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a b s t r a c t

We solve explicitly a certain minimization problem for probability measures
in one dimension involving an interaction energy that arises in the modeling
of aggregation phenomena. We show that in a certain regime minimizers are
absolutely continuous with an unbounded density, thereby settling a question that
was left open in previous works.
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1. Introduction and main results

Motivated by applications in physics, mathematical biology and economics, a certain class of minimization
problems involving a nonlocal interaction energy has attracted a lot of attention recently in the mathematics
literature. In these models ‘particles’ interact with each other through a pair potential that corresponds to a
force that is repulsive on short distances and attractive on long ones. For background and also the connection
to a class of time-dependent aggregation equations we refer to [2,3,5,8,11–13] and the references therein.

Here we consider one very simple family of minimization problem of this type in one spatial dimension.
This family has been studied before, but a certain regime has been left open and it is our goal to complete
this investigation. For a parameter α > 2 we consider the energy functional, defined for µ ∈ P (R), the set
f Borel probability measure on R, by

Eα[µ] := 1
2

∫∫
R×R

(
α−1|x − y|α − 2−1|x − y|2

)
dµ(x) dµ(y) . (1)
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he corresponding minimization problem is

Eα := inf {Eα[µ] : µ ∈ P (R)} .

ecently, Davies, Lim and McCann have shown in [11, Theorem 2.2] and [12, Theorem 1.2] that for α ≥ 3
he minimizers for Eα are precisely of the form µ = 2−1(δa−1/2 + δa+1/2) for some a ∈ R. Earlier, Kang,
im, Lim and Seo [16, Theorem 2] had shown that in the case 2 < α < 3, for any m ∈ (0, 1) and a ∈ R

he measure mδa−1/2 + (1 − m)δa+1/2 is a saddle point for Eα (with respect to the ∞-Wasserstein metric)
nd therefore, in particular, not a minimizer. Finding the minimizer for 2 < α < 3 was explicitly stated as
n open problem in [12, Remark 1.6]. As far as we know, up to now it was not even known whether or not
ptimizers are supported on a finite number of points, as the mild repulsivity assumption in [2,8] barely fails
n the above problem.

Our goal in this paper is to explicitly compute the minimal energy Eα and its minimizers. This settles
he above open problem and shows, in particular, that for 2 < α < 3 minimizers are absolutely continuous
nd supported on an interval.

heorem 1. Let 2 < α < 3 and set

Rα :=
(√

π

2
Γ ( 3−α

2 )
Γ ( 4−α

2 )
sin((α − 1) π

2 )
(α − 1) π

2

) 1
α−2

. (2)

hen
Eα = − α − 2

2α(4 − α) R2
α . (3)

Moreover, the infimum is attained if and only if for some a ∈ R,

dµ(x) = C−1
α Rα−2

α (R2
α − (x − a)2)− α−1

2 1(|x − a| < Rα) dx,

here Cα is an explicit normalization constant given in (7).

Denoting the measure in the theorem with a = 0 by µα, it is not difficult to see that µα
∗

⇀ 2−1(δ−1/2 +
+1/2) in M(R) = (C0(R))∗ and Eα → E3 as α ↗ 3. Thus, one can think of the transition at α = 3 as a
singular bifurcation’.

The same technique of proof used for Theorem 1 allows us to solve the following related minimization
roblem. Let now −1 < α < 2 and consider for µ ∈ P (R) the energy functional

Eα[µ] := 1
2

∫∫
R×R

(
2−1|x − y|2 − α−1|x − y|α

)
dµ(x) dµ(y) . (4)

The corresponding minimization problem is

Eα := inf {Eα[µ] : µ ∈ P (R)} .

For α = 0 we understand α−1|x − y|α as ln |x − y|.

Theorem 2. Let −1 < α < 2 and define Rα by (2). Then the conclusions of Theorem 1 remain true, except
that the sign of the right side in (3) is switched.

This result in the restricted range 1 < α < 2 appears in the recent preprint [10, Theorem 5.1]. As far as
we know, Theorem 1 and the part of Theorem 2 corresponding to −1 < α ≤ 1 are proved here for the first
time. There are precursors in the literature, notably the works [9] by Carrillo and Huang and [1] by Agarwal
et al. and we now discuss the similarities and differences with these works.
2
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In [9], it is shown that the measures appearing in Theorems 1 and 2 satisfy ‘half’ of the Euler–Lagrange
relations corresponding to the minimization problem Eα. This does not allow one to conclude that these
measures are minimizers (and neither is this claimed in [9]). Let us be more precise concerning the Euler–
Lagrange relations. These are well known for a large class of minimization problems including Eα and appear,
for instance, in [2]. They consist of two parts, namely first, that the ‘potential’ generated by a minimizing
measure is constant on the support of this measure and second, that this potential is nowhere smaller than
this constant. What is shown in [9] is the constancy on the support. (In fact, three different proofs of this
fact are given by Polya and Szegő in [20, Hilfssatz I].) We should stress, however, that [9] also has results
about a larger class of minimization problems, which are outside the scope of the present paper.

In [1], the statement of Theorem 2 appears, but from a mathematically rigorous perspective the argument
given there is not completely satisfactory. More precisely, in [1], (a) the existence of a minimizing measure
is taken for granted, (b) the minimizing measure is assumed to be absolutely continuous and supported on
an interval, (c) rather precise properties of the Sonin inversion formula are used. Issue (a) can be overcome
using relatively standard tools in the calculus of variations; see, e.g., [5,19]. Issue (b) is quite subtle and we
are not aware of general theorems from which one can deduce the desired properties. We do not doubt that
the arguments concerning (c) are correct, but we would like to stress that the proof takes place in a rather
singular setting with unbounded and barely integrable functions. Also, in absence of an easily accessible
reference more self-contained arguments might be preferable. In [9] (which is not quoted in [1]) the authors
employed a similar approach via singular integral equations, but replaced some of the general theory by
direct arguments. A detailed analysis of related singular integral equations appears also in [17].

In view of these previous works, our contribution in this paper is threefold. On the one hand, we provide
a mathematically complete proof of Theorem 2 and, on the other hand, we show that a modification of these
ideas can be used to prove Theorem 1. Finally, we provide a proof without any direct analysis of singular
integral equations.

Our proof of Theorem 2 is rather different from the arguments in [1,9]. Namely, we rely on an elegant
convexity argument that Lopes [18] developed in the framework of a problem studied in [4,14]. This argument
has proved useful in several other works since [18] and has been slightly strengthened in [6,7,10–12] (extension
to measures and characterization of cases of equality). The upshot of this argument is that one only
needs to ‘guess’ a solution to the Euler–Lagrange relations of the minimization problem and then this
solution is automatically the unique (up to translations) minimizer. This conclusion is familiar from convex
minimization problems and, indeed, Lopes’s realization was that there is a ‘hidden’ convexity. We present
this argument in Lemma 3. We emphasize that this argument also proves existence of a minimizer. Thus, it
takes care of issue (a) mentioned above and makes (b) obsolete.

To guess a solution of the Euler–Lagrange relations we could follow the arguments in [1] based on singular
integral equations and the Sonin inversion formula. Instead, we opt for another approach, based on Fourier
analysis. It relies on the computation of two Fourier transforms (namely (9) and (10)) that are probably
not completely standard, but nevertheless contained in the usual tables. For the proof of Theorem 2 we use
some analytic continuation arguments which are a bit lengthy, but not deep. Computationally, our approach
is not more involved than that in [1].

We also want to stress that our arguments can be applied to related minimization problems. For instance,
it should be possible to explicitly compute the minimal energy corresponding to the interaction kernel
4−1|z|4 − α−1|z|α with −1 < α < 4 (or, more precisely, up to a certain critical value of α until which the
guessed measure stays nonnegative). Results for this problem in a restricted range appear in [10, Theorem
5.1]; see also [9]. We will not pursue this question here.

We conclude this introduction with two remarks. First, it is interesting to compare the results in this
paper with those for the minimization problem, depending on a parameter β > −1,

inf
{

−1
2

∫∫
β−1|x − y|β dµ(x) dµ(y) : µ ∈ P ([−1, 1])

}

[−1,1]×[−1,1]

3
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ith a ‘strict confinement’ to the interval [−1, 1]. For this problem, the minimizing measure is absolutely
ontinuous for β < 1 (indeed, it is Z−1

β (1 − x2)−(1+β)/2 dx) and equal to (1/2)(δ−1 + δ1) for β ≥ 1. These
results are classical; see, e.g., [20, Section 7.5] for β ≥ 0.

Our second remark concerns the question to which extent some structural properties of the minimizers
in Theorems 1 and 2 are universal in the sense that they are valid in similar, but more general minimization
problems. One question is which additional properties of interaction kernels vanishing like a negative
quadratic at the origin guarantee that minimizing measures do not have atoms. (Recall that if the interaction
kernel vanishes faster than quadratically, then minimizing measures are supported on a finite number of
points [8].) Moreover, all our minimizers are even and they are decreasing with respect to the distance
from the center of symmetry for α < 1 and increasing for α > 1. It is natural to inquire which structural
assumptions on the interaction kernel ensure these properties. The behavior of minimizers near the edges of
their support have been studied in [17] in a different, but related problem.

2. Proof of Theorem 1

The following lemma is the theoretical backbone of our argument. It reduces the proof of our main result
to finding a measure with certain properties. It is strongly influenced by Lopes’s work [18].

Lemma 3. Let 2 < α < 4 and assume that there are µ ∈ P (R) and η ∈ R such that

φα(x) :=
∫
R

(
α−1|x − y|α − 2−1|x − y|2

)
dµ(y) , x ∈ R,

atisfies
φα ≥ η on R and φα = η on supp µ . (5)

Then µ is the unique (up to translations) minimizer for Eα and η = 2Eα.

roof. Since the integrand in the definition of φα is bounded from below, the integral is well-defined with
values in R ∪ {+∞}. Since φα is finite on supp µ, we infer that

∫
R |x|α dµ(x) < ∞ and therefore φα is

finite everywhere and the center of mass of µ is well-defined. By translation invariance of the statement of
Lemma 3 we may assume that

∫
R x dµ(x) = 0.

Let µ̃ ∈ P (R). Our goal is to show that, if µ̃ is not a translate of µ, then Eα[µ̃] > Eα[µ]. We may assume
hat Eα[µ̃] < +∞ and, consequently,

∫
R |x|α dµ̃(x) < ∞ and the center of mass of µ̃ is well-defined. By

translation invariance of Eα we may assume that
∫
R x dµ̃(x) = 0. Our goal now is to prove that Eα[µ̃] > Eα[µ]

f µ̃ ̸= µ.
For θ ∈ [0, 1] we consider f(θ) := Eα[(1 − θ)µ + θµ̃] and show that (a) f ′(0) ≥ 0 and (b) f ′′ > 0 on [0, 1]

f µ̃ ̸= µ. Since

f(1) − f(0) =
∫ 1

0
f ′(θ) dθ =

∫ 1

0

(
f ′(0) +

∫ θ

0
f ′′(t) dt

)
dθ = f ′(0) +

∫ 1

0
(1 − t)f ′′(t) dt,

this implies that f(1) > f(0) if µ̃ ̸= µ, which is the claimed strict inequality.
We begin with the proof of (a). We write

f ′(0) =
∫∫

R×R

(
α−1|x − y|α − 2−1|x − y|2

)
dµ(x) d(µ̃ − µ)(y) =

∫
R

φα(y) d(µ̃ − µ)(y)

=
∫

φα(y) dµ̃(y) −
∫

φα(y) dµ(y) .

R R

4
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he first and second assumptions in (5), respectively, imply∫
R

φα(y) dµ̃(y) ≥ η

∫
R

dµ̃(y) = η and
∫
R

φα(y) dµ(y) = η

∫
R

dµ(y) = η.

Thus, f ′(0) ≥ η − η = 0, as claimed.
We finally turn to the proof of (b). Abbreviating ν := µ̃ − µ we have for all θ ∈ [0, 1],

f ′′(θ) =
∫∫

R×R

(
α−1|x − y|α − 2−1|x − y|2

)
dν(x) dν(y)

= α−1
∫∫

R×R
|x − y|α dν(x) dν(y) .

In the last equality we expanded the square and used the fact that ν has vanishing integral and vanishing
center of mass. The fact that f ′′(θ) ≥ 0 now follows from [18, Theorem 2.4]. Inspection of this proof (see
also [11, Corollary 3.2]) shows that one has, indeed, f ′′(θ) > 0 if ν ̸= 0. This concludes the proof of the
lemma. □

Lemma 4. Let 2 < α < 3. Then∫ 1

−1
|x − y|α(1 − y2)− α−1

2 dy

= αC ′
αx2 + C ′

α +
{

0 if |x| ≤ 1 ,
α(α−1)(α−2)

2 Cα

∫ |x|
1 (y2 − 1)− 3−α

2 (|x| − y)2 dy if |x| > 1 ,
(6)

ith

Cα :=
√

π
Γ ( 3−α

2 )
Γ ( 4−α

2 )
and C ′

α :=
(α−1)π

2

sin (α−1)π
2

. (7)

roof. Step 1. We begin by proving that for 2 < α < 3,∫ 1

−1
(sgn(x − y))|x − y|−3+α(1 − y2)− α−1

2 dy =
{

0 if |x| < 1 ,

Cα(sgn x)(x2 − 1)− 3−α
2 if |x| > 1 .

(8)

e note that three proofs of this formula in the case |x| < 1 appear in [20, Hilfssatz I]. We argue differently,
sing Fourier transforms, and also derive the formula for |x| > 1. According to [15, (17.23.26), (17.34.10)]
e have

(sgn x)|x|−3+α = −
i sin (α−2)π

2 Γ (α − 2)
π

∫
R
(sgn ξ)|ξ|−α+2

eiξx dξ

nd

(1 − x2)− α−1
2 1(|x| < 1) =

2− α−2
2 Γ ( 3−α

2 )
√

π

∫ ∞

0
ξ

α−2
2 J− α−2

2
(ξ) cos(ξx) dξ . (9)

hus, since the Fourier transform turns convolutions into products,∫ 1

−1
(sgn(x − y))|x − y|−3+α(1 − y2)− α−1

2 dy

=
sin (α−2)π

2 Γ (α − 2) 2
4−α

2 Γ ( 3−α
2 )

√
π

∫ ∞

0
ξ− α−2

2 J− α−2
2

(ξ) sin(ξx) dξ .

inally, according to [15, (6.699.5)]∫ ∞

0
ξ− α−2

2 J− α−2
2

(ξ) sin(ξx) dξ =

⎧⎨⎩0 if 0 < x < 1 ,
√

π2− α−2
2

α−1 (x2 − 1)− 3−α
2 if x > 1 .

(10)

Γ( 2 )

5
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Cα =
23−α sin (α−2)π

2 Γ (α − 2) Γ ( 3−α
2 )

Γ ( α−1
2 )

.

y Legendre’s duplication formula and Euler’s reflection formula, respectively,

Γ (α − 2)
Γ ( α−1

2 )
=

Γ ( α−2
2 )

23−α
√

π
and Γ ( α−2

2 ) = π

sin (α−2)π
2 Γ ( 4−α

2 )
.

sing these formulas we can bring Cα into the claimed form.
Step 2. We now show that the formula in the lemma follows from (8) by triple integration. Indeed,

integrating (8) with respect to x yields∫ 1

−1
|x − y|α−2(1 − y2)− α−1

2 dy

= cα +
{

0 if |x| < 1 ,

(α − 2)Cα

∫ |x|
1 (y2 − 1)− 3−α

2 dy if |x| > 1 ,
(11)

ith

cα :=
∫ 1

−1
|y|α−2(1 − y2)− α−1

2 dy =
∫ 1

0
t(α−3)/2(1 − t)− α−1

2 dt = Γ ( α−1
2 )Γ ( 3−α

2 )

= π

sin (α−1)π
2

.

ere we changed variables y2 = t, expressed the beta function in terms of gamma functions and used Euler’s
reflection formula for the gamma function. Integration of (11) with respect to x shows that∫ 1

−1
(sgn(x − y))|x − y|α−1(1 − y2)− α−1

2 dy

= (α − 1)cαx +
{

0 if |x| < 1 ,

(α − 1)(α − 2)Cα(sgn x)
∫ |x|

1
∫ |y|

1 (z2 − 1)− 3−α
2 dz dy if |x| > 1 .

(12)

o additional integration constant appears since the left side is an odd function of x. The double integral
n the right side of (12) equals∫ |x|

1

∫ |y|

1
(z2 − 1)− 3−α

2 dz dy =
∫ |x|

1
(z2 − 1)− 3−α

2 (|x| − z) dz.

One final integration with respect to x shows that∫ 1

−1
|x − y|α(1 − y2)− α−1

2 dy = α(α − 1)
2 cαx2 + C ′

α

+
{

0 if |x| < 1 ,

α(α − 1)(α − 2)Cα

∫ |x|
1
∫ |y|

1 (z2 − 1)− 3−α
2 (|y| − z) dz dy if |x| > 1 ,

(13)

here

C ′
α =

∫ 1

−1
|y|α(1 − y2)− α−1

2 dy =
∫ 1

0
t

α−1
2 (1 − t)− α−1

2 dt = Γ ( α+1
2 )Γ ( 3−α

2 )

= α−1
2 Γ ( α−1

2 )Γ ( 3−α
2 ) =

(α−1)π
2

(α−1)π
.

sin 2
6
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1

∫ |y|

1
(z2 − 1)− 3−α

2 (|y| − z) dz dy = 1
2

∫ |x|

1
(z2 − 1)− 3−α

2 (|y| − z)2 dz.

his completes the proof of (6). □

orollary 5. Let 2 < α < 3 and let Rα be defined by (2). Then the measure

dµ(x) = C−1
α Rα−2

α (R2
α − x2)− α−1

2 1(|x| < Rα) dx

atisfies the assumptions of Lemma 3 with

η = − α − 2
α(4 − α) R2

α.

Proof. By Lemma 4 and scaling one has, for any R > 0,

1
α

∫ R

−R

|x − y|α
(
R2 − y2)− α−1

2 dy = C ′
αx2 + α−1C ′

αR2 + R2f(x/R)

with

f(x) :=
{

0 if |x| ≤ 1 ,
(α−1)(α−2)

2 Cα

∫ |x|
1 (y2 − 1)− 3−α

2 (|x| − y)2 dy if |x| > 1 .

oreover,
1
2

∫ R

−R

|x − y|2
(
R2 − y2)− α−1

2 dy = 1
2CαR−α+2x2 + 1

2 C̃αR4−α

ith
C̃α =

∫ 1

−1
y2(1 − y2)−(α−)/2 dy =

∫ 1

0

√
t(1 − t)− α−1

2 dt =
Γ ( 3

2 )Γ ( 3−α
2 )

Γ ( 6−α
2 )

=
√

π Γ ( 3−α
2 )

2Γ ( 6−α
2 )

nd where we used the fact that, by a similar computation,∫ 1

−1
(1 − y2)− α−1

2 dy = Cα.

hoosing R = Rα and noting that Rα−2
α = Cα/(2 C ′

α), we see that the coefficients of x2 coincide and we
obtain ∫ Rα

−Rα

(
α−1|x − y|α − 2−1|x − y|2

) (
R2

α − y2)− α−1
2 dy

= −
(
2−1C̃αR4−α

α − α−1C ′
αR2

α

)
+ R2

αf(x/R2
α) .

Since
∫ Rα

−Rα
(R2

α − y2)− α−1
2 dy = CαR−α+2

α , we see that µ ∈ P (R). Since f ≥ 0 with equality for |x| ≤ 1 we
ee that µ satisfies the assumptions of Lemma 3. The constant appearing there is

η = −
(
2−1C̃αR4−α

α − α−1C ′
αR2

α

)
C−1

α Rα−2
α = −

(
2−1C̃α − α−1C ′

αRα−2
α

)
C−1

α R2
α.

nserting first the definition of Rα and then the explicit form of Cα and C̃α gives(
2−1C̃α − α−1C ′

αRα−2
α

)
C−1

α = 2−1 (C̃αC−1
α − α−1) = 1

2
(
(4 − α)−1 − α−1)

= α − 2
α(4 − α) .

his completes the proof. □

Of course, Theorem 1 is an immediate consequence of Lemma 3 and Corollary 5.

7
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. Proof of Theorem 2

Since the proof of Theorem 2 is similar to that of Theorem 1, we mostly focus on the differences. The
nalogue of Lemma 3 reads as follows.

emma 6. Let −1 < α < 2 and assume that there are µ ∈ P (R) and η ∈ R such that

φα(x) :=
∫
R

(
2−1|x − y|2 − α−1|x − y|α

)
dµ(y) , x ∈ R,

atisfies
φα ≥ η on R and φα = η on supp µ.

hen µ is the unique (up to translations) minimizer for Eα and η = 2Eα.

roof. The proof is rather similar to that of Lemma 3, except that the argument that φ′′ > 0 is more
tandard. Indeed, in the notation of the previous proof, we find

φ′′(θ) = − 1
α

∫∫
R×R

|x − y|α dν(x) dν(y).

or −1 < α < 0 we use the fact that the Fourier transform of |x − y|α is positive definite. For 0 ≤ α < 2
recall that we interpret α−1|x − y|α as ln |x − y| for α = 0) we use the fact that the Fourier transform of

−|x − y|α is positive definite when restricted to signed measures with vanishing integral. This allows one to
conclude the proof as before. □

Lemma 7. Formula (6) holds for 1 < α ≤ 2. Moreover, for −1 < α < 2 we have∫ 1

−1
|x − y|α(1 − y2)− α−1

2 dy = αC ′
αx2 + C ′

α

−

{
0 if |x| ≤ 1 ,

αDα(|x| − 1)2 + α(α−1)(α−2)
2 Cα

∫ |x|
1
∫ |y|

1
∫∞

|z| (w
2 − 1)− 3−α

2 dw dz dy if |x| > 1 ,

ith
Dα := Cα

Γ ( α+1
2 )Γ ( 4−α

2 )
√

π
.

roof. The first assertion follows easily by analytic continuation, since for fixed x ∈ R both sides of (6)
re analytic in α in an open set in the complex plane containing {1 < α < 3}. The restriction here to α > 1
omes from the integral on the right side and its converges near y = 1. To prove the second assertion in
he lemma we will construct an analytic continuation of that integral. To do so, we review the second step
f the proof of Lemma 4. The same analytic continuation argument shows that (11) holds for 1 < α < 3.
estricting ourselves to 1 < α < 2, we can rewrite (11) as∫ 1

−1
|x − y|α−2(1 − y2)− α−1

2 dy

= cα +
{

0 if |x| < 1 ,

c
(1)
α − (α − 2) Cα

∫∞
|x|(y

2 − 1)− 3−α
2 dy if |x| > 1 ,

(14)

ith

c(1)
α := (α − 2)Cα

∫ ∞

1
(y2 − 1)− 3−α

2 dy = (α − 2)Cα

2

∫ 1

0
(1 − s)− 3−α

2 s−α/2 ds

= (α − 2)Cα Γ ( α−1
2 )Γ ((2 − α)/2)

√ = −Cα

Γ ( α−1
2 )Γ ( 4−α

2 )
√ .
2 π π

8
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R
f
f

e integrate (14) with respect to x and obtain∫ 1

−1
(sgn(x − y))|x − y|α−1(1 − y2)− α−1

2 dy = (α − 1)cαx

+

⎧⎪⎨⎪⎩
0 if |x| < 1 ,

(α − 1) c
(1)
α (sgn x) (|x| − 1)

−(α − 1)(α − 2) Cα (sgn x)
∫ |x|

1
∫∞

|y| (z
2 − 1)− 3−α

2 dz dy if |x| > 1 .

(15)

he important observation now is that

(α − 1) c(1)
α = −2 Cα

Γ ( α+1
2 )Γ ( 4−α

2 )
√

π

s analytic in complex open set containing −1 < α < 4. Thus, formula (15) holds at least for 0 < α < 2. (We
estrict ourselves here to α > 0 so that the integral on the left side converges absolutely.) We also note that
∞
|y| (z

2 − 1)− 3−α
2 dz behaves like a constant times (|y| − 1)−(1−α)/2 as |y| → 1 and therefore it is integrable

ear |y| = 1 as long as α > −1.
Integrating (15) with respect to x we obtain∫ 1

−1
|x − y|α(1 − y2)− α−1

2 dy = α(α − 1)
2 cαx2 + C ′

α

=

⎧⎪⎨⎪⎩
0 if |x| < 1 ,
α(α−1)

2 c
(1)
α (|x| − 1)2

−α(α − 1)(α − 2) Cα

∫ |x|
1
∫ |y|

1
∫∞

|z| (w
2 − 1)− 3−α

2 dw dz dy if |x| > 1 .

(16)

his formula, which we derived under the assumption 0 < α < 2 extends, by analytic continuation to
1 < α < 2. This completes the proof of the lemma. □

emark 8. There is a partially alternate proof of Lemma 7, which proceeds by verifying the claimed
ormulas using Fourier transforms in the spirit of our proof of Lemma 4. More precisely, one verifies (16)
or −1 < α < 0, (15) for 0 < α < 1 and (14) for 1 < α < 2. (In these cases the Fourier transform

of the convolution kernels is well-defined without the need of analytic continuation.) The relevant formulas
are [15, (6.699.1) and (6.699.2)]. The disadvantage of such a proof is that the ‘remainder terms’ are expressed
as hypergeometric functions and one needs some of their properties. For this reason we chose the above
somewhat lengthy, but elementary proof.

Corollary 9. Let −1 < α < 2 and define Rα and µ as in Corollary 5. Then µ satisfies the assumptions of
Lemma 6 with

η = − 2 − α

α(4 − α) R2
α.

Proof. For 1 < α < 2 we argue in exactly the same way as in the proof of Corollary 5. Concerning the sign
of the remainder term we note that there is change of sign in the definition of φα when α passes through 2,
but this change is compensated by the factor α − 2 in f . Thus, everything goes through as before, except
that the change of sign of φα leads to a change of sign of η.

In the case −1 < α ≤ 1 we have by Lemma 7, for any R > 0,

1 ∫ R

|x − y|α
(
R2 − y2)− α−1

2 dy = C ′
αx2 + α−1C ′

αR2 − R2g(x/R)

α −R

9
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w

T
n
o

R

ith

g(x) :=
{

0 if |x| ≤ 1 ,

Dα(|x| − 1)2 + (α−1)(α−2)
2 Cα

∫ |x|
1
∫ |y|

1
∫∞

|z| (w
2 − 1)− 3−α

2 dw dz dy if |x| > 1 .

he assertion in the corollary follows from the fact that both terms in the definition of g(x) for |x| > 1 are
onnegative. The rest follows from computations that are similar as in the proof of Lemma 4 and that are
mitted. □
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[2] D. Balagué, J.A. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch.
Ration. Mech. Anal. 209 (3) (2013) 1055–1088.

[3] A.J. Bernoff, C.M. Topaz, Nonlocal aggregation models: a primer of swarm equilibria, SIAM Rev. 55 (4) (2013) 709–747.
[4] A. Burchard, R. Choksi, I. Topaloglu, Nonlocal shape optimization via interactions of attractive and repulsive potentials,

Indiana Univ. Math. J. 67 (1) (2018) 375–395.
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