Adams 2017). The aim of this investigation is to con-
strain the α parameter in combination with other disk parameters
from observational information contained in the current state of
the planetary system alone.

The methods we used to investigate Kepler-223 are laid out
in Sect. 2. Kepler-223 serves as a test case for the method we
use to determine constraints on the disk turbulence and surface
density. However, the methods we apply are general and can be
applied to other systems with resonant chains. The results of our
investigation are presented in Sect. 3. We discuss implications
and shortcomings of our investigation in Sect. 4.

2. Methods

We reproduced the Kepler-223 resonance chain using N-body
simulations using the swift_simba code. Additional dissipative
forces were implemented to mimic the interactions of the planets

with the protoplanetary disk, including the effects of stochastic
surface density changes caused by turbulence.

2.1. Type I migration

As a model for the effects on the semimajor axis and eccen-
tricity resulting from planet-disk interactions, the prescription
developed by Cresswell & Nelson (2008) was implemented. The
effects of eccentricity damping and type I migration are viewed
as two separate contributions. The former is described by

ėdamp = − e
τe

, (1)

with the timescale τe given by

τe =
τwave

0.780

1 − 0.14
(

e
H/r

)2

+ 0.06
(

e
H/r

)3

+0.18
(

e
H/r

) (
i

H/r

)2
. (2)

Here, τwave is the typical type I migration timescale,

τwave =
h4

q
M?

Σpa2 Ω−1
p , (3)

where q = m
M?

is the fraction of the planetary to stellar mass,
h = H/r is the disk aspect ratio, and the subscript p denotes that
the quantity is evaluated at the location of the planets. Planetary
type I migration is modeled given the negative torque,

L̇= − L
τmig

, (4)

with a migration timescale of

τmig ≈ 2
τwave

2.7 + 1.1αΣ

h−2, (5)

again in the limit of low eccentricities, with the power law of
the surface density αΣ (see below). The resulting change in
semimajor axis can then be calculated as

ȧ
a

= − 1
τa
− p

e2

τe
, (6)

with τa = τmig/2 and p ≈ 2 for small e. The migration speed
scales linearly with q and the surface density Σ. The ratio of
the migration to eccentricity damping timescale, the K-factor
(Ramos et al. 2017), is given by

K =
τa

τe
=
τmig

2τe
≈ 0.780

2.7 + 1.1αΣ

h−2. (7)
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Equation (7) shows that for typical values for h and αΣ, eccen-
tricity damping occurs on a much shorter timescale than migra-
tion. In this regime, the planets are therefore expected to have
vanishing eccentricities before they are captured into resonance.

To stop migration at the inner edge of the protoplanetary
disk, a planetary trap is implemented. To model the sign flip
of the torque and its radial dependence, which ultimately stops
planetary migration when the planet reaches the inner edge
(Masset et al. 2006; Flock et al. 2019), a multiplier F is applied
to the acceleration of the planets (Pichierri et al. 2018). It is given
by

F =


1, if a ≥ re(1 + he),
5.5 sin

(
(a−re)π
2rehe

)
− 4.5, if re(1 − he) < a < re(1 + he),

−10, if a ≤ re(1 − he).
(8)

Here, re is the location of the edge (in AU) and he is the aspect
ratio of the disk at re. This implementation does not affect
eccentricity damping.

2.2. Disk-driven turbulence

Our prescription for disk turbulence follows an implementation
of Ogihara et al. (2007) based on results from hydrodynamical
simulations investigating MRI turbulence (Laughlin et al. 2004).
Turbulent modes are generated with a turbulent strength parame-
ter γ. We summarize this method in the following. The stochastic
force exerted by the turbulent disk is described by

Fturb = − Γ∇Φ, (9)

where the parameter Γ is given by

Γ =
64Σr2

πM?
. (10)

The potential is described by a superposition of individual
modes,

Φ = γr2Ω2
nmodes∑
i = 1

Λc,m, (11)

Λc,m = ξe
(r−rc)2

σ2 cos(mθ − φc −Ωc t̃) sin
(
π

t̃
∆t

)
. (12)

In Eq. (12), ξ describes a Gaussian distribution with σ= 1 and
(r, θ) the radial and azimuthal position of the planet, while rc and
φc describe the center of the density fluctuations caused by the
turbulent modes. The azimuthal extent of the modes is given by
2πrc

m , while the radial extent is given by σ=
πrc
4m . The time depen-

dence of the modes is given by ∆t. A mode is created at time t0
and dies when ∆t > t̃ B t− t0. For ∆t, the sound-crossing time in
angular direction (∆t =

2πrc
mcs

) was chosen. To create a new mode,
rc is randomly generated inside the considered edges of our sys-
tem rin and rout and φc ∈ [0, 2π) is also chosen randomly. The
wave number m is chosen from a logarithmic random distribu-
tion in the range of 2 ≤ m ≤ 64. The resulting torque Γt is then
given by

Γt = r
1
r
∂Φ

∂θ
Γmpl = − γΓmplr2Ω2

nmodes∑
i = 1

mΛs,m, (13)

where

Λs,m = ξe
(r−rc )2

σ2 sin(mθ − φc −Ωc t̃) sin
(
π

t̃
∆t

)
. (14)

Here, mpl denotes the planetary mass in order to avoid confusion
with the wave number m.

The stochastic force strength parameter γ can be related to
the α parameter that is typically used to describe turbulence in
current disk models. To this end, we used on the one hand a
relation for the diffusion coefficient in the eccentricity De to the
model strength parameter (Ida et al. 2008; Okuzumi & Ormel
2013), where the numerical prefactor we used was modified to fit
the setup used here (see Appendix A),

De ≈ 3 × 10−4
(
γ

10−3

)2
(
Σa2

M?

)2

Ω; (15)

on the other hand, we used a similar relation involving the α
parameter (Okuzumi & Ormel 2013),

De ≈ 2.4 × 10−3
(
α

10−2

) (
Σa2

M?

)2

Ω. (16)

This yields a conversion between the two parameters that reads

γ ≈ 3 × 10−3
(
α

10−2

)1/2
. (17)

This relation should be considered valid as an order-of-
magnitude correspondence between γ (the parameter used in the
disk model for generating turbulent waves) and α (the commonly
used turbulence parameter).

3. Results

The results are presented in two parts. First, we show our con-
siderations of the Kepler-223 system without including effects of
turbulence on the formation of the resonance chain in Sect. 3.1.
A selection of stable systems in the correct resonance chain,
described in that section, are used as the basis for the inclusion
of turbulence into our simulations. The insights gained from that
are presented in Sect. 3.2.

3.1. Results without turbulence

3.1.1. Treatment of individual planet pairs

As a starting point, we treated all three planet pairs of the Kepler-
223 system separately. We first simulated each resonant pair
separately for varying surface density values Σ = Σ0(r/r0)−αΣ in
order to obtain a first overview of the effects of the surface
density distribution on each individual pair. For all simulations
conducted here and in later sections, the aspect ratio was fixed
at h = 0.05. The power law of the surface density αΣ was kept
constant at a value of αΣ = 1.5. The reference distance r0 was
chosen to be r0 = 1 AU. For the purposes of this step, we set the
trap at the inner disk edge at the position of the inner planet in
each pair under investigation. This allowed the inner planet to be
fixed, allowing a clear investigation of the convergent migration
behavior, and it means in turn that Σ0 sufficiently describes the
surface density. The planets are also captured in order, from the
innermost to the outermost, when the case of all four planets is
considered. This is therefore a good simplification to make to
gain first insights into the migration behavior.
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When turbulence is not considered and the planet parame-
ters are fixed, the migration timescale is the quantity that mainly
defines the migration behavior and speed, and thus the final res-
onance. It is a function of the surface density, which makes it
an important quantity to investigate for migration. It is impor-
tant to keep in mind that we do not know at which distance from
the star the four Kepler-223 planets formed, nor do we know the
time. For the purposes of this initial step, the planets of each
pair were therefore initially placed wide of the 2:1 MMR, only
in order to find a rough first estimate for the values for Σ0 that
we expect to work for the formation of the specific resonance
chain. For a higher surface density, resonances with lower k are
skipped as a general rule. This subsequently leads to a capture
into a resonance with a higher k (Batygin 2015). We therefore
considered a range of values for Σ0 for the individual pairs and
verified the index k of the resonance into which the pairs are cap-
tured. Considering the different locations and different masses
of the pairs, we expect a value for Σ0 to lead to different final k
for each individual pair. We then compared these final k to the
resonance indices measured by Mills et al. (2016) to determine
a range of surface densities that allow capture into the correct
resonance.

The result of this consideration is shown in Fig. 1. Under
the strong assumption that the planets formed outside of the 2:1
MMR, we cannot find a surface density power-law prescription
that allows all pairs to individually be captured into the correct
resonance. While in principle other slope values αΣ than the
value of 3/2 we used are possible, this statement is independent
of this parameter. However, when individual pairs are placed in
front of the desired resonances, there is no lower limit for the
surface density that allows the planets to be captured into that
resonance. In this case, surface density values that allow the for-
mation of the observed resonance for all pairs individually can
indeed be found. All in all, this investigation is insufficient for
the problem at hand, and should rather be taken as an estimate
for the relevant range of Σ0 for a more complete consideration.
When a resonant chain of four planets is considered, four-planet
dynamics need to be taken into account, which also changes
the outcome with respect to the final configuration per surface
density.

3.1.2. Treatment of all four planets together

The next natural step to investigate the capture into a resonant
chain of the Kepler-223 system is thus to consider all four plan-
ets at once. We considered different surface densities because we
expect the densities to affect the migration timescale and differ-
ent initial planet locations. For the planet locations, we took a
pragmatic approach. As we already mentioned, their initial for-
mation location cannot be inferred from observations and could
in principle have been in a configuration in which individual
planet pairs lie far outside the currently observed resonances.
For the purpose of this investigation, however, the planets were
placed just outside the resonances in which they are observed
today. The reason for this is that because the innermost planet is
locked at the inner edge of the disk (Masset et al. 2006; Ataiee &
Kley 2021), migration is typically convergent in any case (see
below). If a planet pair is observed today in a certain MMR,
it is therefore natural to assume, within the framework of our
investigation, that they once lay just wider of that specific period
ratio. This initial placement does not contradict the results of
Sect. 3.1.1. In this section, the premise was to determine a range
of potential surface density values that locally allow the forma-
tion of a resonance with index k that matches the observations
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Fig. 1. Range of surface density values Σ0 that allow the individual
Kepler-223 planet pairs to be captured into the correct resonance as a
function of the semimajor axis of the outer planet of each pair. The
error that is related to the mass error of the planets is indicated in red
(Mills et al. 2016). The dotted black lines clarify that within the errors,
no value for Σ0 can be found that allows each separate pair to be cap-
tured into the correct resonance if the pairs are initially wide of the 2:1
MMR. The dotted blue vertical lines indicate that this does not hold
if the planets are instead placed just wide of the correct MMR, which
eliminates the lower limit for Σ0.

by Mills et al. (2016). This was achieved by considering the
analytically well-understood case of a two-planet system with-
out turbulence. In the investigation in this section, the dynamics
of the four-planet system including effects of turbulence are
considered. In this scenario, planets are able to reach the posi-
tion where we place them at the start of the simulation, even if
they do form wider away from the resonances in which they are
presently observed and have to migrate inward. The distance to
an unperturbed semimajor axis ratio is parameterized by ε,

ai+1

ai
=

(
ki + 1

ki
(1 + εi)

)2/3

, (18)

where i = 1, 2, 3 denotes the planet pair of the chain, and ki is
the resonance index, with k1 = 4, k2 = 3, and k3 = 4. The initial
semimajor axis of the first planet was set to a1 = 0.076 AU, which
is close to the current location of Kepler-223 b given by Kepler’s
third law, ab = 0.0772 AU (Mills et al. 2016).

We ran N-body simulations for values of Σ0 ranging between
0.1 and 10 ΣMMSN for all combinations of values for εi out of
{0.02,0.035,0.05} representing small, medium, and large initial
separations between the planets. Even for the largest initial sep-
aration, the planet pair was always placed in such a way that no
first-order MMR had to be crossed in order to reach the intended
MMR. After the integration, a system was considered to exhibit
the correct chain of resonances if their period ratios were wide
of the observed resonance, as well as the corresponding reso-
nant angles showing libration. The system configuration of the
periods was considered to be compatible with observations if
the ratio of the periods of each individual planet pair exceeded
the nominal value, but with a relative error below 0.1%. We are
interested in the first-order question of reproducing the period
ratios corresponding to the observed MMR chain. Thus, we do
not consider the question of reproducing the observed libration
centers that take into account additional resonances between
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Fig. 2. Buildup of the resonance chain of the four Kepler-223 planets, without considering turbulence. The investigated parameter space is two
dimensional: The surface density is varied, as is the initial separation of the planet pairs from the final resonance. The configurations in which
the correct chain was built are indicated by green triangles, while those who failed to do so are shown as red crosses. The vales for ε are ordered
such that ε1 is the topmost value. Simulations whose symbol is encircled share their initial parameters with those considered for a consideration
including disk turbulence (Sect. 3.2).

non-adjacent planets (Delisle 2017). The result of this investi-
gation is shown in Fig. 2. It shows the surface density value at
which the migration timescale is too short to be able to form the
Kepler-223 resonance chain because the required resonances are
skipped, as expected. This occurs beyond a surface density cor-
responding to ∼6 ΣMMSN. This demonstrates at face value that at
least without any treatment of turbulence, the minimum-mass
extrasolar nebula (MMEN, Chiang & Laughlin 2013) cannot
accurately describe protoplanetary disks of extrasolar systems
such as Kepler-223. It predicts a surface density of ∼7ΣMMSN at
0.1AU, which would not allow the formation of the Kepler-223
system.

From the figure, it appears as if the capturing process of
this four-planet system into resonance is chaotic and therefore
depends very sensitively on both the initial separation and the
surface density, where even a small change in the initial distance
to the resonance may make the difference between a successful
formation or failure to create the correct chain.

3.2. Results with turbulence

Some of the initial conditions that lead to the successful creation
of the Kepler-223 chain were used to investigate the effects of

turbulence on the formation of the chain. Three different initial
separations were chosen, for which the surface densities ranged
between 0.72 ΣMMSN and 3.93 ΣMMSN. These surface densities
were chosen because they allow for most of the successful sim-
ulations. Higher surface densities give a migration speed that
is too high, which is unfavorable for the formation of the res-
onance chain, while lower surface densities do not offer great
constraints for the simulations that include turbulence. The ini-
tial conditions that were used are denoted with a blue circle in
Fig. 2.

After finding initial conditions that are favorable for the for-
mation of the resonance chain, we investigated the effects of
turbulence on the formation of the chain to determine constraints
for the turbulence strength in the protoplanetary disk during the
formation of the chain. We based our analysis on 100 simula-
tions per initial setup. The integration time was not based on
physical properties of the system because the remaining disk
lifetime at the point of formation of the chain is not known,
and neither is the effect of a possible time variability of α. The
integration time was instead chosen as a compromise between
simulation run time and stability of the results; we found that
integrating for 105 years achieves this compromise. We also
investigated the effects of a longer integration for a particular
case and found that while some initially stable configuration
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Fig. 3. Number of successful creations of the Kepler-223 resonance chain for various initial conditions, with varying initial separations and
surface densities. For each initial setup, four turbulence strengths α were considered. The green bar denotes successful formations. Generally, a
larger turbulence strength leads to fewer successful runs. For each setup, there is a critical value αcrit (cf. Eq. (19)), for which stronger turbulence
significantly hinders the creation of the resonance chain (Batygin & Adams 2017). This is depicted in the plot. This critical value decreases with
increasing gas surface density, which is also the case for the number of successful runs for an increasing surface density at constant α (cf. Eq.
(3)). The setup marked in red did not reproduce the Kepler-223 resonance chain without turbulence, but it does not differ significantly from those
that did when the effects of the turbulent disk were considered, indicating that turbulence is a necessary ingredient for this particular setup. This
remains to be investigated in future work.

became unstable, the difference was below 10%. This shows that
it does not significantly change the results presented in Fig. 3.

Four different strengths of turbulence were considered, rang-
ing between α= 10−4 and α= 5 × 10−2. The resulting trend is
depicted in Fig. 3. Several trends are worth pointing out. First,
a larger turbulence strength generally leads to less success in
forming the Kepler-223 resonance chain. The point at which
the formation of the chain becomes significantly improbable
lies at lower α for higher surface densities, which fulfills the
expectation that the strength of the random kicks is dependent
on the product Σ

√
α (cf. Eqs. (13), (17)). This can be further

seen by considering individual columns in the figure, where
a larger number of simulations leads to the formation of the
resonance chain when the surface density is lower at constant

α. However, this trend does not hold for the lower turbulence
strengths. This can be seen as an indication that simple analyt-
ical trends derived for the two-planet case (Batygin & Adams
2017) are not applicable when the strength of the turbulent kicks
is not sufficient to disrupt chains that have already established
their resonant configuration (see below), while they can serve
as an order-of-magnitude approximation when the turbulence is
strong enough to disrupt formed chains. In the former case, dis-
ruption has to take place during the capturing process, where
simple assumptions do not hold for four planets.

Systems can fail to recreate the Kepler-223 resonance chain
for a variety of reasons. Frequent examples include the sec-
ond planet pair skipping the desired 3:2 resonance and being
captured into a 4:3 resonance instead, which can lead to other
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Fig. 4. Two setups, also represented in Fig. 3, in which turbulence was activated in the simulations only after the formation of the resonance chain.
For case (a), Eq. (19) gives αcrit = 6.4 × 10−2, and for case (b), it yields αcrit = 2.3 × 10−2. The resulting number of successful simulations as a
function of α is shown, which was compared to the expected critical αcrit value (cf. Eq. (19)). The results match the theoretical expectations on the
order of magnitude.

pairs failing to be captured into or stay in the correct resonance.
The second planet pair is especially prone to temporary capture
because its desired resonance has the lowest index k and its outer
planet is more massive than its inner planet (Deck & Batygin
2015). Even in the event of successful capture of the second pair,
planets can skip their desired resonance during the initial cap-
turing process of the chain or break out of it later on. Another
possible path to failure is created by the brief divergent migra-
tion of the third pair, which occurs because its inner planet is
more massive than the outer planet. If the more massive planet
is not captured fast enough into the 3:2 resonance of pair 2, pair
3 can cross the 3:2 resonance from the inside, which is known to
cause a rapid excitation of eccentricity. The rapid excitation usu-
ally breaks the resonances of other pairs. The frequency at which
the third pair crosses the 3:2 resonance is related to the initial
separation of the planets. When a desired resonance is skipped,
the planets may either be captured into a resonance with higher
index k or collide. A pair is rarely captured into a second-order
resonance.

Figure 3 also contains the results of a simulation correspond-
ing to initial conditions that without considering turbulence,
were not favorable for the creation of the Kepler-223 resonance
chain. These initial conditions are indicated in red. When turbu-
lence is considered, the probability of the successful formation
of the correct chain does not differ significantly from all other
initial conditions we considered, even though they allowed for
a correct chain in the nonturbulent case. This suggests that tur-
bulence in this case is necessary, while even weak turbulence
strengths are sufficient to bring the probability in line with other
similar initial conditions. The reason for this, however, remains
to be investigated in future work.

The trend that fewer simulations lead to the formation of
the Kepler-223 system if the turbulence strength is higher is
not apparent for lower values for α, but it is clearly visible for
higher α. It might be expected that for an increase in turbulence
strength, the number of simulations that successfully recreate
the Kepler-223 resonance chain drops. While this expectation
is fulfilled for larger α, it is not as clear for lower α, where
simulations with lower surface densities (i.e., lower turbulence
strength) apparently do not reproduce Kepler-223 as often as
those with a higher surface density. When the strength of the
turbulence lies beyond a critical value, the disruption of the
resonance chain is significantly more efficient than below this
value. We propose that this is because turbulence below a cer-
tain threshold can only disrupt chain formation while the planets
are migrating to the correct semimajor axes, while turbulence
beyond this threshold can also efficiently disrupt chains after the
planets have already fully been captured in resonance. This can

also serve as an explanation as to why expected trends for the
formation of the resonance chain are not as clear for turbulence
below that threshold. In the case of only two planets, Batygin
& Adams (2017) developed an order-of-magnitude criterion for
turbulent disruption of formed resonance chains. It is given by

h
20

M
m1 + m2

√
3α
f
×

Σ〈a〉2
kM

√
Σ〈a〉2

m1 + m2


1/3

& 1. (19)

Here, m1 and m2 are the masses of the planets, M is the stel-
lar mass, 〈a〉 is the average semimajor axis, and f is a factor that
accommodates different implementations of the rate of change in
the semimajor axis. For our considerations, we applied Eq. (19)
to the second planet pair because it is observed to be in a 3:2 res-
onance, which has the lowest resonance index of the chain and
should therefore be the least stable. The resulting critical value
αcrit, obtained by solving Eq. (19) toward α, is also indicated
in Fig. 3. The analytical values match the results from the sim-
ulations in order of magnitude. In the four-planet case, values
for α that lie slightly below the predicted αcrit from two-planet
considerations lead to the disruption of the formed chain.

Furthermore, the validity of Eq. (19) was tested by consid-
ering an initial setup in which the four planets are already in
resonance. Two initial conditions were considered, the first with
a surface density of Σ = 1.39ΣMMSN and ε = (0.05, 0.02, 0.035),
and the second with Σ = 3.93ΣMMSN and ε = (0.05, 0.035, 0.035).
Equation (19) gives αcrit = 6.4 × 10−2 and αcrit = 2.3 × 10−2,
respectively. Figure 4 shows simulations for which these con-
ditions were implemented. It is apparent that the criterion is a
good order-of-magnitude approximation in the four-planet case
as well, and the behavior of the general case in which the planets
start outside of the resonances is well explained by the destruc-
tion of chains that formed beyond αcrit, where the destruction of
formed chains becomes possible at lower values for α than αcrit
because the four-planet case is more sensitive than the two-planet
case.

3.2.1. Constraining the minimum turbulence level

While the results from Fig. 3 can give an upper limit for the
strength of disk turbulence during the formation of the Kepler-
223 resonance chain, they do not provide a lower limit. The
libration amplitude of the Laplace angles can help determin-
ing a lower limit, as Mills et al. (2016) provided the observed
amplitudes of these angles.

From an analytical perspective, we would expect the ampli-
tude of the Laplace angles to grow like

√
De ∝

√
αΣ because the
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Fig. 5. Libration amplitudes of the Laplace angles for successful simulations depicted in Fig. 3, grouped by turbulence strength. The positions of the
peaks scale with ∼√α, as expected due to De ∝ α, which is the same scaling as for the turbulence strength given by Eq. (13) for a constant surface
density Σ0. The expected amplitudes according to Mills et al. (2016) are depicted with dashed black lines. The uncertainties of the amplitudes of
the Laplace angles are small and therefore are not depicted for our rough value given by those lines. It is apparent that for the lowest turbulence
strength α= 10−4, the Laplace angle amplitudes are smaller than expected, while for 10−3 ≤ α ≤ 10−2, an agreement between the observed and
expected amplitudes can be found. For the highest α= 5 × 10−2, the amplitudes resulting from the simulations do not match those expected in the
case of φ3, while for φ1 and φ2, an agreement can still be found.

diffusion coefficient governs the average evolution of the eccen-
tricity e, which in turn gives the evolution of the resonance and
Laplace angles. The scaling is the same as for the turbulence
strength (cf. Eq. (13)). For a fixed Σ0, this relation can therefore
be used to set bounds on α. In Fig. 5, the libration amplitudes for
every Laplace angle, grouped by turbulence strength, are shown
for the simulations in which the correct chain was formed. The
figure demonstrates that the libration amplitudes indeed scale
like ∼√α for a constant surface density, allowing the use of the
Laplace angle amplitudes for determining a lower limit for α.
For the lowest turbulence strength of α= 10−4, the amplitudes
of the Laplace angles for the formed chain are smaller than the
observed angles. For 10−3 ≤ α ≤ 10−2, an agreement between
the observed amplitudes and those resulting from the simulations
can be found. For the highest strength of 5 × 10−2, the number of
successful simulations is smaller than at other strengths, and they
are mostly limited to low surface densities. With this in mind,

the amplitudes for φ3 do not agree with the simulations, while
the amplitudes for φ1 and φ2 can match the expected values.

3.2.2. Eccentricities of the planets

Because Mills et al. (2016) also provided the eccentricities of the
planets in the Kepler-223 system, they can be compared to the
eccentricities that result from the simulations. The comparison
between the averaged final eccentricity for cases in which the
correct resonance chain was formed to the eccentricities mea-
sured by Mills et al. (2016) is depicted in Fig. 6. The different
turbulence strength values that correspond to the successful sim-
ulations are indicated by different colors. In the two-planet case,
we would not expect the final eccentricities to depend on the
turbulence strength. The reason for this is that random kicks as
produced by turbulence only lead to a change around the analyt-
ical equilibrium point, the value itself is independent of α and
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Fig. 6. Final averaged planet eccentricities of successfully formed resonant chains, as shown in Fig. 3. The different turbulence strengths Σ0 ·
√
α

for the individual simulations are indicated by different colors, as shown by the color bar. The dashed black line denotes the expected eccentricities
of the planets (Mills et al. 2016), while the dashed red line denotes the 1σ error. For clarity, the range of eccentricities depicted on the abscissa
is different for the individual plots. Unlike for the two-planet case, a dependence on turbulence strength and initial separation can be found for
this case of four planets, resulting in multiple peaks in the distribution. The eccentricities of the two innermost planets do not match the measured
values, while for the outer two planets, an agreement can be found. This is probably related to our implementation of the planet trap at the inner
edge of the disk, which does not capture the entire physical scenario (see Sect. 4).

Σ0, however. The analytical value for the two-planet case can be
found as (Goldreich & Schlichting 2014)

eeq,1 ≈
(

1
2(k + 1)

τe

τa

)1/2

=

(
1

2(k + 1)
K1

)1/2

, (20)

where the subscript 1 denotes an evaluation for the inner planet,
and K is the K-factor as defined in Eq. (7). This result holds true
in the limit of a massless inner planet moving outward toward a
massive planet on a fixed circular orbit (circular restricted three-
body problem). A more general description shows that a similar
relation also holds for the equilibrium eccentricity of the outer
planet, eeq,2 ∼ K1/2

2 (Pichierri et al. 2018). Equations (20) and (7)
show that the equilibrium eccentricity is proportional to h and
is a function of k. The eccentricity distribution shown in Fig. 6
exhibits multiple peaks, which means that the four-planet case
depends on the turbulence strength and initial separation, unlike
in the case of only two planets. When comparing our result for
the eccentricities with the measured values, we find that there is
a mismatch for the two innermost planets. This could be due to
restrictions in our setup, where the inner edge of the protoplan-
etary disk is modeled by applying high opposing accelerations
to the planets close to it, which may not represent the physical
situation to high accuracy. The planet trap could be caused by a
sharp drop in surface density, which also affects the eccentric-
ity damping timescale and therefore the equilibrium eccentricity
of the planets that are pushed into the trap. By just applying a
factor to the acceleration of the semimajor axis, this effect is not
considered, resulting in final eccentricities that are lower than
they should be. We also note that the eccentricities depend on
the aspect ratio, which was fixed at a constant value of h = 0.05.
Increasing the aspect ratio of the disk can therefore in principle
lead to a better agreement in the eccentricities.

4. Discussion

In Sect. 3.2.1 we showed that a lower limit for α can be inferred
by considering that a certain level of turbulence is needed to
reach an excitation of the Laplace angle amplitudes that match
those inferred by Mills et al. (2016). While the α values that
allow a formation of the Kepler-223 system with the correct
Laplace angle libration amplitudes also depend on the disk sur-
face density, a lower limit is given by α ∼ 10−3. This value is
consistent with turbulence values inferred for an MRI “dead-
zone” (Flock et al. 2019). Even though α has a space dependence
across the protoplanetary disk, the assumption of a constant α is
not too strong for our approach, considering that the planetesi-
mals that formed the initial embryos resulting in the Kepler-223
planets formed close to each other, as suggested by embryo
growth simulations (e.g., Voelkel et al. 2020, 2021).

To apply the concept of inferring disk parameters from a
planetary system after the disk itself has already dissipated,
we adopted the prescription by Cresswell & Nelson (2008) for
the additional dissipative forces added to the N-body integrator.
This description of planetary migration is comparatively sim-
ple, therefore allowing us to obtain gross estimates of parameter
ranges and giving a good overview over the idea of this method.
For a more thorough investigation, more sophisticated prescrip-
tions for planetary migration in protoplanetary disk may be
implemented. While this can be achieved by integrating hydro-
dynamical models that are commonly used for investigations
of this kind (see, e.g., Bitsch & Kley 2010; McNally et al.
2019; Ataiee & Kley 2020), the goal is to do so with the less
computation-intensive method of N-body integration including
dissipative forces. In this case, for example, adopting models
from Paardekooper et al. (2011) and Jiménez & Masset (2017),
a main aspect is the fact that the disk torques responsible for
migration in fact exhibit a viscosity dependence, which was not
considered here. In addition, these models can include more
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physically accurate models for the inner edge of the protoplan-
etary disk, where the positive torque acting as a planetary trap
is caused by the slope of the density profile, which changes
rapidly close to the inner edge. Adopting these considerations
in a self-consistent way including stochastic forces as they are
caused by the disk turbulence would allow for a more detailed
picture of resonant systems, while in principle applying the same
arguments as with the simplified approach.

While an N-body approach is not as detailed as a full hydro-
dynamical consideration, it serves as a good way to reduce
the large parameter space because the N-body approach saves
a significant amount of computation time compared to a full
hydrodynamical approach. We ran 6000 simulations for 105

years of physical time to produce Fig. 3, which corresponds
to about 5 × 106 orbits of the innermost planet Kepler-223 b.
One simulation used 24 CPU hours on average, so that one
orbit required ∼4.8 × 10−6 CPU hours (∼17 ms). Under the
assumption that a typical hydrodynamical approach takes 4 min
to integrate one orbit, the methods applied here would have
required about 3.3 × 106 CPU hours (∼38 yr) per simulation.
The number of simulations and high integration time that we
employed for our considerations would therefore be unfeasible
for a hydrodynamical approach.

While planetary systems with long chains of MMRs are not
common due to the reasons stated above, Kepler-223 is cer-
tainly not the only system with such a peculiar configuration.
Another prominent example is the Trappist-1 system, which con-
sists of seven resonant planets. Similarly to the approach taken
for Kepler-223, we can infer parameters of the protoplanetary
disk in the phase in which planetary migration was relevant, even
though the disk has already dissipated, by imposing that the disk
must allow such a system to form and remain stable during the
timescales we observe. This can supplement studies concerning
the properties of observable protoplanetary disks, for instance,
with ALMA (Rafikov 2017; Dullemond et al. 2018; Flaherty et al.
2017, 2018). More broadly, any system with a rare orbital config-
uration that in turn offers constraints to a protoplanetary disk that
would have formed such a rare system can be used in this way to
infer parameter estimates that offer insights into the formation of
protoplanetary systems in general.

5. Conclusions

The observed orbital configuration of the Kepler-223 system can
be used to infer information about the protoplanetary disk out
of which the system formed. By exploring different parameters
of the disk at the time of the assembly of the chain, we were
able to show how some configurations prevent the system from
a dynamical evolution that would allow the presently observed
configuration to exist.
1. Treatment of the dynamical evolution of the system, in a

manner that is adequate for our purpose, can be achieved
without the need of computationally expensive codes that
consider the full hydrodynamical picture. Instead, we sim-
ply employ an N-body integrator with additional dissipative
forces mimicking the relevant planet-disk interactions. How-
ever, the approach demonstrated in this work should be seen
as a proof-of-concept rather than providing detailed results
about the disk parameters that governed the late evolution
of the Kepler-223 system because this simple model has a
number of limits: no evolution of the protoplanetary disk
over time is considered, and neither is the space- (or time-)
dependence of α. Considering this can affect the formation

of the chain (Ataiee & Kley 2020) and also the long-term
stability (e.g., Pichierri et al. 2018; Pichierri & Morbidelli
2020). Moreover, we acknowledge that this method only
probes the evolutionary phase in which migration of planets
and disk turbulence are the dominating effects. Nevertheless,
our method clearly shows that the dynamical constraint from
planetary systems in resonance can be used to constrain the
disk parameters during planet formation.

2. For a fixed surface density value Σ0, this approach can be
used to determine constraints for the turbulence parameter
α by requiring the formation of the resonance chain under
these turbulent conditions. This is done under the simpli-
fying assumption that the planets under investigation can
be considered to be close to the resonances that they are
observed in today. This can be seen as not too restrictive,
considering that it is safe to assume that the planets reached
an orbital state close to where they are observed at some
point in time. Conversely, under the assumption of a fixed α,
the required range of surface densities can be inferred, imply-
ing whether the planets of Kepler-223 have formed during
the early time of high surface density or the late time of lower
surface density.

3. For lower values for α, it is not straightforward to con-
clude whether the formation of all aspects of the Kepler-223
orbital architecture can be ensured. This is because for weak
turbulence, meaning such that captured resonance chains
cannot be disrupted, simple analytical insights cannot be
put into use and the impact of the turbulent environment
is relevant mostly during the formation stage of the chain.
The points at which we recover analytical considerations is
reached when an established chain can also be disrupted. The
limiting parameter αcrit can be estimated from two-planet
results following Batygin & Adams (2017), as described in
Eq. (19).

4. The values of α that were considered in this work are in the
range of α= 10−4 to 4 × 10−2, which is the range found by
studies of disks that can be observed with ALMA (Rafikov
2017; Dullemond et al. 2018; Flaherty et al. 2017, 2018).
These observations are also consistent with hydrodynami-
cal and MRI simulations (e.g., Turner et al. 2014). When the
assembly of the correct chain of MMRs is considered alone,
it is not possible to give a lower limit for α using the method
we employed here. However, because the amplitudes of the
Laplace angles are also known for the Kepler-223 system
(Mills et al. 2016), an additional constraint can be provided.
As shown in Fig. 5, a certain level of turbulence is needed
to reproduce the correct amplitudes of the Laplace angles,
which is about 15° for φ1 and 30° for φ2 and φ3, peak to peak.
As a lower limit for α, the consideration of the Laplace angle
amplitudes gives α ∼ 10−3, which is consistent with val-
ues typically considered for an MRI dead zone (Flock et al.
2019). Our measurement of viscosity comes with the uncer-
tainty of an unknown value for the surface density because
our simulations allow us to make statements about Σ0

√
α.

For example, a higher turbulent viscosity can be consistent
with our results if we adopt a lower surface density. It was
also found that even if the correct MMR chain is formed,
the system can still fail to reproduce the correct amplitudes
for the Laplace angles and can therefore not be considered
to have correctly reproduced the observations; this is mainly
important at high α.

5. While the described methods can be used to determine rough
constraints for disk parameters during the later stages of
planet formation and the assembly of planetary systems, it
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has shortcomings that can be seen by the example of the
final planet eccentricities as depicted in Fig. 6. The eccen-
tricities of the inner two planets as measured by Mills et al.
(2016) were not reproduced here. However, this does not
invalidate our method because on the one hand, a global
mismatch of the eccentricities can be fixed by modifying
the aspect ratio prescription, where an increase could lead
to a shift in eccentricities that provides a better match with
the observed values (Goldreich & Schlichting 2014; Pichierri
et al. 2018). On the other hand, we propose the model of the
inner edge of the protoplanetary disk as a reason for the pre-
sented mismatch, which is strongly simplified and does not
accurately represent all physical properties. While the focus
of this investigation was on the method itself, this issue could
be fixed by employing more physically accurate models (e.g.,
Izidoro et al. 2017; Izidoro et al. 2021).

Our method clearly shows that the currently observed system
architectures hold imprints of their formation history. Especially
systems with multiple planets in resonance can help to constrain
disk parameters. This is especially important to also probe dif-
ferent environments, like in the Trappist-1 system, which orbits
an M dwarf, where constraints from disk observations are even
rarer.
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Appendix A: Diffusion coefficient fit for the
eccentricity evolution

To derive the prefactor of Eq. (15), the diffusion coefficient
was derived for different γ by computing the standard deviation
between 100 simulations for a fixed time and fitting a square-root
dependence. For these simulations, migration was disabled. Fig-
ure A.1 shows the resulting diffusion coefficient, where another
fit lead to the prefactor of 3 × 102 = 3 × 10−4

(
1

10−3

)2
for the

relation between the turbulence strength parameter γ and the
diffusion coefficient of the eccentricity, De, as seen in Eq. (15).

10 3
10 5

10 4

10 3

D
e

/(
a2

M
*

)

Fit function: f(x) = bx2
b = 3.10e+02 ± 2.40e+00

Quadratic fit
Diffusion coefficients

Fig. A.1: Diffusion coefficients De that are realized by three dif-
ferent turbulence strength parameters γ in simulations with the
setup used throughout this work. A quadratic fit was used to deter-
mine the prefactor that describes the order-of-magnitude relation
as described in Eq. (15).

Appendix B: Simulation parameters

This appendix presents all constant parameters we employed for
the prescription of migration (Cresswell & Nelson 2008) and
stochastic forces mimicking turbulence (Ogihara et al. 2007).
They are shown in Table B.1.

Table B.1: Model parameters employed for the simulations.

Parameter Value
nmodes 500
rin 0.073 AU
rout 10 AU
h 0.05
r0 1 AU
αΣ 1.5
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