CaltechAUTHORS
  A Caltech Library Service

Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory

Andreoni, Igor and Margutti, Raffaella and Salafia, Om Sharan and Parazin, B. and Villar, V. Ashley and Coughlin, Michael W. and Yoachim, Peter and Mortensen, Kris and Brethauer, Daniel and Smartt, S. J. and Kasliwal, Mansi M. and Alexander, Kate D. and Anand, Shreya and Berger, E. and Bernardini, Maria Grazia and Bianco, Federica B. and Blanchard, Peter K. and Bloom, Joshua S. and Brocato, Enzo and Cartier, Regis and Cenko, S. Bradley and Chornock, Ryan and Copperwheat, Christopher M. and Corsi, Alessandra and D'Ammando, Filippo and D'Avanzo, Paolo and Datrier, Laurence Élise Hélène and Foley, Ryan J. and Ghirlanda, Giancarlo and Goobar, Ariel and Grindlay, Jonathan and Hajela, Aprajita and Holz, Daniel E. and Karambelkar, Viraj and Kool, E. C. and Lamb, Gavin P. and Laskar, Tanmoy and Levan, Andrew and Maguire, Kate and May, Morgan and Melandri, Andrea and Milisavljevic, Dan and Miller, A. A. and Nicholl, Matt and Palmese, Antonella and Piranomonte, Silvia and Rest, Armin and Sagués-Carracedo, Ana and Siellez, Karelle and Singer, Leo P. and Smith, Mathew and Steeghs, D. and Tanvir, Nial (2022) Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory. Astrophysical Journal Supplement Series, 260 (1). Art. No. 18. ISSN 0067-0049. doi:10.3847/1538-4365/ac617c. https://resolver.caltech.edu/CaltechAUTHORS:20211130-215758581

[img] PDF - Published Version
Creative Commons Attribution.

1MB
[img] PDF - Submitted Version
See Usage Policy.

1MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20211130-215758581

Abstract

The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.3847/1538-4365/ac617cDOIArticle
https://arxiv.org/abs/2111.01945arXivDiscussion Paper
ORCID:
AuthorORCID
Andreoni, Igor0000-0002-8977-1498
Margutti, Raffaella0000-0003-4768-7586
Salafia, Om Sharan0000-0003-4924-7322
Coughlin, Michael W.0000-0002-8262-2924
Yoachim, Peter0000-0003-2874-6464
Smartt, S. J.0000-0002-8229-1731
Kasliwal, Mansi M.0000-0002-5619-4938
Alexander, Kate D.0000-0002-8297-2473
Anand, Shreya0000-0003-3768-7515
Berger, E.0000-0002-9392-9681
Bernardini, Maria Grazia0000-0001-6106-3046
Bianco, Federica B.0000-0003-1953-8727
Blanchard, Peter K.0000-0003-0526-2248
Bloom, Joshua S.0000-0002-7777-216X
Brocato, Enzo0000-0001-7988-8177
Cenko, S. Bradley0000-0003-1673-970X
Chornock, Ryan0000-0002-7706-5668
Copperwheat, Christopher M.0000-0001-7983-8698
Corsi, Alessandra0000-0001-8104-3536
D'Ammando, Filippo0000-0001-7618-7527
Foley, Ryan J.0000-0002-2445-5275
Ghirlanda, Giancarlo0000-0001-5876-9259
Goobar, Ariel0000-0002-4163-4996
Grindlay, Jonathan0000-0002-1323-5314
Hajela, Aprajita0000-0003-2349-101X
Holz, Daniel E.0000-0002-0175-5064
Karambelkar, Viraj0000-0003-2758-159X
Kool, E. C.0000-0002-7252-3877
Lamb, Gavin P.0000-0001-5169-4143
Laskar, Tanmoy0000-0003-1792-2338
Maguire, Kate0000-0002-9770-3508
Milisavljevic, Dan0000-0002-0763-3885
Miller, A. A.0000-0001-9515-478X
Nicholl, Matt0000-0002-2555-3192
Palmese, Antonella0000-0002-6011-0530
Rest, Armin0000-0002-4410-5387
Singer, Leo P.0000-0001-9898-5597
Smith, Mathew0000-0002-3321-1432
Steeghs, D.0000-0003-0771-4746
Tanvir, Nial0000-0003-3274-6336
Additional Information:© 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 2021 November 3; revised 2022 March 3; accepted 2022 March 24; published 2022 May 13. We thank Lynne Jones for her work on LSST strategy simulations. This paper was created in the nursery of the Rubin LSST Transient and Variable Star Science Collaboration. 53 The authors acknowledge the support of the Vera C. Rubin Legacy Survey of Space and Time Transient and Variable Stars Science Collaboration, which provided opportunities for collaboration and exchange of ideas and knowledge, and of Rubin Observatory in the creation and implementation of this work. The authors acknowledge the support of the LSST Corporation, which enabled the organization of many workshops and hackathons throughout the cadence optimization process by directing private funding to these activities. R.M. acknowledges support from the National Science Foundation under grant No. AST-1909796 and AST-1944985, and by the Heising-Simons foundation. M.W.C. acknowledges support from the National Science Foundation with grant Nos. PHY-2010970 and OAC-2117997. A.C. acknowledges support from the NSF award AST #1907975. S.J.S. acknowledges funding from STFC grants ST/T000198/1 and ST/S006109/1. D.M. acknowledges NSF support from grants PHY-1914448 and AST-2037297 K.M. acknowledges support from EU H2020 ERC grant No. 758638. A.H. is partially supported by a Future Investigators in NASA Earth and Space Science and Technology (FINESST) award No. 80NSSC19K1422. M.N. acknowledges support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 948381) and a Fellowship from the Alan Turing Institute. P.D.'A. acknowledges support from PRIN-MIUR 2017 (grant 20179ZF5KS) and from the Italian Space Agency, contract ASI/INAF No. I/004/11/4. E.C.K. and A.G. acknowledge support from the G.R.E.A.T research environment funded by Vetenskapsr å det, the Swedish Research Council, under project No. 2016-06012, and support from The Wenner-Gren Foundations. M.B. acknowledges support from the Swedish Research Council (Reg. No. 2020-03330). The UCSC team is supported in part by NASA grant NNG17PX03C, NSF grant AST-1815935, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, and by a fellowship from the David and Lucile Packard Foundation to R.J.F. This work was supported by the Preparing for Astrophysics with LSST Program, funded by the Heising Simons Foundation through grant 2021-2975, and administered by Las Cumbres Observatory. Software: LSST metrics analysis framework (MAF; Jones et al. 2014); astropy (Astropy Collaboration et al. 2013); matplotlib; ligo.skymap. 54
Group:Astronomy Department
Funders:
Funding AgencyGrant Number
Large Synoptic Survey Telescope CorporationUNSPECIFIED
NSFAST-1909796
NSFAST-1944985
NSFPHY-2010970
NSFOAC-2117997
NSFAST-1907975
Science and Technology Facilities Council (STFC)ST/T000198/1
Science and Technology Facilities Council (STFC)ST/S006109/1
NSFPHY-1914448
NSFAST-2037297
European Research Council (ERC)758638
NASA Earth and Space Science Fellowship80NSSC19K1422
European Research Council (ERC)948381
Alan Turing InstituteUNSPECIFIED
Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)20179ZF5KS
Agenzia Spaziale Italiana (ASI)I/004/11/4
Istituto Nazionale di Astrofisica (INAF)UNSPECIFIED
Swedish Research Council2016-06012
Wenner-Gren FoundationUNSPECIFIED
Swedish Research Council2020-03330
NASANNG17PX03C
NSFAST-1815935
Gordon and Betty Moore FoundationUNSPECIFIED
David and Lucile Packard FoundationUNSPECIFIED
Heising Simons Foundation2021-2975
Subject Keywords:Gravitational wave sources; Neutron stars; Black holes; Astronomical methods; Transient detection
Issue or Number:1
Classification Code:Unified Astronomy Thesaurus concepts: Gravitational wave sources (677); Neutron stars (1108); Black holes (162); Astronomical methods (1043); Transient detection (1957)
DOI:10.3847/1538-4365/ac617c
Record Number:CaltechAUTHORS:20211130-215758581
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20211130-215758581
Official Citation:Igor Andreoni et al 2022 ApJS 260 18
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:112115
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:30 Nov 2021 23:30
Last Modified:17 May 2022 16:30

Repository Staff Only: item control page