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APPENDIX A: THE DEKEL-ZHAO PROFILE

The Dekel-Zhao halo profile (Dekel et al. 2017; Fre-
undlich et al. 2020b),1 following a more general math-
ematical analysis by Zhao (1996), is a functional form
for dark-matter haloes with two free shape parameters,
a concentration c and an inner slope α, allowing the
central region to range continuously from a steep cusp
to a flat core. It has been found to fit dark-matter
haloes in cosmological hydro simulations better than
other two-parameter profiles such as the Einasto and
the generalized-NFW profiles with a flexible inner slope.
A unique feature is that it has analytic expressions not
only for the density and mass-velocity profiles but also
for the potential and kinetic energy profiles (as well as
for gravitational lensing properties). Freundlich et al.
(2020b) also provide the typical profile parameters as a
function of mass.

The profile of mean density within a sphere of ra-
dius r is given by

ρ̄(r) =
ρ̄c

xα (1 + x1/2)2(3−α)
, x =

r

Rv
c , (A1)

ρ̄c = c3µ(c, α) ρ̄v, ρ̄v =
Mv

(4π/3)R3
v

, (A2)

µ(c, α) = cα−3 (1 + c1/2)2(3−α) . (A3)

For completeness, the local density profile is

ρ(r) =
(1− α/3) ρ̄c

xα (1 + x1/2)2(3.5−α)
. (A4)

The associated mass profile is

M(x)

Mv
=

1

c3ρ̄v
x3ρ̄(x) =

µ

ρ̄c
x3 ρ̄(x) . (A5)

The log slope of the mass profile is

ν(r) =
3− α

1 + x1/2
. (A6)

The negative log slope of the density profile is

s(r) =
α+ 3.5x1/2

1 + x1/2
. (A7)

In order to obtain the mass fraction f = M(<
r)/Mv within a sphere of radius r, we express it using
eq. (A5) as

f(r) = µ ρ̄−1
c x3 ρ̄(x) . (A8)

Combining eq. (A8) and eq. (A1), we get

f(r) = µx3−α (1 + x1/2)−2(3−α) , (A9)

from which we obtain

x = [(f/µ)−1/[2(3−α)] − 1]−2 . (A10)

1 Available for implementation in
https://github.com/JonathanFreundlich/Dekel profile .

Inserting eq. (A10) in eq. (A8), we obtain an equation
for f(r),

(f/µ) [(f/µ)−1/[2(3−α)] − 1]6 = ρ̄(rt)/ρ̄c . (A11)

We recall from equations 11-14 of Freundlich et al.
(2020b) that a more physical pair of shape parameters,
that refer to ρ(r) rather to ρ̄(r), may be (c2, s1). The
concentration c2 refers to the virial radius with respect
to the radius where the log density slope is −2,

c2 = c

(
1.5

2− α

)2

, (A12)

valid for α<2. The inner slope s1 is minus the log slope
of the local density profile ρ(r) at a given radius r1 (say
r1 =0.01Rv),

s1 =
α+ 3.5x

1/2
1

1 + x
1/2
1

, x1 =
r1

Rv
c . (A13)

For completeness, the inverse relations are

c =

(
s1 − 2

(3.5− s1)(r1/Rv)1/2 − 1.5c
−1/2
2

)2

, (A14)

α =
1.5s1 − 2(3.5− s1)x

1/2
2,1

1.5− (3.5− s1)x
1/2
2,1

, x2,1 =
r1

Rv
c2 . (A15)

We note that a valid DZ solution is not guaranteed for
any arbitrary pair of values (c2, s1), e.g., there is no
solution where the denominator in either eq. (A14) or
eq. (A15) vanishes.

A best fit for an NFW profile with a given con-
centration is obtained, e.g., by minimizing residuals in
uniformly spaced log radii in the range log(r/Rv) =
(−2, 0). For cNFW = 5 we obtain for the best-fit
DZ parameters (c, α) = (7.126, 0.2156) or (c2, s1) =
(5.035, 0.9076). A slightly better fit near 0.01Rv can be
obtained with (c2, s1)' (4.8, 1.0), but this is at the ex-
pense of slightly larger deviations at large radii.

The gravitational potential as given in eq. 19 of
Freundlich et al. (2020b) is

U(r)=−V 2
v

[
1 + 2cµ

(
χα̃c − χα̃

α̃
− χα̃+1

c − χα̃+1

α̃+ 1

)]
,

(A16)

χ =
x1/2

1 + x1/2
, χc =

c1/2

1 + c1/2
, α̃ = 2(2−α) . (A17)

The velocity dispersion that stems from the Jeans
equation (Freundlich et al. 2020b, eq. 22), providing the
kinetic energy per unit mass, is

σ2
r(r) = 2cµV 2

v

ρc

ρ(r)

[
B(4− 4α, 9, ζ)

]χc

χ
, (A18)

where B(a, b, x) =
∫ x

0
ta−1(1 − t)b−1dt is the incom-

plete beta function, the brackets denote the differ-
ence of the enclosed function between 1 and χ, i.e.,
[f(ζ)]

χc

χ ≡ f(χc) − f(χ), and ρc = (1 − α/3)ρ̄c. The
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definition of the incomplete beta function has been ex-
tended to negative parameters since the bracketed term
is well-defined. Equations B1 and B3 of Freundlich et al.
(2020b) are the equivalent expressions in terms of finite
series.

Adding an additional point mass Mb at the halo
center adds the velocity dispersion term (Freundlich
et al. 2020b, eq. C15)

σ2
Mb

(r) = 2c
GMb

Rv

ρc
ρ(r)

[
B(−2− 2α, 9, ζ)

]1
χ
. (A19)

For comparison, the NFW density profile, with an
inner cusp of negative log density slope α=1 and a free
NFW concentration parameter ch, is

ρ(r) =
ρ0

x (1 + x)2
, x =

r

Rv
ch . (A20)

The mass profile is

M(r)

Mv
=

A(x)

A(ch)
,

ρ̄(r)

ρ̄v
=

A(x)

A(ch)

c3h
x3

, (A21)

where

A(x) = ln(1 + x)− x

1 + x
. (A22)

The profile of the log slope of the mass profile is

ν(r) =
x2

(1 + x)2A(x)
. (A23)

APPENDIX B: THE VELA SIMULATIONS

The VELA suite consists of hydro-cosmological simu-
lations zooming-in on 34 moderately massive galaxies,
presented in more detail in Ceverino et al. (2014) and
Zolotov et al. (2015). This suite has been used to study
central issues in the evolution of galaxies at high red-
shifts, including, e.g., compaction to blue nuggets and
the trigger of quenching (Zolotov et al. 2015; Tacchella
et al. 2016b,a), evolution of global shape (Ceverino,
Primack & Dekel 2015; Tomassetti et al. 2016), vio-
lent disc instability (Mandelker et al. 2014, 2017; Inoue
et al. 2016), the SFR-density relation by supernova feed-
back (Dekel et al. 2019), post-compaction formation of
discs and rings (Dekel et al. 2020a,b), OVI in the CGM
(Roca-Fàbrega et al. 2018; Strawn et al. 2020), and an-
gular momentum and galaxy size (Jiang et al. 2019).
Additional analysis of the same suite of simulations are
discussed in Moody et al. (2014); Snyder et al. (2015).
This appendix provides an overview of the relevant fea-
tures of these simulations.

The VELA simulations make use of the Adap-
tive Refinement Tree (ART) code (Kravtsov, Klypin
& Khokhlov 1997; Kravtsov 2003; Ceverino & Klypin
2009), which follows the evolution of a gravitating N-
body system and the Eulerian gas dynamics using an
adaptive mesh refinement. The maximum spatial reso-
lution is 17− 35 pc at all times. The code incorporates
subgrid recipes for physical process that are relevant
for galaxy formation, such as gas cooling by atomic
hydrogen and helium, metal and molecular hydrogen

cooling, photoionization heating by the UV background
with partial self-shielding, star formation, stellar mass
loss, metal enrichment of the ISM and stellar feedback.
Supernovae and stellar winds are implemented by lo-
cal injection of thermal energy as described in Ceverino
& Klypin (2009); Ceverino, Dekel & Bournaud (2010)
and Ceverino et al. (2012). Radiation-pressure stellar
feedback is implemented at a moderate level, follow-
ing Dekel et al. (2013), as described in Ceverino et al.
(2014).

Cooling and heating rates are based on the
CLOUDY code (Ferland et al. 1998). A uniform UV
background based on the redshift-dependent Haardt &
Madau (1996) model is assumed, except at gas densities
higher than 0.1 cm−3, where partial self-shielding allows
dense gas to cool down to ∼ 300K. The assumed equa-
tion of state is that of an ideal mono-atomic gas. Arti-
ficial fragmentation on the cell size is prevented by in-
troducing a pressure floor, which ensures that the Jeans
scale is resolved by at least 7 cells (see Ceverino, Dekel
& Bournaud 2010). Star particles form in timesteps of
5 Myr in cells where the gas density exceeds 1 cm−3 and
the temperatures is below 104K. The code implements
a stochastic star formation where a star particle with a
mass of 42% of the gas mass forms with a probability
P = (ρg/103 cm−3)1/2 but not higher than 0.2.

Thermal feedback that mimics the energy release
from stellar winds and supernova explosions is incor-
porated as a constant heating rate over the 40 Myr
following star formation. A velocity kick of ∼ 10 km s−1

is applied to 30 % of the newly formed stellar parti-
cles – this enables SN explosions in lower density re-
gions where the cooling may not overcome the heating
without implementing an artificial shutdown of cooling
(Ceverino & Klypin 2009). The code also incorporates
the later effects of Type Ia supernova and stellar mass
loss, and it follows the metal enrichment of the ISM.
Radiation pressure is incorporated through the addi-
tion of a non-thermal pressure term to the total gas
pressure in regions where ionizing photons from massive
stars are produced and may be trapped. This ionizing
radiation injects momentum in the cells neighbouring
massive star particles younger than 5 Myr, and whose
column density exceeds 1021 cm−2, isotropically pres-
surizing the star-forming regions (see more details in
Agertz et al. 2013; Ceverino et al. 2014).

The initial conditions for the simulations are based
on DM haloes that were drawn from dissipationless N-
body simulations at lower resolution in cosmological
boxes of 15 − 60 Mpc. The ΛCDM cosmological model
was assumed with the WMAP5 values of the cosmolog-
ical parameters, Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.045,
h = 0.7 and σ8 = 0.82 (Komatsu et al. 2009). Each
halo was selected to have a given virial mass at z = 1
and no ongoing major merger at z= 1. This latter cri-
terion eliminated less than 10 % of the haloes, those
that tend to be in a dense, proto-cluster environment
at z ∼ 1. The virial masses at z=1 were chosen to be in
the range Mv = 2×1011−2×1012 M�, about a median
of 4.6 × 1011 M�. If left in isolation, the median mass
at z = 0 was intended to be ∼ 1012 M�.
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The VELA cosmological simulations are state-of-
the-art in terms of high-resolution adaptive mesh refine-
ment hydrodynamics and the treatment of key physi-
cal processes at the subgrid level. In particular, they
trace the cosmological streams that feed galaxies at high
redshift, including mergers and smooth flows, and they
resolve the violent disc instability that governs high-z
disc evolution and bulge formation (Ceverino, Dekel &
Bournaud 2010; Ceverino et al. 2012, 2015; Mandelker
et al. 2014). To mention a few limitations, like in other
simulations, the treatments of star formation and feed-
back processes are rather simplified. The code may as-
sume a realistic SFR efficiency per free fall time on the
grid scale but it does not follow in detail the forma-
tion of molecules and the effect of metallicity on SFR.
The feedback is treated in a crude way, where the res-
olution does not allow the capture of the Sedov-Taylor
phase of supernova bubbles. The radiative stellar feed-
back assumed no infrared trapping, in the spirit of low
trapping advocated by Dekel & Krumholz (2013) based
on Krumholz & Thompson (2013), which makes the ra-
diative feedback weaker than in other simulations that
assume more significant trapping (Murray, Quataert &
Thompson 2010; Hopkins, Quataert & Murray 2012).
AGN feedback, and feedback associated with cosmic
rays and magnetic fields, are not yet implemented. Nev-
ertheless, as shown in Ceverino et al. (2014), the star-
formation rates, gas fractions, and stellar-to-halo mass
ratio are all in the ballpark of the estimates deduced
from observations.

The virial and stellar properties of the galaxies are
listed for example in Table 1 of Dekel et al. (2020b).
The virial mass Mv is the total mass within a sphere of
radius Rv that encompasses an overdensity of ∆(z) =
[18π2 − 82ΩΛ(z)− 39ΩΛ(z)2]/Ωm(z), where ΩΛ(z) and
Ωm(z) are the cosmological parameters at z (Bryan &
Norman 1998; Dekel & Birnboim 2006). The stellar
mass Ms is the instantaneous mass in stars within a ra-
dius of 0.2Rv, accounting for past stellar mass loss. We
start the analysis at the cosmological time correspond-
ing to expansion factor a = 0.125 (redshift z = 7), and
most galaxies reach a = 0.50 (z = 1). Each galaxy is an-
alyzed at output times separated by a constant interval
in a, ∆a = 0.01, corresponding at z = 2 to ∼ 100 Myr
(roughly half an orbital time at the disc edge). The sam-
ple consists of totally ∼ 1000 snapshots in the redshift
range z = 7 − 0.8 from 35 galaxies that at z = 2 span
the stellar mass range (0.2 − 6.4) × 1011M�. The half-
mass sizes Re range Re ' 0.4 − 3.2 kpc at z = 2. The
determination of the centre of the galaxy is outlined in
detail in appendix B of Mandelker et al. (2014). Briefly,
starting form the most bound star, the centre is refined
iteratively by calculating the centre of mass of stellar
particles in spheres of decreasing radii down to 130 pc
or when the number of stellar particles in the sphere
drops below 20.

We identify the major event of wet compaction to a
blue nugget for each galaxy. This is the one that leads to
a significant central gas depletion and SFR quenching,
and marks the transition from dark-matter to baryon
dominance within Re. Following Zolotov et al. (2015)

and Tacchella et al. (2016a), the most physical way to
identify the compaction and blue nugget is by the steep
rise of gas density (and SFR) within the inner 1 kpc to
the highest peak, as long as it is followed by a signifi-
cant, long-term decline in central gas mass density (and
SFR). The onset of compaction can be identified as the
start of the steep rise of central gas density prior to the
blue-nugget peak. An alternative identification is using
the shoulder of the stellar mass density within 1 kpc
where its rise due to the starburst associated with the
compaction turns into a plateau of maximum long-term
compactness slightly after the blue-nugget peak of gas
density. This is a more practical way to identify blue
nuggets in observations (e.g. Barro et al. 2017).

APPENDIX C: SATGEN - A SEMI-ANALYTIC
SATELLITE GENERATOR

The semi-analytic model for satellite galaxies SatGen is
presented in Jiang et al. (2020).2 It can generate sta-
tistical samples of satellite populations for a host halo
of desired mass, redshift, and cosmological parameters.
The model combines DM halo merger trees, empirical
relations for the galaxy-halo connection, and simple an-
alytical prescriptions for tidal effects, dynamical fric-
tion, and ram pressure stripping (if the satellites con-
tains gas). SatGen emulates cosmological zoom-in sim-
ulations in certain aspects. Satellites can reside in sub-
haloes of desired density profiles, with cores or cusps,
depending on the subhalo response to baryonic physics
that are formulated from hydro-simulations or physi-
cal modeling. The host potential can be composed of a
DM halo and baryonic components, such as a disc and
a bulge, each described by a density profile that allows
analytic integration of the satellite orbits. The subhalo
profile and the stellar mass and structure of a satellite
evolves due to tidal heating and tidal mass loss, which
depend on its initial structure. SatGen complements
simulations by propagating the effect of halo response
found in simulated central galaxies to satellites (which
are typically not properly resolved in simulations). It
outperforms simulations by capturing the halo-to-halo
variance of satellite statistics and overcoming artificial
disruption due to insufficient resolution (van den Bosch
& Ogiya 2018; Green, van den Bosch & Jiang 2021).
Certain features of SatGen that are relevant for our
current study are elaborated on below.

SatGen generates halo merger trees using the algo-
rithm of Parkinson, Cole & Helly (2008) as re-calibrated
by Benson (2017). Merger trees are constructed using
the time-stepping advocated in Appendix A of Parkin-
son, Cole & Helly (2008), which corresponds to ∆z '
0.001, but for book keeping the temporal resolution is
down-sampled to timesteps of ∆t = 0.1tdyn(z), where

tdyn =
√

3π/[16G∆ ρcrit(z)] is the instantaneous virial
time of DM haloes. In the EdS regime, approximately

2 Available for implementation in
https://github.com/shergreen/SatGen .
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valid at z > 1, ∆' 200 and the mean universal density
approaches the critical cosmological density.

The structure of the host potential is determined
in the following way. First, the virial mass of the sys-
tem Mv(t) is given by following the main progenitor
along the main branch of the merger tree. The stel-
lar mass Ms(t) is assigned according to the abundance
matching relations of Rodŕıguez-Puebla et al. (2017).
Second, we determine the DZ profile of the halo, in-
cluding the effect of baryonic, as follows. The concentra-
tion parameter in a DM-only scenario, c2,DMO(Mv, t),
is obtained from the empirical relation of Zhao et al.
(2009). We then consider the halo response to baryons
following Freundlich et al. (2020a), which provides em-
pirically the ratio of the baryon-affected concentration
and the DM-only concentration, c2/c2,DMO, as a func-
tion of the stellar-to-halo-mass ratio Ms/Mv, and the
inner logarithmic slope of the system s1 = d ln ρ/d ln r
at r = 0.01Rv. Finally, we compute the DZ-profile pa-
rameters (c, α) using c2 and s1. This procedure applies
to both the host halo and the progenitors of satellites
prior to infall.

The orbits of incoming satellites are initialized as
follows. We consider the infall locations to be isotrop-
ically distributed on the virial sphere of the host halo,
for which we randomly draw an azimuthal angle φ) from
[0, 2π] and a cosine polar angle (cos θ) from [0, 1]. We
assume that the orbital energy is the same as that of
a circular orbit of of velocity Vv(t) at radius Rv(t),
and randomly assign a circularity ε from a distribution,
dP/dε = π sin(πε)/2, which approximates the ε distri-
bution of infalling satellites measured in cosmological
simulations (Wetzel 2011; van den Bosch 2017).

We follow the orbits by treating satellites as point
masses. At each timestep, SatGen solves the equations
of motion

r̈ = −∇Φ + aDF , (C1)

where r is the position vector, Φ is the gravitational
potential, and aDF is the acceleration due to dynam-
ical friction, modeled using the Chandrasekhar (1943)
formula as given in eq. 12 and eq. 13

We model the tidal mass loss using

ṁ = −Am(> `t)

tdyn(r)
, (C2)

where we have introduced a fudge parameter A as the
stripping efficiency to encapsulate uncertainties in the
definition of the tidal radius. That is, the timescale
on which stripping occurs is the local dynamical time
tdyn(r) =

√
3π/16Gρ̄(r) divided by A, with ρ̄(r) the

average density of the host system within radius r. We
use A=0.55 following the calibration by Green, van den
Bosch & Jiang (2021) from simulations. The mass loss
over a timestep ∆t is then given by ∆m = ṁ∆t.

To keep track of DF heating, we register the work
done by DF on a satellite at each step, or equivalently
the orbital energy change at each step,

∆W (t+ ∆t) = E(t)− E(t+ ∆t) , (C3)

Note that the orbital energy E at time t+ ∆t includes
the contribution from the stripped mass ∆m, which is
assumed to be on the same orbit of the satellite that it
used to belong to.

The structural evolution of satellites in response to
tidal mass loss, heating, and re-virialization, is modeled
using the empirical tidal tracks from simulations (Pe-
narrubia et al. 2010). Note that the tidal track is con-
ditioned on the initial structure of the satellites, which
is important for capturing the difference in DF heat-
ing due to a compact satellite versus a diffuse one. In
the current study we do not explicitly include baryons
within the satellites.

Jiang et al. (2020) used the model to study satel-
lites of Milky-Way sized hosts, making it emulate sim-
ulations of bursty or smooth star formation and exper-
imenting with a disc potential in the host halo. They
found that the model reproduces the observed satellite
statistics in the Milky Way and M31 reasonably well.
Different physical recipes make a difference in satellite
abundance and spatial distribution at the 25% level,
not large enough to be distinguished by current obser-
vations given the halo-to-halo variance. The MW/M31
disc depletes satellites by ∼20% and has only a subtle
effect of diversifying the internal structure of satellites,
which may be important for alleviating certain small-
scale problems. We do not explicitly include in the cur-
rent study a central baryonic component.

APPENDIX D: N-BODY SIMULATIONS OF
CUSP HEATING AND ITS RELAXATION

To test the impact of cusp heating by satellites and the
following relaxation, we run idealized N-body simula-
tions, each with a host halo and a single merging satel-
lite. At the beginning of the simulation, the two haloes
are set in equilibrium, spherically symmetric and with
an isotropic velocity dispersion. In this case, the phase-
space density of the particles is determined by the par-
ticle specific energy E and its radial distance from the
halo center r. The halo density profile can be written
as

ρ(r)=mp

∫
f(E)d3v=4π

√
2mp

∫ Ψ

0

√
Ψ− Ef(E)dE ,

(D1)
where Ψ=Φ0−Φ, with Φ the gravitational potential and
Φ0 its value at the boundary of the system, which we
set at 4Rv. The energy per unit mass is E=Ψ−(1/2)v2.
Given the density profile, the gravitational potential can
be derived from the Poisson equation. For a realistic sta-
tionary halo, Ψ is a monotonically decreasing function
of r, so ρ can be written as a function of Ψ. Taking the
derivative of both sides of eq. (D1) with respect to Ψ,
one gets

dρ

dΨ
=
√

8πmp

∫ Ψ

0

f(E)√
Ψ− E

dE , (D2)

where mp is the particle mass. The above equation can
be solved to give the Eddington’s inversion formula (Ed-
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dington 1916)

f(E) =
1√

8π2mp

d

dE

∫ E
0

dΨ√
E −Ψ

dρ

dΨ
. (D3)

The particle positions and velocities are randomly
drawn from the density profile, eq. (D1) and the veloc-
ity (energy) distribution, eq. (D3). For the host halo, an
NFW profile is used with a sharp truncation at 4Rv.
For the satellites, the density profile, either NFW profile
(compact satellite) or Burkert profile (diffuse satellite),
is truncated exponentially at the virial radius follow-
ing Kazantzidis, Zentner & Kravtsov (2006) to roughly
account for tidal truncation.

After generating the stationary halos, the satellite
is put at the apocenter of an orbit with specified orbital
parameters, e.g., the circularity and total energy. The
system is then evolved using the public N-body SPH
code GADGET-2 (Springel & Hernquist 2005).

The centers of the host and satellite are identified
by searching for the most-bound particle, the particle
that has the most negative total energy Ei = Φ(ri)+
(1/2) v2

i within the corresponding halo. For the satellite,
the bound mass is computed at each snapshot using an
iterative un-binding algorithm (van den Bosch & Ogiya
2018).

APPENDIX E: CUSPCORE - AN ANALYTIC
MODEL FOR DM RESPONSE TO OUTFLOWS

Freundlich et al. (2020a)3 presents a simple analytic
model for the response of a dissipationless spherical sys-
tem to an instantaneous mass change at its center. It
has been applied there to the formation of flat cores
in low-mass dark-matter haloes and the origin of ultra-
diffuse galaxies (UDGs) from outflow episodes driven
by supernova feedback, but it is applicable for any rapid
changes in the central mass. Here we use it for the dark-
matter response to AGN-driven central gas ejection.
This model generalizes an earlier simplified analysis of
an isolated shell (Dutton et al. 2016) into a system with
continuous density, velocity and potential profiles.

The DM response is divided into two steps: an in-
stantaneous change of potential at constant velocities
due to a given rapid mass loss (or mass gain), followed
by energy-conserving relaxation to a new Jeans equilib-
rium. The halo profile is modeled by the two-parameter
Dekel-Zhao profile described in §A, using the analytic
expressions for the associated potential and kinetic en-
ergies at equilibrium. The way energy conservation is
applied in the second stage of this model is not formally
justified in the case of shell crossing, so its validity as
an approximation should be based on testing against
simulations. In Freundlich et al. (2020a), the model has
been tested against NIHAO cosmological zoom-in sim-
ulations, where it successfully predicts the evolution of
the inner DM profile between successive snapshots in

3 Available for application in
https://github.com/Jonathanfreundlich/CuspCore .

about 75% of the cases, failing mainly in merger sit-
uations when the system strongly deviates from Jeans
equilibrium.

The energy per unit mass of a shell at radius ri in
the initial halo at Jeans equilibrium is the sum

Ei(ri) = U(ri; pi) +K(ri; pi) , (E1)

where U(ri; pi) and K(ri; pi) are functional forms for
the potential and kinetic energies per unit mass, which
depend on the parameters pi that characterize the ini-
tial halo density profile. We use the DZ profile with the
parameters c and α, for which the potential U(ri; pi)
is given by eq. (A16), and the kinetic energy K(ri; pi)
derives from eq. (A19), stemming from Jeans equilib-
rium. For the two energies we may consider an addi-
tional baryonic component, characterized by additional
parameters. In the temporary state immediately after
the instantaneous mass change by m (where m< 0 for
an outflow and m>0 for an inflow), the energy becomes

Et(ri) = U(ri; pi)−
Gm

ri
+K(ri; pi) . (E2)

After relaxation to the final Jeans equilibrium state of
the halo, whose profile is described by the parameters
pf , the shell encompassing a given mass has moved to a
final radius rf and its energy is

Ef(rf) = U(rf ; pf)−
Gm

rf
+K(rf ; pf ,m) , (E3)

where the kinetic energy is again set by the Jeans
equation but it also depends on the mass change m.
The radius rf is itself a function of the final param-
eters pf , given that the enclosed mass is constant,
M(rf ; pf) = M(ri; pi). The assumed energy conserva-
tion during the relaxation phase corresponds to Ef(rf)=
Et(ri), which is solved numerically to obtain the final
halo parameters pf . In practice, we minimize the differ-
ence Ef(rf) − Et(ri) for hundred shells equally spaced
in log(r/Rv) from −2 to 0 (thus giving more weight
to central regions than linearly-spaced shells). The as-
sumed energy conservation per shell that encompasses
a given mass is not formally justified in the case of shell
crossing, and our use of it is based on the success of this
model in reproducing the results of simulations. We re-
fer to Freundlich et al. (2020a) for more details, and to
Freundlich, Dekel & Jiang (2019) for a brief presenta-
tion of the model.

APPENDIX F: A SATELLITE WITH CENTRAL
BARYONS

Complementing the main text, Fig. F1 is the analog
of Fig. 4, showing the result of a SatGen run with our
fiducial NFW host halo, but with the satellites follow-
ing the more compact DZ-profile fits to the VELA simu-
lated galaxies using the total mass including the baryons
rather than the dark matter alone. We learn that for
the more compact satellites, as expected, the penetrat-
ing mass to the host cusp is higher, and the energy de-
posited in the cusp is higher accordingly. However, the
difference is rather small, with m/mv'0.5 compared to
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Figure F1. Semi-analytic SatGen simulations of single satellites, diffuse and compact, similar to Fig. 4, but where the satellite profiles
are the best DZ fits to the total mass in the VELA pre and post compaction galaxies from Fig. 1, including the baryons, with DZ

parameters (c, α)=(5, 0.5) and (3, 1.8), respectively.

0.4, and Wc/Kc ' 2.5 compared to 2, for the compact
satellites.

APPENDIX G: A STEEP-CUSP HOST HALO

Here we show the same results that have been shown in
the main text for an NFW host halo with a moderately
steep cusp, but for a steep-cusp host of a DZ profile
with s1 =1.5 and c2 =5.

Figure G1, same as Fig. 3, shows the toy model
predictions as a function of the satellite compactness.
Figure G2, same as Fig. 4, shows the results of a SatGen
run with a single satellite. Figure G3, same as Fig. 5,
refers to SatGen runs with a cosmological sequence of
satellites. Figure G4 and Fig. G5, same as Fig. 9 and
Fig. 10 show the results of CuspCore for a single satel-
lite and a cosmological sequence of satellites, respec-
tively. The results for the steep-cusp host are discussed
in comparison to the results for the NFW host in the
main text.

APPENDIX H: OUTFLOW WITH SATELLITE
MASS ADDED TO HOST

APPENDIX I: TOY-MODEL S1 AND C2

Figure I1 is the analog of Fig. 3, showing the toy-model
estimates for the satellite mass in the host cusp and
the energy deposited there by dynamical friction as a
function of the satellite initial profile, but here for the
more accessible parameters (c2, s1) instead of the natu-
ral DZ parameters (c, α). The conclusion is the same as
in Fig. 3.

I1 Orbit circularity as a function of redshift and
halo mass

One may elaborate on the redshift and mass dependence
of the satellite orbit circularity as one of the factors
in the tendency of DF heating to be more effective at
higher masses and higher redshifts.

The orbit is characterized at Rv by two parame-
ters, e.g., energy and angular momentum, or the veloc-
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Figure G1. Same as Fig. 3 but for the fiducial steep-cusp host, with s1 = 1.5 and c2 = 5 in the DZ profile. Shown are the toy-model

estimates for satellite penetration and energy deposited in the host cusp by dynamical friction, as a function of the satellite compactness

via the Dekel-Zhao profile parameters of concentration and inner slope (c, α). For the steep-cusp host we read for the diffuse and compact
satellites respectively m/mv∼0.01, 0.23, Wc/Kc(single)∼0.001, 0.56 and Wc/Kc(cosmo)∼0.003, 1.53. The satellite stripping is stronger

due to the steeper cusp, but the heating by compact satellites is still significant during half a virial time.

50 25 0 25 50
x [kpc]

50

25

0

25

50

y 
[k

pc
]

Mv = 1012.5M , c2 = 5.0, s1 = 1.5
mv = 1011.5M

= 0.4

a)

compact (c = 7, = 1.00)
diffuse (c = 3, = 0.50)

100 101 102

r [kpc]
10 2

10 1

100

f=
m

(r)
/m

v

0.
1R

v

10
kp

c

c)

100 101 102

r [kpc]
10 2

10 1

100

101

W
(<

r)/
K c

0.
1R

v

10
kp

c

d)

0.0 0.5 1.0
t [Gyr]

0

25

50

75

r [
kp

c]

t d
yn

co
m

pa
ct

 sa
t e

nt
er

s c
or

e

di
ffu

se
 sa

t e
nt

er
s c

or
e

b)

Figure G2. Same as Fig. 4, for an mv/Mv =0.1 single satellite, but for a steep-cusp host halo with DZ parameters (c2, s1)=(5, 1.5). The
penetrating satellite mass and the DF energy deposited in the steep cusp are similar to the case of an NFW halo, indicating significant
heating by the compact satellite and only partial heating by the diffuse satellite. The functional fits (dashed) to be used by CuspCore

are listed in Table 1.
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Figure G3. Same as Fig. 5 but for the steep-cusp host. Shown are the results of a SatGen simulation of a cosmological sequence of
satellites during one halo virial time at z∼2, where tv'0.5 Gyr. The host halo starts with a DZ steep-cusp profile of (c2, s1)=(5, 1.5).

The fits for the deposited energy by DF to be used in CuspCore is marked (dashed black), and listed in Table 1. Most of the satellite
mass is deposited near the outer edge of the cusp, with only a small fraction of the mass penetrating to the inner cusp. The energy

deposited in the steep cusp by DF on a sequence of compact satellites is lower than that deposited in the NFW cusp (Fig. 5) by a factor

of ∼2.5. However, it is 75% of the cusp kinetic energy, implying heating also in the steep-cusp host. The heating by diffuse satellites is
weaker, only 20% of the cusp energy.
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Figure G4. Density profiles as in Fig. 9, for DF heating by single satellite, but for a steep-cusp initial host halo with (c2h, s1h)=(5, 1.5)
instead of NFW. Here, in order to obtain a significant effect, the initial satellite mass is mv = 0.1µMv with µ=

√
3 and the outflow is

with η= 1, namely involving all the available gas of 1010.6M� (compared to µ=
√

2 and η= 0.5 in Fig. 9. The DF heating is based on

the energy deposit profile by SatGen, bottom-left panel of Fig. G2, which turns out to be comparable to the energy deposit of the NFW
host. We learn that the steep cusp is more resilient than the NFW cusp both to DF heating and to outflows, requiring more massive

satellite and outflow for generating an extended core.

ity magnitude Vin and the circularity ε= Vtan/Vv. For
reference, the orbit eccentricity is e2 = 1 − ε2, and the
corresponding spin parameter is

λ =
VtanRv√
2VvRv

=
ε√
2
, (I1)

independent of Vin. The orbit, and the effects of dy-

namical friction and tidal stripping, depend in addition
on Vin, which for Mv ∼ 1012M� at z ∼ 2 is roughly
Vin/Vv ' 1.15± 0.15 (Wetzel 2011, Figs. 2,5,9).

According to the cosmological N-body simulations
of Wetzel (2011), Figs. 5 and 8, for minor mergers of
mv/Mv ∼ 0.02, ε tends to decrease with increasing
redshift, where the average is 〈ε〉 ' 0.55 and 0.45 at
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Figure G5. Same as Fig. 10, for DF heating by a cosmological sequence of satellites, but for a steep-cusp host halo with (c2h, s1h)=(5, 1.5)

instead of NFW. The energy deposited in a virial time is based on the fit to the SatGen run shown in Fig. G3. Left: Compact satellites
and outflows with the parameters that produced a core in the NFW cusp cause a negligible effect on the steep cusp. Middle: An outflow

of η=2 is sufficient for forming a moderate core without DF heating. In this case, the DF actually steepens the profile, making it a little

harder to produce a core by inflow. Right: Similar but using a slightly flatter slope of K(<r) than produced by SatGen within the cusp,
which enables a better fit to the DZ profile and thus a convergence of CuspCore, leading to a flat core after DF heating with τ=1. The

higher value of τ can be interpreted as roughly representing the top 1/3 of the random realizations drawn from the mass function and

the circularity distribution of satellites during 0.4 tv. Alternatively it can be interpreted as the median energy during tv or or a longer
duration.
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Figure H1. The effect of added satellite mass to the cusp. Same as Fig. 9 (left and middle) and Fig. 10, for DF heating by a single

compact satellite or a sequence of compact satellites, in an NFW host, but with the mass of the satellite added to the host cusp where
it is stripped or at the center, based on the bottom-left panel of Fig. 4 and the right panel of Fig. 5. The difference from the results

obtained without this additional mass in Fig. 9 and Fig. 10 is small. For the single satellite, the satellite mass deposited in the cusp is

comparable to the cusp mass, slightly steepening the final core. For the sequence of satellites, the satellite mass is only 0.2Mc, causing
almost no change to the final core. This justifies ignoring the added mass in our main analysis.

z = 0 and 2.5, respectively. The corresponding median
of the pericenter of the orbit is roughly 〈rperi〉/Rv'0.24
and 0.17, respectively, namely a deeper penetration at
higher redshifts. The distribution of ε is found to be ap-
proximately universal for a given host halo mass when
measured with respect to the non-linear Press-Schechter
mass Mps(z). For a given satellite mass, ε and rperi tend
to decrease with increasing host halo mass. These red-
shift and mass dependencies are in the desired sense, but
they are rather mild, possibly not sufficient by them-
selves for explaining the redshift and mass dependencies
of the DM core phenomenon.

A qualitatively similar redshift dependence is ob-

tained from hydro cosmological simulations, via the
analysis of the angular momentum carried by the
cosmic-web cold streams that build the galaxies at high
redshift, and contain the incoming satellites (Danovich
et al. 2015). According to their figure 15, the domi-
nant stream carries on average 84% of the angular-
momentum inflow rate, and 64% of the mass influx.
In order to relate the measured spin parameter to mea-
sured eccentricity, we consider for an upper limit only
one dominant stream, and obtain λ∼ ε/

√
2 ∼ 0.35 for

ε=0.5. For a lower limit, we consider three comparable
streams with random orientation and impact parame-
ter, and obtain λ∼(ε/

√
2)/
√

3 ∼ 0.2 for ε=0.5. We can
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Figure I1. Toy-model estimates for satellite penetration and energy deposited in the host cusp by dynamical friction, similar to Fig. 3,

but for the more accessible parameters (c2, s1) instead of the natural Dekel-Zhao parameters (c, α). The concentration parameter c2
refers to the radius where the local log slope of the density profile is −2 (as in the concentration of the NFW profile), and s1 is the
minus the inner local log slope at r = 0.01Rv. The transformation between the two alternative pairs of parameters is given in eq. (A12)

to eq. (A15). While there is a valid DZ profile for any values of c (>0) and α (<3), a valid profile is not guaranteed for arbitrary values

of c2 and s1. For example, c2 → ∞ for α= 2. The case of compact total (c, α) = (3, 1.8) has (c2, s1) = (170, 2.05), which is outside the
box of this figure. We truncate the plot where c>100 (or where α>2).

therefore assume that the mean eccentricity measured
by Wetzel (2011), ε ∼ 0.5, would typically correspond
to λ ∼ 0.3. However, from Danovich et al. (2015, Fig.
1), at Rv, we read for the dark matter that λ ' 0.13
and it is not varying with redshift, while for the cold
gas λ ' 0.3, 0.2, 0.15 at z = 1.5, 2.5.3.5, respectively.
Smaller λ values are measured at higher redshifts also in
their Fig. 7. Similar results are obtained for cold gas at
z=1.6−3 in their Fig. 14, where λ∼0.2. This indicates
that at z∼2.5 one should assume ε∼0.25 for the dark
matter and ε∼ 0.33 for the cold gas. These values are
lower than the average value obtained for satellites by
Wetzel (2011), indicating more radial orbits and thus
stronger dynamical friction. The redshift dependence
in Danovich et al. (2015) for the cold gas is stronger
than in Wetzel (2011), but this may be balanced by the
weaker redshift dependence for the dark matter.

Qualitatively similar redshift and mass dependen-

cies can be deduced from the analysis of random Gaus-
sian fluctuation fields by Bardeen et al. (1986), who
predict that higher-sigma density peaks have lower λ
values and more radial orbits. This is consistent with
the trends found in Wetzel (2011) and Danovich et al.
(2015), and with the core phenomenon being more pro-
nounced at higher redshifts and masses, being higher-
sigma peaks.
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Roca-Fàbrega S. et al., 2018, arXiv e-prints
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