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Introduction  
 
This document contains derivations of the dispersion relations and the vertical component of the 
Eliassen-Palm flux for inertia-gravity waves and planetary waves. The results of the derivations 
are in the main text, and there is some overlap with this document. The derivations are similar to 
those in Andrews Holton and Leovy (1987), hereinafter AHL, but the geometry considered 
here−upward and downward propagation, eastward and westward phase speeds relative to the 
flow−are more general. AHL consider pure internal gravity waves without rotation at the same 
level of detail as that here, but the detail for inertia-gravity waves is greater here than in AHL. 
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S1. Inertia-gravity waves 
 
 We consider inertia-gravity waves in Cartesian geometry with f = constant. We 
assume an ideal gas and hydrostatic balance, and we use z = − H log(p/ps) as the vertical 
coordinate (AHL p. 189-192). Then the gravitational potential Φ(x, y, z, t) becomes a 
dependent variable. Minus the gradient of Φ is the acceleration due to pressure. The basic 
state density is ρ = ρsexp[−z/H]. The scale height H, the reference pressure ps and the 
reference density ρs are prescribed constants. The background flow u� is a constant, 
independent of the coordinates and time. The buoyancy frequency N and the background 
potential temperature gradient θ�z are assumed to be constant as well. We use subscripts 
for derivatives. For small amplitude disturbances the equations are (AHL  p. 198) 
 
 𝑢𝑢′𝑡𝑡 + 𝑢𝑢�𝑢𝑢′𝑥𝑥 − 𝑓𝑓𝑣𝑣′ + Φ′𝑥𝑥 = 0,       (S1a) 
  
 𝑣𝑣′𝑡𝑡 + 𝑢𝑢�𝑣𝑣′𝑥𝑥 + 𝑓𝑓𝑢𝑢′ + 𝛷𝛷′𝑦𝑦 = 0,       (S1b) 
 
 𝜃𝜃′𝑡𝑡 + 𝑢𝑢�𝜃𝜃′𝑥𝑥 + 𝑤𝑤′�̅�𝜃𝑧𝑧 = 0        (S1c) 
 
 𝑁𝑁2𝜃𝜃′/�̅�𝜃𝑧𝑧 − 𝛷𝛷′𝑧𝑧 = 0.        (S1d) 
 
 𝑢𝑢′𝑥𝑥 + 𝑣𝑣′𝑦𝑦 + 𝜌𝜌−1(𝜌𝜌𝑤𝑤′)𝑧𝑧 = 0,       (S1e) 
 
  
Equations (S1a) and (S1b) are the horizontal momentum equations, (S1c) is the heat 
equation, (S1d) is hydrostatic balance, and (S1e) is the continuity equation. Φ varies as  
 
 Φ(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = Φ�  exp[z/2H] exp[ikx + ily + imz - i𝑘𝑘𝑘𝑘𝑡𝑡],   (S2) 
 
where c is the phase velocity of the wave in the x-direction. Consistent with hydrostatic 
balance we are assuming large horizontal scales relative to the vertical scale, such that 
𝑘𝑘2 ≪ 𝑚𝑚2 and N2 >> f2, but we allow N2k2 ~ f2m2.The factor exp(z/2H) arises from the 
density term in the continuity equation. That factor ensures that the energy and 
momentum fluxes remain independent of height when the wave is steadily propagating. 
The Fourier amplitude Φ�  is a function of k, l, m and c, and the other Fourier amplitudes 
are proportional to it (AHL p. 198): 
 
 𝑢𝑢� = (𝜔𝜔2 − 𝑓𝑓2)−1(𝜔𝜔𝑘𝑘 + 𝑖𝑖𝑖𝑖𝑓𝑓)𝛷𝛷�      (S3a) 
 
 𝑣𝑣� = (𝜔𝜔2 − 𝑓𝑓2)−1(𝜔𝜔𝑖𝑖 − 𝑖𝑖𝑘𝑘𝑓𝑓)Φ�       (S3b) 
 
 𝜃𝜃�/�̅�𝜃𝑧𝑧 = 𝑁𝑁−2 �𝑖𝑖𝑚𝑚 + 1

2𝐻𝐻
�𝛷𝛷�       (S3c) 

 
 𝑤𝑤� = − 𝜔𝜔

𝑁𝑁2
�𝑚𝑚 − 𝑖𝑖

2𝐻𝐻
�Φ�        (S3d) 
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Here we are using 𝜔𝜔 = 𝑘𝑘(𝑘𝑘 − 𝑢𝑢�), which obeys the dispersion relation. 
 

 𝜔𝜔 = ±�𝜔𝜔𝑝𝑝2 + 𝑓𝑓2�
1/2

 where  𝜔𝜔𝑝𝑝2 ≡ 𝑁𝑁2𝑘𝑘2 �𝑚𝑚2 + 1
4𝐻𝐻2�

−1
   (S4) 

 
 Without loss of generality we set l = 0 and we choose the plus sign in (S4) so that 
𝜔𝜔 is always positive. This leaves just the two wavenumbers, k and m, to completely 
determine the wave properties, at least in a qualitative sense. The sign of k is opposite to 
the sign of (𝑢𝑢 � −  𝑘𝑘), since 𝜔𝜔 = 𝑘𝑘(𝑘𝑘 − 𝑢𝑢�) is positive, Note that 𝜔𝜔2 >  𝑓𝑓2, which means 
that  the period of the waves at mid-latitude relative to the flow is shorter than the 
planet’s rotation period. Longer periods are possible close to the equator. The sign of m is 
determined by the vertical component 𝑘𝑘� ∙ 𝑘𝑘𝑔𝑔 of the group velocity 
 

 𝑘𝑘� ∙ 𝑘𝑘𝑔𝑔 = 𝜕𝜕𝜔𝜔
𝜕𝜕𝜕𝜕

= −m �𝑚𝑚2 + 1
4𝐻𝐻2�

−1
𝜔𝜔𝑝𝑝2 �𝜔𝜔𝑝𝑝2 + 𝑓𝑓2�

−1/2
         (S5 ) 

 
A wave carrying momentum upward must have 𝜕𝜕𝜔𝜔/𝜕𝜕𝑚𝑚 >  0, so it must have m < 0 
corresponding to downward phase propagation. Similarly, a wave carrying momentum 
downward must have 𝜕𝜕𝜔𝜔/𝜕𝜕𝑚𝑚 <  0 and m > 0 corresponding to upward phase 
propagation. Figure 2 shows the four possibilities. On the left half,  k is positive and the 
wave is propagating to the east relative to the flow. On the right half, k is negative. On 
the top half, m is negative and the phase propagation is downward. On the bottom half, m 
is positive and the phase propagation is upward. 
 
 The TEM equation for inertia gravity waves is (AHL p. 128) 
 
 ∂u�

∂t
−  f�̅�𝑣∗ = ρ−1∇ ∙ 𝐅𝐅        (S6a) 

   
 F = [𝐹𝐹𝑥𝑥 ,𝐹𝐹𝑦𝑦,𝐹𝐹𝑧𝑧] = [0, −ρv′u′�����, ρfv′θ′�����/�̅�𝜃z − ρ𝑢𝑢′𝑤𝑤′������]    (S6b) 
 
If f were zero, the acceleration of the mean zonal flow would be entirely due to the ρ𝑢𝑢′𝑤𝑤′������ 
term in (S6b). But with f ≠ 0, the wave includes an eddy wind 𝑣𝑣′ that varies in phase with 
the potential temperature fluctuation 𝜃𝜃′ to produce a mean eddy heat flux proportional to  
𝑣𝑣′𝜃𝜃′�����. Its horizontal divergence produces a mean vertical velocity in the heat equation, 
which, by mass conservation, produces an additional mean acceleration in the zonal 
momentum equation.  
 
 To evaluate the terms, one must first take the real parts of the complex 
exponentials in Equations (S3), reducing them to sines and cosines, and then average 
over a full cycle of the wave.  
 
 𝜌𝜌𝑓𝑓𝑣𝑣′𝜃𝜃′�����/�̅�𝜃𝑧𝑧 = −𝜌𝜌(𝜔𝜔2 − 𝑓𝑓2)−1𝑁𝑁−2𝑓𝑓2𝑚𝑚𝑘𝑘�𝛷𝛷��

2
/2    (S7a) 

 
 −𝜌𝜌𝑢𝑢′𝑤𝑤′������ = 𝜌𝜌(𝜔𝜔2 − 𝑓𝑓2)−1𝑁𝑁−2𝜔𝜔2𝑚𝑚𝑘𝑘�𝛷𝛷��

2
/2     (S7b) 
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 𝐹𝐹𝑧𝑧 = 𝜌𝜌𝑓𝑓𝑣𝑣′𝜃𝜃′�����/�̅�𝜃𝑧𝑧 − 𝜌𝜌𝑢𝑢′𝑤𝑤′������  = 𝜌𝜌𝑚𝑚𝑘𝑘𝑁𝑁−2�𝛷𝛷��

2
/2    (S7c) 

 
 Equation (S7c) is remarkable, first because the Coriolis parameter does not appear 
in the expression for 𝐹𝐹𝑧𝑧 and second because the same expression governs pure internal 
gravity waves (AHL p. 191), inertia-gravity waves, and planetary waves on a beta-plane 
(AHL p. 231), as we will show in the next section. Moreover, Equation (S7c) implies a 
drag force for all four cases in Figure 2. These four cases are discussed in the main text 
and in the caption to Figure 2. 
 
S2. Planetary waves 
  
 For planetary waves, the equations analogous to (S1a,bc) are (AHL p. 119) 
 
 − fv′ = − Φ′x fu′ = −Φ′y      θ′/θ0z =  Φ′z/N2)           (S8a,b,c) 
 
These are the equations for geostrophic balance, which are valid away from the equator 
when the Rossby number Ro = U/fL is small, where U and L are characteristic horizontal 
velocities and length scales, respectively. The time evolution of the flow is determined by 
the quasi-geostrophic vorticity equation (AHL p. 122) 
 
 𝑞𝑞′𝑡𝑡 + 𝑢𝑢�𝑞𝑞′𝑥𝑥 + 𝛽𝛽𝜓𝜓′𝑥𝑥 = 0   where  𝜓𝜓′ = 𝛷𝛷′/𝑓𝑓   (S9a,b) 
 
 𝑞𝑞′ = 𝜓𝜓′𝑥𝑥𝑥𝑥 + 𝑓𝑓𝜌𝜌−1(𝜌𝜌𝜃𝜃′/�̅�𝜃𝑧𝑧) = 𝜓𝜓′𝑥𝑥𝑥𝑥 + 𝜌𝜌−1(𝜌𝜌𝑓𝑓2/𝑁𝑁2𝜓𝜓′𝑧𝑧)𝑧𝑧   (S9c) 
 
Here 𝜓𝜓′ is the streamfunction associated with Equations (S9a,b). A streamfunction is 
justified if the flow is horizontally incompressible, which follows when Ro << 1 and L << 
a, where a is the radius of the planet. As before, we are assuming zero for the north-south 
wavenumber l. The square of the buoyancy frequency N2 is computed from the reference 
temperature profile 𝑇𝑇�(z) and the corresponding potential temperature gradient �̅�𝜃𝑧𝑧(z). See 
AHL Equations (3.2.12) and (3.2.13).  
 
 The dispersion relation for planetary waves is different from that for gravity 
waves 
 

 𝜔𝜔 = 𝑘𝑘(𝑘𝑘 −  𝑢𝑢� ) = 
−βk

[k2+(m2+1/4H2)f2/N2]
          (S10) 

 
 ∂ω

∂m
= 2βmkf2/N2

[k2+(m2+1/4H2)f2/N2]2
      (S11 ) 

 
 
The TEM equations for the zonal mean eastward acceleration for geostrophic flow, 
analogous to Equations (S6a,b), are (AHL p 129, p. 231) 
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 ∂u�
∂t
−  fv � ∗= ρ−1𝛁𝛁 ∙ 𝐅𝐅                   (S12a) 

                         
 F = [0, −𝜌𝜌𝑣𝑣′𝑢𝑢′�����, 𝜌𝜌𝑓𝑓𝑣𝑣′𝜃𝜃′�����/𝜃𝜃0𝑧𝑧]                        (S12b) 
 
The −𝜌𝜌𝑢𝑢′𝑤𝑤′������ term is missing from 𝐹𝐹𝑧𝑧 because |𝑤𝑤′|/|𝑢𝑢′| is small (of order Ro) compared to 
H/L . That term is not small for inertia-gravity waves. Nevertheless, using  complex 
exponentials as in Equation (S3) and averaging over a cycle one obtains the same 
expression for 𝐹𝐹𝑧𝑧 as (S7c) (AHL p. 128).  
 
 𝐹𝐹𝑧𝑧 = 𝜌𝜌𝑚𝑚𝑘𝑘𝑁𝑁−2�𝛷𝛷��

2
/2        (S13) 


