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Stabilization of Hypersonic Boundary Layers by Porous Coatings
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A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a
porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplifi-
cation is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was
demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the
Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation
of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be
exploited for passive laminar flow control on hypersonic vehicle surfaces.

Nomenclature
A = admittance
B = thermal admittance
F = frequency parameter
h = porous layer thickness
n = porosity
p = pressure perturbation
Pr = Prandtl number
Re = displacementthickness Reynolds number
Re, = transition Reynolds number
r = pore radius
s = pore spacing
T = mean flow temperature
t = time
U = mean flow velocity
u,v,w = perturbationvelocity components
x,y,z = Cartesian coordinates
o, B = wavenumber components
y = specific heat ratio
8" = displacementthickness
0 = temperature perturbation
K = thermal conductivity
I = viscosity
0 = mean flow density
o = spatial growth rate
@© = wave frontangle
10} = angular frequency
Subscripts
ad = adiabatic
e = upper boundary-layeredge
m = maximum value
w = wall surface
Superscript
* = dimensional

Received 11 February 2000; revision received 28 August 2000; accepted
for publication 3 October 2000; presented as Paper 2001-0891 at the AIAA
39th Aerospace Sciences Meeting, Reno, NV, 8-11 January 2001. Copyright
© 2000 by the authors. Published by the American Institute of Aeronautics
and Astronautics, Inc., with permission.

* Associate Professor, Department of Aeromechanics and Flight Engineer-
ing. Member ATAA.

TSenior Scientist, Fluid Dynamics. Fellow ATAA.

#Ph.D. Student, Graduate Aeronautical Laboratories.

§Director, Graduate Aeronautical Laboratories.

605

Introduction

HE ability to stabilizea hypersonicboundarylayerandincrease

its laminar run is of critical importance in the hypersonic ve-
hicle design.! Early transition causes significant increases in heat
transfer and skin friction. Higher heating requires an increased per-
formance thermal protection system (TPS), active cooling, or tra-
jectory modification. This translates to higher cost and weight of
hypersonic vehicles due to increased TPS weight. Moreover, with
the low payload mass fraction, even small savings in TPS weight
can provide a significant payload increase. Vehicle maintainabil-
ity and operability are also affected by transition. Robust metallic
TPS have temperature limits lower than ceramic TPS. Laminar flow
control (LFC) can help meet these more severe constraints. For a
streamlined vehicle with large wetted area, viscous drag becomes
important. It can be from 10% (fully laminar) to 30% (fully tur-
bulent) of the overall drag.? For optimized hypersonic wave/riders,
viscous drag may represent up to 50% of the total drag.®> Vehicle
aerodynamics is another area impacted by laminar-turbulent tran-
sition. Asymmetry of the transition locus can produce significant
yawing moments. Aerodynamic control surfaces and reaction con-
trol systems are also affected due to sensitivity of boundary-layer
separation to the flow state (laminar or turbulent).

If freestream disturbances and TPS-induced perturbations are
small, transition to turbulence is due to amplification of unstable
boundary-layermodes."* In this case, LFC methods and transition
prediction tools are predominantly based on stability theory and
experiment>~8 LFC systems are aimed at slowing down or elimi-
nating amplification of unstable disturbances using passive and/or
active control techniques. A third form of flow control is known
as reactive control, in which boundary-layer disturbances are can-
celed by artificially introducing out-of-phase disturbances. Typical
passive LEC techniques are pressure gradient and shaping. Active
techniquesinclude wall suction and heat transfer. In reactive control
methods, periodic suction/blowing, heating/cooling or wall vibra-
tions are used for artificial excitation of counter-phasedisturbances.

In hypersonic boundary layers, amplification of the following
instability mechanisms may drive the transition process:

1) The first instability mechanism is the first mode associated
with Tollmien-Schlichting waves. This instability may be domi-
nant at relatively small local Mach numbers (normally less than 5).
This mode is strongly stabilized on cool surfaces. At low wall-
temperatureratios, the stabilizationeffect may be so strong that the
first-mode mechanism becomes unimportant.

2) The secondmode associated with an inviscidinstability present
due to a region of supersonic mean flow relative to the distur-
bance phase velocity’ belongs to the family of trapped acoustic
modes and becomes the dominantinstability in two-dimensionaland
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Fig. 1 Acoustic mode in a supersonic boundary layer on semitrans-
parent wall.

quasi-two-dimensional boundary layers at Mach numbers M > 4.
The existence of the second mode was established by the exper-
iments of Kendall,” Demetriades,!” Stetson et al.,'' Stetson and
Kimmel,'> and Kimmel et al."* The most amplified second-mode
wavelength is approximately twice the boundary-layer thickness,
and its phase velocity tends to the boundary-layeredge velocity of
mean flow. As a result, the second-mode disturbances are in the
ultrasonic frequency band. For example, the most amplified waves
observedin the experiment of Stetson et al.'! at Mach 8 correspond
to a frequency about 100 kHz. In contrast to the first mode, the
second mode is destabilized by cooling.

3) Crossflow vorticesare observedin three-dimensionalboundary
layers on the leading edge of a swept wing, axisymmetric bodies at
high angles of attack, etc. This instability is weakly sensitive to wall
cooling. It can be effectively stabilized by shaping. For example,
two-dimensional shaping of air breathers helps to avoid crossflow
instabilities on large acreage regions of the vehicle surface.

4) Gortler vortices play a major role in transition on concave
surfaces. Similar to the crossflow instability, their growth rate can
be reduced by shaping.

Because severe environmental conditions make it difficult to use
active and reactive LFC concepts for hypersonic vehicles, passive
LFC techniques are of great interest. Thus, Malmuth et al.'"* pro-
posed a new passive method of second- and higher-mode stabiliza-
tion. They exploited the hypersonicboundary layer’s behavioras an
acoustic waveguide, schematically shownin Fig. 1. Therein, acous-
tic rays are reflected by the wall and turn around near the sonic line:
Yy =Y., U(y,) =Re(c) —a(y,), where c is the disturbance phase
speed and a is local sound speed. The second, third, and higher
boundary-layermodes correspond to the waveguide normal modes.
Malmuth et al.'* assumed that the absorption of acoustic energy by
an ultrasonicallyabsorptivecoating can stabilize these disturbances.
This assumption was examined using stability theory for inviscid
disturbances. It was found that an ultrasonically semitransparent
wall provides substantialreduction of the second-mode growth rate.

In this paper, we study this stabilization mechanism, including
viscous effects and an absorptive skin microstructure. We formu-
late the eigenvalue problem for viscous disturbances in a hyper-
sonic boundary layer on a wall covered by an ultrasonically absorp-
tive coating of special type, namely, a porous layer with equally
spaced cylindrical blind microholes. We obtain the analytical form
of boundary conditions on the porous surface and solve the viscous
eigenvalue problem numerically. We discuss results of calculations
showing the second-mode stabilization on porous surfaces of vari-
ous pore radii, spacing, and thickness. Then we briefly describe the
experimental data of Rasheed et al.'” that confirm the theoretically
based hypersonic boundary-layer stabilization by porous coatings
givenin this paper. These results were obtainedin the T-5 Graduate
Aeronautical Laboratories of the California Institute of Technol-
ogy high-enthalpy wind tunnel on a sharp cone that they detail in
Ref. 15. Finally, we conclude the paper with a summary discussion
and indicate possible future directions.

Eigenvalue Problem

We consider supersonic boundary-layer flow over a flat plate or
sharp cone as schematically shown in Fig. 2. The fluid is a perfect
gas with Prandtl number Pr, specific heat ratio y, and viscosity u.
The coordinates x, y, and z are made nondimensionless using the
boundary-layer displacement thickness §*. In the locally parallel
approximation, the mean flow is characterized by the profiles of
x-component velocity U(y) and temperature 7 (y), referenced to
the quantities U} and T at the upper boundary-layeredge. Three-
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Fig.2 Schematic of a wall covered by porous layer.

dimensional disturbances are represented in the traveling wave
form

g=Refg(y)expi(ax+pz—-wnl},  ¢= i v,w, p.0] (1)
where i, v, and w are velocity components; p is the pressure ref-
erenced to the double dynamic pressure p;U?; 6 is the temper-
ature; o =a*§* and B = B*§* are wave number components; and
o =w*8*/ U} is the angularfrequency. The system of stability equa-
tions that is derived from the full Navier-Stokes equations for a
locally parallel compressible boundary layer can be represented in
the form'®

T
d de d
5=S-z, z= u,—u,v,p,é),—,w,—w )
dy dy dy dy

where § is an 8 x 8 matrix. Its elements are functions of the mean
flow profiles, the displacement thickness Reynolds number Re =
8*U; p¥/u;, and disturbance characteristicsw, o, and B.

We consider a wall covered by a porous layer of the thickness *.
The pores are equally spaced cylindricalblind holes of radius r* per-
pendicularto the wall surface, as schematically shownin Fig. 2. The
hole spacing s* and diameter are assumed to be much less than the
boundary-layerdisplacement thickness 6*. Because the pore radius
is small and interactions between neighboring pores are weak, per-
turbations of longitudinal and transverse velocity produced by the
porous layer are neglected. However, the porous structure is semi-
transparentrelativeto the vertical velocity and temperature perturba-
tions. In this case, the wall boundary conditions can be expressed as
u(0) =0, w(0) =0,

v(0) = Ap(0), 6(0) = Bp(0)

(3)

where the admittance A and thermal admittance B are complex
quantities that depend on properties of the wall material, poros-
ity parameters, mean flow characteristics on the wall surface, and
flow perturbation parameters such as a wave frequency and wave-
length. These dependenciesare derived in the next section. Because
boundary-layermodes decay outside the boundary layer, we have

u(00) = v(00) = w(oo) =#(c0) =0 @)

The eigenvalue problem (2-4) provides the dispersion relation
F(a, B, w) =0. For temporal stability, the wave number compo-
nents « and B are real quantities, and w is a complex eigenvalue. If
Im(w) > 0, then the disturbanceis unstable. For spatial instabilityin
two-dimensional boundary layers, the frequency w and transverse
wave number component 8 are real, whereas « is a complex eigen-
value. If Im(«) < 0, then the disturbanceamplifies downstream with
the spatial growth rate o = —Im(w).

Admittance of Porous Layer

The porous layer is characterized by the porosity n, which is the
fraction of the overall volume taken up by the pores. For the pore
spacing shown in Fig. 2, the porosity, n = 7 (r* /s*)?, can be varied
in the range 0 < r*/s* < m /4, where the upper limit corresponds to
s*=2r*. The pore radius and spacing are considered to be much
less than the disturbance wavelength, which is of the order of the
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boundary-layer displacement thickness. In this case, the porosity
is fine enough to avoid disturbing the laminar boundary layer by
other mechanisms associated with effective surface roughness. The
porouslayer thickness2* is assumed to be much larger than the pore
radius r*, that is, each pore is treated as a long tube.

To obtain the relationship between the admittance A and porous
layer parameters, we use the theoretical model developed by
Gaponov for subsonic!”-!¥ and moderate supersonic speeds.!® These
studies addressed the porosity effect on Tollmien-Schlichting (TS)
waves. As contrasted to second-mode waves of acoustic type dis-
cussed in this paper, the TS waves over porous walls analyzed by
Gaponov are vortical disturbances that become unstable due to vis-
cous mechanisms.For thisreason, the second-modeinteractionwith
a porous surface is fundamentally different from that of TS waves.
Yet, the results'® for the disturbance propagation within a porous
wall are independent of the nature of the boundary-layer distur-
bances, for example, second-mode acoustic or TS waves. In par-
ticular, they can be used in formulating the porous wall boundary
conditions for the vertical velocity of second-mode disturbances
considered herein. The thermal admittance B is derived using an
explicit coupling between the pressure, temperature, and velocity
perturbations within a uniform pore >

Following the analysis,'® we apply the theory of sound wave prop-
agation in thin and long tubes (see, for example, Ref. 21). Because
h* > r*, the pressure is approximately constant across the pore. In
this case, the acoustic field within each pore is characterized by the
propagationconstant A and the characteristicimpedance Z,. These
parameters can be expressed as a function of the series impedance
Z and the shunt admittance Y for the tube element of unit length
using the transmission line formalism.>** The series impedance
properties of the tube element are associated with the storage of
kinetic energy and its dissipation due to viscous losses at the tube
wall. The shuntadmittanceis associated with the potential energy of
compression and the thermal energy losses due to the wall heat con-
ductivity. We assume that the mean gas temperature along the tube
is constant and equal to the wall surface temperature 7, . Daniels??
and Benade? showed that the dimensional series impedance Z*
and shunt admittance Y* per unitlength of a tube with radius r* are
expressed as

sk % -1
g dwoy[ 2 Dk -
j.”,*Z kv Jo(kv)
iw*Tr*? 2 Jl(kt)i|
Vi=—"""|14+@p-1D=- (6)
pua; [ RS

where, p; and a; are mean density and sound speed in a tube. J
and J, are Bessel functions of the arguments k, = r*/(iow* p} / u¥))
and k, =k, \/(Pr), which measure the ratio of the tube radius to the
viscousboundary-layerthicknessand to the thermal boundary-layer
thickness on the tube surface, respectively. Using the relation

Jo(x) + L(x) =2J,(x)/x (M
we express Z* and Y* in the form

iw'py  Jo(ky)

7% =
T2 Jr(k,) ®)
iw*mr? JZ(kt)i|
Y = |y (- D ©)
praz [y AT

For the average velocity through the pore, the transmission line
is characterizedby the impedance Z7 = §*Z* and shunt admittance
Yy =Y*/8* where §* = mr** is porecross-sectionalarea. Choosing
the boundary-layerdisplacement thickness and mean flow parame-
ters at the upper boundary-layeredge as reference scales, we have

w25 iw Jo(k [ WPy
ZIETN Z*:l_wM, k,=r 0Pw p (10)
,OL*UL* Tw JZ(kv) MHw
orU*s* L Jo (k)
V)= ——Y"=—-ioM - 1)— 11
) tw |:V + (v )Jo(kt) an

where r = r*/§* is nondimensional pore radius. The characteristic
impedance Z, and the propagation constant A are expressedin the
form

Zy=~2Z,/Y\, A=+Z\Y,,

The coupling between the pressure amplitude p and the average
velocity disturbance amplitude v at the pore end, y = —h, can be
expressed as p(—h) = X - v(—h), where the impedance X depends
on characteristics of the backup structure. If the lower pore end is
closedby a solid wall (blind pores), then v(—h) = 0. In this case, the
impedance is X = 00, and the velocity-pressure ratio at the upper
end of the pore is

v(0)/p(0)] = (1/Z,) tanh(Ah) (13)

Re(A) <0 (12)

Averagingthe vertical velocity amplitudeat the wall over the surface
area, we have v(0) =n - v(0). Then the admittance in the boundary
conditions (3) is expressed as

A= (n/Zy) tanh(Ah) (14)

If the porous layer is relatively thick (Ah — 00), then Eq. (14) is
reduced to the form

A=—(n/Zy) (15)

Note that the limit Ah — oo leads to Eq. (15) at any finite value of
X (i.e., the disturbance at the upper end of each hole does not feel
the lower end due to the decay of sound propagating along a tube).

According to the analysis of Stinson and Champoux 2 the pres-
sure disturbance, average temperature disturbance, and average ve-
locity disturbance within a cylindrical pore are coupled as

e 1 dp* . _ijl(kv)
V) = e b (“’)[1 k. Jo<kv>} (16)

Pk

2 *M* |:p* (w*)/ 3;): (Pra)*)i| v (Pro*)  (17)

w

0*(w*) =

SubstitutingEq. (16) into Eq. (17), accountingfor Eq. (7), and nondi-
mensionalizng the result, we obtain

0 =—(y — DM*T,pJs(k,) [ Jo (k) (18)

Thus, the thermal admittance in the boundary condition (3) for the
temperature disturbance is expressed as

B = —n(y — OM*T, Jy(k)) [ Jo(k) (19)

Computational and Parametric Studies

To evaluate the porous layer effect on the second-mode stability,
we solve the eigenvalue problem (2-4) numerically using the ad-
mittance (14) or its limiting form (15) and the thermal admittance
(19). We consider the boundary layer of a perfect gas with Prandtl
number Pr=0.71 and specific heatratio y = 1.4. The temperature-
viscosity law is specified as pu = puo(T/Ty)" with the exponent
m =0.75; the second viscosity is zero. Figure 3 shows the spa-
tial growth rate o as a function of the Reynolds number Re for
two-dimensional unstable waves (8 =0) of nondimensional fre-
quency F=w*v/U;?>=2.8 x 10~* in the boundary layer at the
Machnumber M = 6. The wall temperature T, = 1.4 approximately
corresponds to the wall temperature ratio 7,/ T, =0.2. Calcula-
tions were conducted for a thick porous layer (Ah — 00) with the
porosityn = 0.5 at various values of the nondimensionalpore radius
r =r*/§*. Note that the porous layer causes massive reduction of
the second-mode growth rate. In Figs. 3-6, symbols correspond to
the case of zero thermal admittance, B = 0. For all cases considered,
temperature perturbations on the porous surface weakly affect the
disturbance growth rate and can be neglected.

Figure 4 shows that deep pores of fixed radius (r =0.03 at
Re =2 x 10°) and spacing (porosity n = 0.5) strongly stabilize the
second-mode waves in a wide frequency band at various Reynolds
numbers Re (dashed lines). This example illustrates that it is possi-
ble to cause significant reduction of the disturbance growth rate on
large surface areas without fine tuning the pore size. As contrastedto
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Fig. 3 Growth rate o as a function of Reynolds number Re at vari-
ous poreradiir: M=6,T, =1.4,F=2.8 X10~4, n=0.5,and Ah — o

(solid lines); symbols indicate zero thermal admittance. (R = Reynolds
number in figure.)
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Fig. 4 Growth rate o as a function of disturbance frequency F at
various Reynolds numbers Re: M=6, T,, =1.4,n=0.5,and Ah — o0 ;
solid lines r = 0, dashed lines r = 0.03 at Re = 2.0 X 103, symbolsindicate
zero thermal admittance. (R = Reynolds number in figure.)

reactive flow control techniques, a porous coating provides passive
stabilization of the boundary-layer flow regardless the disturbance
phase and amplitude distributions in space and time and with no
external energy input. Note that the waveguide behavior described
earlier in this paper in connection with the instability of the acous-
tic second mode that is quenched by the ultrasonic absorbing wall
conceptdescribed herein resembles amplification processes studied
by the second author in connection with the stability of hypersonic
strong interaction flows.?*

Figure 5 shows distributions of the maximum growth rate,
0, (Re) = max,, o(w, Re)], at the wall temperatures T, = 1.4, 3.5,
and 7.0, that approximately correspondsto the wall temperature ra-
tio T,/ T, =0.2,0.5,and 1. The stabilizationeffect decreases as the
wall temperature increases. A strong reduction of the growth rate is
observed in the boundary layer on a cool wall (see Fig. 5), a more
practical case for hypersonic applications. This trend is consistent
with the admittance asymptotic behavior associated with Egs. (10-
12) and (15). For deep pores (Ah >> 1) of relatively small radius
(|k,| <« 1), the admittance A is proportional to k, M+/(T,,) and de-
creases with the wall temperature as T, m/2,

Figure 6 shows the maximum growth rate o,, as a function of the
porosity n for Re =4 x 10* and r = 0.03 for the boundary layer at
M =6 and T,, = 1.4. The porous layer of spacing s =4r(n ~0.2)
reduces the growth rate by a factor of 2 compared to the solid
wall case n =0. Our calculations using the ¢V method indicates
that this stabilization translates to extending the transition onset
point more than three times its value without porosity. In Fig. 7,
the second-mode growth rate is shown as a function of the nondi-
mensional porous layer thickness 7 =h*/§* at n=0.4, r =0.03,
Re=4x10% and F =3 x 10~*. The limit Ah — oo is achieved
at a relatively small value of 2 ~0.3 (pore depth is about five
diameters) that is due to strong damping of sound waves in thin
pores. There is an optimal thickness, 4 ~ 0.12, at which the porous

0.04 T T r T

0.00 £ . - -
0 4 8 12 16

Ax10°

Fig.5 Distributions of maximum growth rate o, (Re) at various pore

radiir: M =6,n=0.5,and Ah — oo ( ); symbols indicate zero ther-
mal admittance. (R = Reynolds number in figure.)
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Fig. 6 Maximum growth rate o, as a function of porosity n at
Re=4 X10°: M=6,T, =1.4,r=0.03, and Ah— o© (——); symbols
indicate zero thermal admittance.

wall effect is able to stabilize the disturbance completely. In this
case, the disturbance reflected from the pore bottom is in counter
phase with the boundary-layer disturbance. However, the optimal
thickness strongly depends on the disturbance frequency and the
thick porous layer is more robust. Figure 8 illustrates the stabiliza-
tion effect for three-dimensional waves of the second-mode family.
The growth rate is shown as a function of the wave front angle
¢ = arctan(f, /«, ) at various pore radii. The porous coating causes
massive reduction of the disturbance growth rate and substantially
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Fig. 7 Growth rate o as a function of porous layer thickness . at

n=0.4,r=0.03,Re=4 X10°,F =3 X 10~ 4, M =6,and T,, = 1.4forzero
thermal admittance.
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Fig.8 Growth rate o asafunction of wave front angle ¢ at various pore
radiir: M =6,T, =1.4,Re=4287,F =3 X10™*,n=0.3,and Ah — .

decreases the unstable range of wave front angles. These examples
show that a relatively thin porous coating can dramatically reduce
the second-mode amplification and increase the laminar run if tran-
sition is driven by second-mode disturbances.

Experimental Validation of Theory

Rasheed et al.!> have recently verified the theoretical concept
by testing a 5-deg half-angle sharp cone with an ultrasonically ab-
sorptive coating in the California Institute of Technology T5 high-
enthalpy shock tunnel. The cone was 1 m in length, with half of its
surface solid and the other a porous sheet perforated with equally
spaced blind cylindrical holes. Porosity parameters were chosen
from the preliminary theoretical analysis of Fedorov and Malmuth
as well as manufacturing constraints. The average pore radius r*
was 30 um, the depth 2* was 500 um, and the average spacing s*
was 100 pm. Figure 9 shows a microphotograph of a portion of
the porous surface. For typical runs, the boundary-layer thickness
was about 1 mm, and the estimated number of holes per boundary-
layer disturbance wavelength was about 20. Static measurements of
ultrasound reflectivity of perforated sheet coupons (without flow)
showed that the porous coating attenuated the incident ultrasonic
signal of 400-kHz frequency by 3.0 dB relative to a solid wall.

The model was instrumented by thermocouples, and the tran-
sition onset point was determined from the Stanton number dis-
tributions S7(x) measured simultaneously on both sides of the
model for each run. Nitrogen was selected as the test gas to
minimize the chemistry effects, which were not included in the
theoretical analysis. Runs were performed for the ranges of the
freestream total enthalpy 4.18 < Hy < 13.34 MJ/kg and Mach num-
ber4.59 <M, <6.4. Figure 10 shows a summary plot of the tran-
sition onset Reynolds number Re, =x;Up; /1, vs Hy. The solid
squares correspond to transition on the solid wall, and the open cir-
cles correspondto transition on the porous surface. The circles with
arrows indicate that the boundary layer on the porous surface was
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Fig. 10 Transition onset Reynolds number Re, vs total enthalpy Hy:
m, solid wall; O, porous wall; and <5, boundary layer on porous wall is
laminar up to the model base.

laminar up to the model base, that is, the value plotted is not a real
data point because the cone was not long enough to measure the
transition locus. In all cases, the circles are well above the squares.
This indicates that the porous coating always delays transitionby a
significant amount.

Summary

A second-mode stability analysis has been performed for hyper-
sonic boundary layers over walls covered by porous coatings with
equally spaced blind microholes. Absorption of the disturbance en-
ergy by porous layers was modeled using the theory of disturbance
wave propagationin thin and long tubes. The admittance and ther-
mal admittance coupling the pressure disturbance with the vertical
velocity and temperature disturbances on the porous surface are
expressed as explicit functions of porosity characteristics. Stabil-
ity calculations showed that the absorption of disturbance energy
by the porous coating provides massive reduction of the second-
mode growth rate in a wide range of disturbance frequencies and
Reynolds numbers. The flow stabilizationis due to vertical velocity
perturbationson the porous surface associated with nonzero admit-
tance of porous medium. Temperature perturbations weakly affect
the boundary-layerdisturbanceand can be neglected. This indicates
thattemperaturedisturbancesplay a passiverole in the second-mode
instability mechanism.

Our conclusions are consistent with the results of Malmuth
et al.,'* obtained from theirinviscid stability analysis. The most pro-
found effectis observed on a cool wall that is typical for hypersonic
vehicle TPS surfaces. A relatively thin porous coating (of thickness
about 30% of the laminar boundary-layer displacement thickness)
provides a strong stabilization effect. Such porous coatings can be
designed for passive LFC in hypersonic vehicle surfaces. Note that
the disturbance absorption should be introduced at the initial phase
of transition process, where the unstable disturbance amplitude is
about 0.01-0.1% of its level in transitional and turbulent bound-
ary layers. In this phase, additional heating of the porous coating
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associated with partial absorption of the disturbance energy is neg-
ligibly small compared to the turbulent heating.

The first series of experiments conducted by Rasheed et al.!* on
a sharp cone in the TS5 shock tunnel at the Graduate Aeronauti-
cal Laboratories at the California Institute of Technology qualita-
tively confirms the theoretical prediction. Quantitative comparison
of the theory with these data is planned for the future. Because the
boundary-layerstabilizationis due to the disturbanceenergy extrac-
tion mechanism, we believe that similar effects may occur for other
types of high-frequency instabilities. Absorptive coatings may also
affectthe bypass mechanism, whichisresponsiblefor transitionpast
TPS roughnesselements. These assumptions could be examined by
further theoretical modeling and verified by experiments.

Many TPS materials, which can provide efficient absorption of
acoustic disturbances, have a random porosity. The interaction of
the boundary layer and unstable disturbances with a random porous
coating may be different from the case of the regular pore structure
discussedearlier. Because of communicationbetweenrandomly dis-
tributed pores, a mean flow may occur inside the coating that leads
to a slip effect on the coating surface. Boundary conditions for un-
stable disturbances may be also affected. These effects will also be
addressed in our future studies.
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