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ABSTRACT 
Polymer membranes perform innumerable separations with far-reaching environmental 
implications. Despite decades of research on membrane technologies, design of new membrane 
materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a 
generalizable, accurate machine-learning (ML) implementation for the discovery of innovative 
polymers with ideal separation performance. Specifically, multitask ML models are trained on 
available experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, 
and CH4. We interpret the ML models and extract chemical heuristics for membrane design, 
through Shapley Additive exPlanations (SHAP) analysis. We then screen over nine million 
hypothetical polymers through our models and identify thousands of candidates that lie well above 
current performance upper bounds. Notably, we discover hundreds of never-before-seen 
ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrer, 
respectively, orders of magnitude higher than currently available polymeric membranes. These 
hypothetical polymers are capable of overcoming undesirable trade-off relationship between 
permeability and selectivity, thus significantly expanding the currently limited library of polymer 
membranes for highly efficient gas separations. High-fidelity molecular dynamics simulations 
confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that 
many can be translated to reality. 
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1. INTRODUCTION 

Polymer membranes are a flexible, processable, and inexpensive platform to provide a myriad 

of separations that fill critical roles in climate change mitigation (carbon capture) and resiliency 

(water treatment). For gas separations, polymer membranes have been widely used in the 

separation of mixtures in many industrial processes, including oxygen enrichment1, biogas 

purification2, and post-combustion carbon capture3. In particular, carbon capture processes are 

garnering increased attention to reduce emissions to the environment, and membrane technologies 

offer known advantages such as high energy efficiency and operational simplicity due to flexibility 

and scalability4–6. In post combustion, pre-combustion, and oxy-combustion, CO2/N2, CO2/H2, and 

O2/N2 separations are respectively important for environmental conservation.  

During membrane-based gas separation, a gas mixture is typically driven through a membrane 

by pressure where separation is achieved through differences in individual gas permeabilities7. The 

performance of membrane processes is determined by the membrane's permeability for a specific 

gas species, Pi, where i specifies the gas type. The membrane permeability is calculated from Fick's 

law of diffusion, |𝐽௜| ൌ 𝑃௜Δ𝑝/𝑙 , where Ji is the flux of gas i, and Δ𝑝 is the pressure drop across a 

membrane of thickness l. When comparing the permeability of gas A with that of gas B, another 

performance measure is the membrane's selectivity between two gases, α, which is defined as 𝛼 ൌ

𝑃஺/𝑃஻. An ideal membrane for a given binary gas separation would have high permeability and 

high selectivity. Increasing gas permeability and selectivity in these membranes would allow for 

more efficient industrial processes by increasing the process throughput, reducing energy costs, 

and achieving a purer product8–10. However, there is a well-known permeability-selectivity trade-

off for polymer gas-separation membranes7, which is defined by the Robeson upper bound11. Over 

time, advancements in polymer designs have pushed the Robeson upper bound from 1991 values 

to updated 2008 values (and most recently 2015 values for O2/N2 separations and 2019 values for 

CO2/CH4 and CO2/N2 separations12,13) that reflect improved membrane performance. Identifying 

new materials that break this upper bound has driven and continues to drive materials discovery 

efforts for membranes14–17. 

Remarkably, in the decades of technological development in the membrane science field, 

design of new membrane materials has been, and remains, a largely trial-and-error process, guided 

by experience and intuition18. Current approaches generally involve tuning chemical groups to 

increase affinity and solubility towards a desired gas, or incorporating greater free volume to 
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increase overall diffusivity19. When assembling a new polymer, typically a desired enhancement 

is targeted (i.e., higher CO2 affinity, higher overall permeability, aging resistance etc.) and a 

chemical group that is likely to achieve that enhancement is incorporated into the polymer 

chemistry20–23. For achieving higher permeability, polymers of intrinsic microporosity (PIMs) 

have been  extensively studied during the last two decades24,25. PIMs generally enhance fractional 

free volume via inefficient chain packing to increase permeability, while simultaneously stiffening 

the polymer backbone and improving solubility selectivity25–27. Efforts to design improved 

chemistries for PIMs generally involve tuning the contortion group, increasing steric frustration 

via modifications to side chains, or further stiffening the polymer backbone28–31. Still, many of 

these studies remain limited to an Edisonian approach, unable to identify or utilize big-picture 

rules of chemistry-property relationships in polymer membranes.   

Further complicating matters, synthesis of new polymeric materials and subsequent testing 

of permeance and selectivity is a time-consuming, expensive, and incomplete process that can miss 

high-performance candidates. Molecular modeling approaches, such as Monte Carlo/molecular 

dynamics (MC/MD) simulations, can reasonably predict a polymer membrane’s gas permeabilities 

without costly experiments32–35. However, even these high throughput molecular simulations are 

too computationally expensive to explore the vast chemical space of polymers on the order of 

106~1010. By contrast, simplified approximations to predict gas permeability for a given membrane 

are low cost but inaccurate. Most simply, group contribution methods sum together the gas 

permeability contribution of each chemical moiety in a polymer, but they do not necessarily 

consider connectivity and cannot expand into new classes of polymers36. Permeability can also be 

calculated via diffusivity based on the polymer’s free volume and the solution-diffusion model of 

gas transport using various theoretical models, but these theories are incomplete37–39. In short, there 

is no efficient and accurate predictive model for gas permeability based on polymer-membrane 

chemistry. 

Machine learning (ML) is a promising data-centric approach for prediction of gas 

permeabilities by learning a functional model based on polymer chemistry40,41. ML methods using 

chemical inputs have been successfully applied to accurately predicting many polymer properties 

including glass transition temperature42–44, thermal conductivity45, dielectric constants46, organic 

photovoltaic properties47,48, and transport properties49–51. The primary challenge for learning a 

generalizable ML model is training on robust and diverse data, which requires compiling multiple 
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databases with the most recent literature values and imputing missing values40. While Barnett et 

al. have trained accurate ML models that link polymer chemistry to gas permeability50, their 

training set notably lacks PIMs, and they only screened a limited chemical space of 11,000 existing 

homopolymers. Therefore, ML-approaches would benefit from considering an expanded chemical 

space, such as additional training data on PIMs. Overall, ML-directed molecular design of polymer 

membranes still faces significant challenges in the following aspects: (1) How can we define an 

appropriate chemical space to explore the molecular design of high-performance polymer 

membranes? (2) Even if ML models can be established for the gas permeability prediction of 

polymer membranes, how can we achieve a physical understanding of how membrane chemistry 

affects gas separations? (3) Can we exceed the Robeson upper bound simultaneously for 

separations of different gas pairs, such as O2/N2, CO2/CH4, CO2/N2, and H2/CO2?  

 
Fig. 1 Workflow for ML-assisted discovery of innovative polymer membranes with ideal gas-separation 
performance, e.g., beyond the traditional Robeson upper bound. (1) We begin with the SMILES string for each 
polymer’s repeating unit and its associated gas permeabilities for model training. (2) The molecule's relevant 
fingerprint substructures (MFFs) and molecular descriptors are extracted, which are used as chemical inputs for 
ML model training. The two representations have a dimensionality D on the order of 100. (3) Multitask RFs and 
ensembles of DNNs are trained to predict gas permeabilities, and physical insights can be extracted from the models 
using their SHAP values. (4) The models are used for high-throughput permeability prediction of hypothetical 
polymers with unknown permeabilities but known chemistries in a significantly expanded chemical space. (5) 
Finally, high-fidelity MD simulations are performed to verify the membrane permeabilities/selectivities of top 
polymer candidates. 
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To tackle the above challenges, we demonstrate interpretable, supervised ML models that can 

accurately predict the He, H2, O2, N2, CO2, and CH4 permeabilities of gas separation membranes 

based on polymer chemistry—as part of our ML-assisted discovery workflow outlined in Fig. 1. 

Our training data consists of polymer chemistry and experimental gas permeabilities from two 

large databases, PolyInfo52 and Membrane Society of Australasia (MSA)53, for hundreds of 

homopolymers, including PIMs. We utilize two representations for the polymer repeating unit, 

namely chemical descriptors as generated by RDKit54 (listed in Table S1 of Supporting 

Information) and the Morgan fingerprint with frequency (MFF)55. We impute missing 

permeabilities using multivariable imputation by chained equations (MICE)56, and we then train 

multitask supervised ML models to establish synthesis-property relations for these polymer 

membranes. While various supervised ML models have been used in polymer informatics, 

including recurrent neural networks, support vector machines, gaussian processes, and others, we 

choose to focus our study to random forest (RF) regression and deep neural networks (DNN), 

which have demonstrated outstanding performance in our recent benchmark study44. Due to the 

high variance of DNNs, we perform bootstrap ensembling to further improve our predictions 

(achieving testing R2 ~0.90). We also interpret our ML models by extracting feature importances 

using SHAP (SHapley Additive exPlanations)57 analysis. Our analysis provides a chemical 

explanation for the well-known permeability-selectivity tradeoff in membranes, and many of the 

other physical insights that we draw are consistent with established membrane design principles. 

Using the trained ML models, we perform high-throughput screening of over nine million 

hypothetical polymers with unknown permeabilities, including many polyimides and ladder 

polymers that can be classified as PIMs. Thus, we identify thousands of promising polymers for 

gas separation membranes with desirable performance, which lie well above 2008 Robeson upper 

bounds. Finally, we perform high-fidelity MD simulations to confirm that the ML-predicted 

permeabilities of top-performing polymers are very accurate. Overall, our ML-assisted workflow 

is a promising method for the discovery of innovative polymers for next-generation gas-separation 

membranes to advance energy and environmental sustainability.  
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2. RESULTS  

2.1 Datasets and chemical space under exploration 

Our training dataset, Dataset A, consists of 778 homopolymers (353 unique polymer 

chemistries), but not all entries have gas permeability data reported on all six gases under study: 

He, H2, O2, N2, CO2, and CH4. Dataset A is manually collected from the PoLyInfo database 

 
Fig. 2 Visualization of the permeability distribution of Dataset A, the training set. (a) O2/N2 and (b) CO2/CH4 
Robeson plots for the raw data as obtained from the PoLyInfo and Membrane Society of Australasia (MSA) 
databases. (c) O2/N2 and (d) CO2/CH4 Robeson plots comparing the results of imputation using extremely 
randomized trees (ERT) vs Bayesian linear regression (BLR), with permeabilities averaged across entries that 
correspond to the same polymer. Units of permeability are Barrers. (e) The chemical structures of three existing 
examples of PIMs, with their performances identified in (c) and (d). Asterisks in chemical structures indicate 
connection points between repeating units. 
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(experimental data from before 2005) and is merged with data from the MSA database (beyond 

2005). As shown in Fig. 2(a-b), in general, the more recent MSA database contains polymers with 

higher permeability, e.g., CO2 permeability greater than 103 Barrers, and entries that surpass the 

2008 Robeson upper bound. Fig. 2(c-d) also show that there is not a significant difference when 

missing gas permeabilities are imputed via extremely randomized trees (ERT) vs Bayesian linear 

regression (BLR). In these plots, we identify several known PIMs, with their corresponding 

chemical structures shown in Fig. 2(e). Many of these PIMs are ladder polymers, which have two 

connection points between consecutive monomers, such as PIM I and PIM II. Some of the 

polymers are polyimides, such as PIM III. Further visualizations of the results of the imputation 

process can be found in Fig. S1 of Supporting Information. 

 No. of Polymers Permeabilities Description Source 

Dataset A 778 (353 unique) At least one 
gas known 

Training Set PoLyInfo52 and MSA56 Databases 

Dataset B 995,799 Unknown PI1M58 Hypothetical polymers generated 
from PoLyInfo through a recurrent 

neural network  

Dataset C 8,205,087 Unknown Polyimides Hypothetical polyimides formed by 
known dianhydride and 

diamine/diisocyanate pairs from the 
PubChem59  

Dataset D 1,124 Unknown Ladder 
Polymers 

Hypothetical polymers generated 
based on existing ladder polymers 

Table 1 Summary of the datasets explored in this work. Dataset A is the training set, which contains polymers with 
known chemistries and permeabilities. Datasets B, C, and D contain hypothetical polymers with unknown 
permeabilities (used for screening and polymer discovery). They span three different chemical spaces: known 
polymers from PoLyInfo, polyimides, and ladder polymers, respectively. 

Table 1 provides a summary of the training and screening datasets used in this work. Dataset 

B, PI1M, consists of polymers learned via a recurrent neural network (RNN) trained on simplified 

molecular input line entry system (SMILES) strings of existing polymers in PoLyInfo, as 

constructed by Ma and Luo58. Note that Dataset B covers an overlapping chemical space with 

Dataset A because the RNN model is also trained on the PoLyInfo database, but Dataset B 

significantly populates regions where PoLyInfo data are sparse58. Still, Dataset B mostly spans 

polymers similar to known polymers, which are generally not tailored for membrane separations. 

Thus, our motivation for constructing Datasets C and D is for rationally targeted exploration of the 

polymer design space, based on the established interest in PIMs within the membrane design 

community. Firstly, polyimides have garnered significant attention due to their superior 
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permeability/selectivity tradeoff and high chemical and physical stability, largely due to a rigid 

aromatic backbone21,60. Thus, Dataset C is constructed as 8 million hypothetical polyimides 

formed by the polycondensation of known diamines/diisocyanates with dianhydrides from the 

PubChem library59. These 8 million hypothetical polyimides significantly expand the current 

chemical space of around 2000 polyimides in PoLyInfo. Ladder polymers adopt an alternative 

approach to stiffen the polymer backbone. These unique polymers have two-bond connections 

between repeating units and thus restricted rotation, except at a contortion site, which is often a 

spiro-center61. In our work, Dataset D contains hypothetical ladder polymers generated through 

the binary combinations of components of existing ladder polymers62, supplemented by a RNN 

model. More details about the construction of these datasets are provided in Fig. S2 of Supporting 

Information.   

While we train ML models using both chemical descriptors and MFFs as inputs, for simplicity, 

we only screen new polymers using MFFs as model inputs. The feature spaces for fingerprints 

across the datasets studied in this work are visualized using uniform manifold approximation and 

projection (UMAP)63 in Fig. S3 of Supporting Information. In general, our training set, Dataset A, 

spans across the screening space of Datasets B, C, and D. Thus, our ML models can learn across 

a wide chemical feature space of interest. While Datasets B and C have more complete coverage 

due to the sheer number of samples, Dataset D only includes ladder polymers, which explains why 

they are more confined in the feature space. 

2.2 Performance of ML models for gas permeability prediction 

To quantify performance, we evaluate the accuracy and generalizability of our ML models, 

namely RFs and DNN ensembles trained on chemical descriptors and MFFs. For our supervised 

ML models, the metric of study is the R2 correlation between the predicted and actual 

permeabilities on the training and test sets, as summarized in Table 2. We focus our analysis to 

models trained on the permeabilities imputed via BLR for consistency. Firstly, we find that the 

choice of ML model is more important than the choice of chemical features. The average test R2 

across all six gases for the RF is approximately 0.74 when trained on descriptors and very similar 

when trained on fingerprints. Similarly, the test R2 values for the DNN ensembles are around 0.90 

for both descriptors and fingerprints. We infer that fingerprints offer slightly better performance, 

which has been observed in the prediction of polymer glass transition temperature42. 
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ML Model He H2 O2 N2 CO2 CH4 

 Train Test Train Test Train Test Train Test Train Test Train Test 

RF 
(Descriptors) 

0.96 0.73 0.96 0.74 0.96 0.75 0.96 0.74 0.96 0.75 0.96 0.74 

DNN 
Ensemble 
(Descriptors) 

0.85 0.87 0.87 0.88 0.89 0.89 0.90 0.90 0.88 0.90 0.89 0.89 

RF (MFFs) 0.89 0.73 0.89 0.74 0.89 0.74 0.90 0.74 0.89 0.75 0.90 0.74 

DNN 
Ensemble 
(MFFs) 

0.88 0.91 0.88 0.90 0.90 0.92 0.90 0.91 0.89 0.90 0.89 0.88 

Table 2 Summary of the performances of supervised ML models as scored by the R2 value between the 
predicted and actual permeabilities. All ML models make multitask predictions for the six gas permeabilities of 
He, H2, O2, N2, CO2, and CH4 and are trained on the data that is augmented using BLR imputation. The DNN 
ensemble models perform better than the RF models, and models trained on MFFs perform slightly better than 
models trained on molecular descriptors. 

By contrast, we find that the choice of ML model has a significant impact on performance. RF 

learns a model with train R2s of about 0.96 on descriptors and 0.90 on fingerprints, which reduce 

to test R2s of about 0.74 for both inputs. In particular, the RF model seems to struggle to fit the 

datapoints with very low or very high permeabilities, as demonstrated in Fig. S4 of Supporting 

Information by the points that have a high actual permeability but lie below the unit line. This 

would suggest that the RF does not prioritize fitting to the PIMs with high gas permeabilities in 

the training set, as PIMs make up a relatively small fraction of the training data and tend to have 

distinct chemistry compared to the rest of the training set. 

On the other hand, the DNN ensemble learns a model with train R2s of around 0.87 on 

descriptors and 0.89 on fingerprints, which generalizes very well to test R2s of approximately 0.89 

for both inputs. The similarity between train and test R2s for the DNN ensembles suggests that the 

model is very generalizable and learns the underlying functional relationship between chemistry 

and permeability. In Fig. S5 of Supporting Information, we note that the DNN ensemble generally 

predicts permeability reasonably well, though there are some outliers at low or high permeability. 

Uncertainty quantification of the DNN ensemble in Table S2 of Supporting Information reveals 

that the ensemble of models performs better than the sum of its parts, as the average test R2 for 

each individual model is only ~0.70. Overall, there is also around 10% average normalized 

variance in the predicted permeabilities across the 16 DNN models, which is quite high.  

2.3 Physical insights from interpretation of ML models 
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Usually, ML models are treated as black boxes, which makes it challenging to understand any 

physical principles learned by the models. However, we find that obtaining SHAP values from our 

ML models on chemical descriptors and MFFs makes our models not only accurate but also 

interpretable. By extracting the most important chemical features that predict gas permeability, we 

draw physical insights into the molecular design of polymer membranes. Here we decide to focus 

our analysis on the DNN ensemble because of its better performance, but other model types can 

also be explained using the same method. 

Fig. 3 summarizes the results of SHAP analysis on the DNN ensemble trained on chemical 

descriptors. Fig. 3(a) highlights the twelve most important chemical descriptors based on their 

average SHAP values–their relative impacts on the six gas permeabilities under study. A summary 

of the definitions of these descriptors is provided in Table S3 of Supporting Information. The most 

important descriptor is VSA_EState8, which is a hybrid electronic state and van der Waals surface 

area (VSA) descriptor64, based on precalculated surface area values derived from a list of 

functional groups. While some of these descriptors do not have obvious, intuitive physical meaning, 

the permeability of polymer membranes is determined by the solubility and diffusivity of gas 

molecules34, which is affected by the electrostatic interactions and free volume elements 

respectively. Therefore, these identified chemical descriptors should play important roles in gas 

permeability of polymer membranes.      

Fig. 3 Important molecular descriptors as identified using SHAP on the DNN-ensemble ML model trained 
on descriptors and BLR-imputed permeabilities. (a) Average SHAP importances for the top twelve descriptors 
on each of the six gas permeabilities (He, H2, O2, N2, CO2, and CH4 ). (b) Impact of the top twelve descriptors on 
CH4 permeability output. Each dot represents the impact of a particular sample in the training set. (c) Names of top 
descriptors, with highly correlated features circled. Green text signifies features that have positive effects on 
permeability, and red signifies a negative effect. 
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In Fig. 3(b), we show how the values of each of the top descriptors impacts the model’s CH4 

permeability prediction. If higher feature values result in more positive SHAP values, then the 

feature has a positive effect on permeability: the feature is directly correlated with gas permeability. 

On the other hand, if higher feature values result in more negative SHAP values, then the feature 

has a negative effect on permeability: the feature is inversely correlated with gas permeability. 

While we only show the impacts of features on CH4 permeability output, we draw the same 

conclusions from the other gas permeability predictions, which produce almost identical SHAP 

impact plots (Fig. S6 in Supporting Information), as all permeabilities are trained via the same 

multitask model.  

Based on the correlation matrix between descriptor features in Fig. S7 of Supporting 

Information, there are two main pairs of correlated features, which suggests that some of the top 

features do not have independent physical significance. Namely, descriptors 107 and 109 

(Aliphatic Cycle Counts, Correlation Group A) are highly correlated with one another and 

relatively anti-correlated with features 15 and 16 (FpDensityMorgan, Correlation Group B). The 

steric space occupied by rings generally results in a lower molecular density, which explains the 

opposition between Group A and Group B. The features in Group A have a positive impact on gas 

permeability, while the features in Group B have a negative impact on gas permeability. This 

suggests that repeating units with more non-aromatic rings allow for larger free volume elements 

and lower densities, thereby higher gas permeabilities. This supports the emerging direction of 

polymer research on non-planar structures, such as, kink, spiro, cardo and pendant groups (–CF3), 

bulky and flexible groups (–O–), or different spatial linkage configurations in polyimides for 

enlarging their microporosities28,65. 

In Fig. 4, we perform the same type of feature importance analysis using SHAP values, for the 

DNN model trained on MFFs. Here, we highlight the most important chemical substructures in the 

prediction of gas permeability. As shown in Fig. 4(a), the most important substructure overall is 

2854, the methyl group. We believe that this feature facilitates permeability because it is 

hydrophobic and its shape contributes to steric frustration between polymer chains. Similarly, the 

quaternary carbon connected to an aliphatic ring (substructure 2168) contributes to increasing 

permeability, which supports our findings above. The DNN model also learns that the number of 

connection bonds, substructure 1781, is correlated with gas permeability, because many high-

permeability PIMs are ladder polymers with four connection points per repeating unit, as opposed 
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to two for a typical polymer. The correlation matrix between chemical substructures (Fig. S9 of 

Supporting Information) suggests that most of the important substructure features are independent 

of one another. However, substructures 1781, 1432, and 822 are highly correlated and all have a 

positive relation to gas permeability (Fig. 4(b)). Upon closer examination, we find that 

substructure 1781 is contained within substructure 1432, which is contained in substructure 822. 

Substructures 1432 and 822, two double-bonded carbons connected to an aromatic ring, define 

polyacetylenes, which demonstrate some of the highest permeabilities among non-porous 

polymers in gas separations66. By contrast, polar groups generally have negative contributions to 

gas permeability, as shown in Fig. 4(b). For example, double-bonded oxygens (799 and 2706), 

ethers (1519), and nitrogen atoms (2906) are all inversely correlated with gas permeability. Since 

most gas molecules are non-polar, the presence of these polar groups generally reduces the 

solubility of gases, which explains the negative effect. 

However, in Fig. 4(a), our ML models show that these groups tend to have a greater 

negative impact (measured by SHAP value) on N2 and CH4 permeability, compared to O2 and CO2, 

which explains why the presence of these groups in polyimides, ladder polymers, and 

poly(ethylene oxides)19 can increase selectivity by widening the permeability difference between 

certain pairs of gases, which is desirable for gas separations. This supports a known heuristic in 

Fig. 4 Important molecular substructures as identified using SHAP on the DNN-ensemble ML model trained 
on MFFs and BLR-imputed permeabilities. (a) Average SHAP importances for the top twelve substructures for 
each of the six gas permeabilities (He, H2, O2, N2, CO2, and CH4). (b) Impact of top twelve substructures on CH4 
permeability output. Each dot represents the impact of a particular sample in the training set. (c) Illustration of top 
substructures, with correlated features circled. Green text signifies features that have positive effects on 
permeability and red signifies a negative effect. In the substructure drawings, blue highlights the central atom in 
the environment, yellow indicates aromatic atoms, and gray indicates aliphatic ring atoms. 
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membrane design, that CO2 selectivity can be increased via increased CO2 solubility by 

incorporating oxygen atoms into polymer membranes19,23. Across the board for substructures, 

SHAP values tend to be higher for N2 and CH4 compared to O2 and CO2 (Fig. 4(a)), which suggests 

that incorporating chemistries that increase permeability (i.e. methyl groups) is likely to come at 

the cost of selectivity. Our ML models thus elucidate a chemical basis for the 

permeability/selectivity tradeoff: chemical features that increase permeability are likely to do so 

to a greater extent for molecules that are less permeable (N2 and CH4), but chemical features that 

reduce permeability are also likely to impact these molecules to a greater magnitude–thereby 

increasing selectivity for the more permeable gas (O2 and CO2). Achieving high permeability and 

selectivity thus becomes a balancing act. This unique understanding is unlocked from the ability 

of ML to learn complex patterns in data. 

2.4 Discovery of high-performance polymers and validation through MD simulations 

After training our RF and DNN ensemble ML models, we use the models based on MFFs for 

high-throughput screening and discovery of high-performance polymers for gas separations. We 

choose the ML models using MFFs for simplicity due to their slightly better performance and 

lower memory requirements. We calculate MFFs for millions of hypothetical polymers in Datasets 

B, C and D, which span a wide and relevant chemical space. These inputs are then passed through 

the RF and DNN-ensemble models in a feed-forward manner. The predicted permeabilities for the 

DNN model, broken down by dataset, are plotted for O2/N2, CO2/CH4, CO2/N2, and H2/CO2 

separations in Fig. 5. Similarly, the predictions for the RF model are visualized in Fig. S10 of 

Supporting Information. 
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Broadly, we find that the RF model predicts permeabilities in a much narrower space than the 

DNN ensemble, which explains its lower R2 values on the test set and further supports the 

observation that the DNN ensemble is more accurate and generalizable. Predicted permeabilities 

for each screening dataset lie in their expected region in the permeability-selectivity space, which 

further supports the accuracy of our ML models. Namely, both models predict permeabilities close 

to existing Robeson upper bounds for polymers in Dataset D, which consists entirely of ladder 

polymers (a subclass of PIMs). Similarly, Dataset C consists of polyimides (including many PIMs), 

and their permeability predictions span a space that includes polymers below and above the 

Robeson upper bound, reflecting the dataset’s diversity. However, Dataset B corresponds to mostly 

polymers with low permeability and selectivity. We believe that this can be explained by the fact 

that PoLyInfo is a broad database that contains many polymers that are not suitable for gas 

separation applications, and Dataset B is populated from existing polymers in PoLyInfo. 

 
Fig. 5 Visualization of predicted permeabilities for hypothetical polymers in Datasets B, C, and D, based on 
the ensemble of DNNs trained on MFFs with BLR-imputed permeabilities. The training dataset (Dataset A) is 
overlayed on the predicted permeabilities. The data is visualized for (a) O2/N2, (b) CO2/CH4, (c) CO2/N2, and (d) 
H2/CO2 separations, with thousands of promising polymers lying at or above the Robeson upper bounds. Units of 
permeability are Barrers. 
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Most promisingly, the DNN model predicts thousands of polymers from Dataset C to be above 

the 2008 Robeson upper bound, for O2/N2, CO2/CH4, CO2/N2, and H2/CO2 separations, which is 

summarized in Table 3. We further find that the DNN ensemble trained on MFFs not only 

generalizes but also extrapolates. We discover a class of hypothetical polymers in Dataset C with 

never-before-seen ultrahigh CO2 permeability (greater than 105 Barrer) and a class of polymers 

with ultrahigh O2 permeability (greater than 104 Barrer)—even though our training set only 

contains 12 polymers with O2 permeability greater than 104 Barrer and only 2 polymers with CO2 

permeability greater than 105 Barrer. 

Dataset C Gas or Separation No. of Polymers 

Above 2008 Robeson upper 
bound 

O2/N2 ~80,000 

CO2/CH4 ~3,000 

CO2/N2 ~800 

H2/CO2 ~10,000 

Permeability above 104 Barrer O2 197 

Permeability above 105 Barrer CO2 225 

Table 3 Summary of the number of polymers with exceptional performance discovered from Dataset C. Dataset 
C contains about 8 million hypothetical polyimides formed by known dianhydride and diamine/diisocyanate pairs 
from PubChem59. 

We select several hypothetical polymers with high predicted permeability and selectivity 

across all four separations under study, and we validate their performance using MD simulations 

to calculate permeability. Details of intermediate values calculated during the simulation process 

can be found in Table S5 of Supporting Information, while SMILES strings for the selected 

polymers are given in Table S4. Note that our MD simulation protocol has been benchmarked 

against experimental and simulation values for the gas permeabilities of PIM-161, with good 

agreement with the literature (Table S7 of Supporting Information).  

Both the RF and DNN model can identify polymers with high performance in Datasets C and 

D. The chemical structures of the selected polymers are drawn in Fig. 6(a). We highlight some of 

the top substructures identified from SHAP analysis (Fig. 4) in these chemical structures, which 

corroborates our earlier conclusions. For instance, the higher permeability polymers tend to have 

more methyl groups (substructure 2854) and methyl groups attached to aliphatic rings 

(substructure 2168) to increase steric frustration. Meanwhile, double-bonded oxygens 
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(substructure 2706) in the polyimide backbone help to maintain selectivity for gases such as O2 

and CO2. 
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As shown in Fig. 6(b-e), ML-predicted performances lie very close to their respective MD-

simulated performances for separations involving O2, N2, CO2, CH4, and H2. Error ranges for 

permeability calculations from simulations and predictions from ML models are provided in Table 

S6 of Supporting Information. In general, the DNN-ensemble model predictions differ less from 

the values given by MD simulations, compared to those of the RF model. While the permeability 

predictions tend to have larger error and uncertainty as the DNN model extrapolates to higher 

permeability values, our experimentally validated MD simulations confirm the predicted 

performances of these top candidates. Thus, thousands of polymers in our screening datasets with 

predicted permeabilities above the Robeson upper bound, or ultrahigh predicted permeabilities, 

could translate to real polymer membranes with exceptional separation performance.   

Notably, P-DNN-C3 and P-DNN-C4, hypothetical polyimides in Dataset C, demonstrate 

O2/N2 selectivity significantly beyond the 2015 upper bound of existing known polymers, as 

predicted by our DNN-ensemble model and further validated by MD simulations. To our 

knowledge, these novel discoveries have the highest O2/N2 selectivities for their respective O2 

permeabilities, discovered to date. These hypothetical polyimides can each be formed through the 

polycondensation of a previously synthesized diisocyanate with a dianhydride, as shown in Fig. 

S15-16 of Supporting Information.  

Because of the multitask nature of the DNN-ensemble ML model, many polymers are 

predicted to perform well across several metrics. For example, P-DNN-C3 surpasses current upper 

bounds for O2/N2 and H2/CO2 separations, while P-DNN-C4 demonstrates exceptional 

performance for O2/N2 and CO2/N2 separations. However, these two polymers have poor CO2/CH4 

selectivity. P-DNN-C1 performs near or above the 2008 Robeson upper bounds for O2/N2, 

CO2/CH4, and CO2/N2 separations. In another vein, P-DNN-C2 has both ultrahigh O2 permeability 

and CO2 permeability, while maintaining high selectivity. Similarly, P-DNN-C1 and P-DNN-C2 

Fig. 6 Validation, using MD simulations, of the performance of selected top polymer candidates from the 
ML models trained on MFFs with BLR-imputed permeabilities. (a) Chemical structures for the selected 
polymer candidates with high performance. Important chemical substructures are highlighted in the molecules.  
Asterisks in chemical structures indicate connection points between repeating units. The predictions from ML 
models are shown as circles, while corresponding MD simulation values are shown as squares, for (b) O2/N2, (c) 
CO2/CH4, (d) CO2/N2, and (e) H2/CO2 separations. Units of permeability are Barrers. P-RF-C is identified from the 
RF model, from Dataset C. P-RF-D is identified from the RF model, from Dataset D.  P-DNN-C1 through P-DNN-
C4 are identified from the DNN ensemble model, from Dataset C. P-DNN-D1 and P-DNN-D2 are identified from 
the DNN ensemble model, from Dataset D. 
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can each be formed through the polycondensation of a known diamine and a dianhydride, as given 

in Fig. S13-14 of Supporting Information. 

To further investigate the superior permeability of the selected top polymer candidates, we 

generate their realistic structural models and analyze their pore structures via molecular 

simulations in Fig. S17 of Supporting Information. Details of our simulated polymerization 

algorithm are given in the Methods section (and additionally Fig. S12-16 of Supporting 

Information). In comparison with PIM-1, our top candidates have more voids, enhanced 

microporosity, and larger pore radii. The pore size distribution of the top candidate polymers is 

wider and shifted to the right, further suggesting enhanced microporosity and permeability. 

 

3. DISCUSSION 

In this work, we demonstrate an accurate and cost-effective ML implementation that can 

effectively explore the ever-expanding design space for polymeric gas-separation membrane 

materials, by learning their synthesis-property relationships. Firstly, our study reveals that fixed 

chemical descriptors or fingerprints are both excellent representations for predicting gas 

permeabilities of polymer membranes. Corroborating our recent benchmark study on polymer 

glass-transition temperature44, we conclude that the choice of chemical representation generally 

plays a limited role in each ML model’s performance, as long as sufficient chemical substructures 

are captured. Additional features, such as microstructure, could be considered in future ML models, 

given the importance of microstructural characteristics such as FVEs in solution-diffusion 

transport theory of membranes67. Incorporation of such characteristics as input features has 

improved metal-organic framework adsorption prediction68,69, compared to using solely chemical 

descriptors. These microstructural features could be efficiently calculated via MD simulations, as 

being demonstrated in this work. Alternatively, because high-throughput MD simulations can 

calculate gas permeabilities with reasonable accuracy, these simulations could also be used to 

augment the training set  or be incorporated into active learning frameworks to reduce the 

uncertainty of ML models71. Nevertheless, we find that using fixed chemical features captures 

sufficient information to predict the gas permeabilities of the polymer membranes studied here. 

We additionally gain insight into how the choice of ML model affects performance. At the 

same time, we demonstrate that ensembling is a powerful technique for improving prediction 

accuracy while simultaneously quantifying uncertainty. Traditionally, RF models are thought to 
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work better on small datasets, while deep learning is reserved for large training sets. But while 

decision trees are adequate for capturing simple relationships, neural networks can in principle 

approximate any function to arbitrary accuracy72. In our study, we demonstrate that deep learning 

can be effectively applied to small training datasets on the order of a few hundred training samples. 

We believe that our DNN method is accurate for two reasons. Firstly, a DNN that is deep enough 

will not overfit if it’s in the "modern" interpolating regime73. Secondly, each DNN model, seeing 

limited data, captures complexities and nuances in the data, which results in individual predictions 

with high variance; however, the overall model generalizes well when predictions are averaged 

together via ensembling74. Importantly, training the 16 DNNs in our study and evaluating 

predictions for millions of samples is still computationally tractable from a cost standpoint. 

Though various other neural networks such as graph neural networks are garnering increased 

interest for certain molecular discovery and synthesis tasks75, we do not observe notable 

performance gains from training graph convolutional, recurrent, or convolutional neural networks. 

We have reached a similar conclusion from our polymer informatics benchmark study on polymer 

glass transition44. In short, we believe that deep learning techniques, even standard multilayer 

perceptrons, have much broader applicability to small datasets of chemical features than previously 

assumed. 

 We further show that SHAP analysis can succinctly elucidate the impacts of input features, 

which erodes the paradigm that ML models are black boxes76. SHAP values can be calculated for 

nearly all supervised ML models, and we encourage future chemical and polymer informatics 

studies to take advantage of explainability in ML77. A recent study also used coloring of 

substructures when training a graph neural network for interpretable ML78, which suggests that 

feature-importance analysis of ML models can be extended beyond fixed representations to 

learned chemical representations.  

Our study of fixed feature importance solidifies many existing membrane design principles, 

but additionally offers unique, generalized guidance for the molecular engineering of new 

polymers for gas separations. Overall, SHAP analysis illuminates the chemical balancing act 

required for overcoming the permeability/selectivity tradeoff. Polymers must juggle (A) the 

number of bulky chemical moieties–i.e. methyl groups, aliphatic rings–that increase microporosity 

(permeability at the expense of selectivity) with (B) the number of polar groups–i.e. carbonyls, 

oxygens–that increase relative CO2 and O2 affinity (selectivity at the expense of permeability).  
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P-DNN-C3 and C4 are case studies into this balancing act. They achieve high permeability 

primarily through methyl groups and large aliphatic rings, which is a relatively underexplored 

strategy in membrane design. At the same time, these polymers attain unprecedented O2/N2 

selectivity via the incorporation of polar groups, such as carbonyls and sulfonyls. By contrast, P-

DNN-C1 and C2 each feature an inflexible polycyclic backbone and two trifluoromethyl 

containing side chains. Amazingly, they demonstrate that our DNN model learns the importance 

of bulky spherical groups (such as trifluoromethyl groups) for creating steric frustration79, which 

has been recognized in the gas separation community as favoring higher gas permeability25,80,81. 

Restricted backbone mobility plus the presence of the bulky pendant groups disrupts polymer chain 

packing and leads to high fractional free volume and ultrahigh permeability, all while the polar 

polyimide backbone helps to maintain selectivity. 

Differently, the discovered polymers from Dataset D utilize a rigid ladder-type backbone with 

a spirobifluorene (SBF) unit, like many other ladder-type PIMs31. The fused benzene rings in the 

SBF unit reduce the flexibility of the backbone around the spirocenter, and the two-bond ladder 

connections restrict the rotation ability of the backbone. The reduced chain flexibility may also 

prohibit chain motion to help resist physical aging25. To further increase permeability, P-DNN-D1 

and P-DNN-D2 attach a fused tetramethyltetrahydronaphthalene (TMN) to the SBF unit, which 

incorporates additional aliphatic rings and methyl substituents30.  

Overall, the generalizable ML models presented here are capable of efficiently discovering 

promising polymers with high performance, with thousands of candidates lying beyond the 2008 

Robeson upper bound11. Additionally, the ultra-high permeability polymers discovered in this 

work would allow for never-before-seen industrial gas separations with higher throughput while 

maintaining sufficient selectivity. Incredibly, the DNN model can extrapolate relatively accurately 

to high permeability predictions that it did not see in training. We believe that this amazing 

performance primarily arises from careful selection of diverse training samples and training with 

a neural network that can capture complexities but also generalizations through multitask 

parameter sharing and ensembling. 

Our experimentally validated MD simulations of gas permeability confirm the ML predictions, 

which suggests that many of the polymer candidates discovered here can be translated to reality in 

experiments. As elaborated upon in Fig. S2 of Supporting Information, each of the promising 

polyimides identified here have a well-defined cross-linking formation from existing PubChem 
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chemicals, which makes their syntheses tractable. However, the difficulty of synthesizing complex 

polymers in a solution-processable manner should not be underestimated. Therefore, to facilitate 

the overcoming of this challenge, we have tabulated the thousands of promising polymers that we 

have identified and included them in the GitHub repository associated with this work 

(https://github.com/jsunn-y/PolymerGasMembraneML), which we encourage experimental and 

computational researchers to explore further. While our models consider membrane performance 

to be constant, future efforts should also take into account how aging, plasticization, and swelling 

can degrade membrane performance over time, which is an important consideration in membrane 

design8,82.  

Ultimately, we provide the membrane design community with many novel high-performance 

polymer candidates and key chemical features to consider when designing their molecular 

structures. Many of the concepts demonstrated here can likely be extended to other materials 

discovery and design tasks, such as polymer membranes for desalination and water treatment14, 

high-temperature fuel cells83, and catalysis84. With the continual improvement of ML techniques 

and an increase in computing power, we expect that ML discovery frameworks will only gain 

popularity and deliver increasingly substantial results in materials discovery for a wide range of 

applications85. 

 

4. METHODS 

4.1 Calculation of chemical representations for polymers  

The workflow for our ML method to learn synthesis-property relationships of gas separation 

membranes is shown in Fig. 1. In Step 1, the training set consists of the single repeating units of 

353 unique homopolymers with at least one known gas permeability (among He, H2, O2, N2, CO2, 

and CH4), as obtained from the PoLyInfo52 and Membrane Society of Australasia53 (MSA) 

databases. In the datasets, each polymer entry is identified based on its unique SMILES string, a 

notation for chemical structures that represents a molecule as a unique string of ASCII characters86. 

ML models for prediction of gas permeability from chemistry must utilize a descriptive and 

appropriate input to represent the polymer44. Thus, in Step 2, RDKit54 is used to calculate two 

different chemical representations of each polymer’s repeating unit: its molecular descriptors and 

its MFF55.  
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First, 146 relevant chemical descriptors are calculated, which generally includes information 

such as number of certain atom types, presence/absence of features, and number of rings, among 

other physical descriptors that can be calculated from the atom types and connectivity. A list of 

the available descriptors in RDKit is provided in Table S1 of Supporting Information. Thus, the 

important chemical features of each polymer repeating unit are identified. We additionally use 

RDKit to generate the MFF for each repeating unit chemistry. In short, the fingerprinting process 

consists of42: (1) assign each atom with an identifier, (2) update each atom's identifiers based on 

its neighbors, (3) remove duplicates, and (4) fold list of identifiers into a bit vector (a Morgan 

fingerprint). In our case, the chemical substructures considered are up to three units in radius, 

where each atom or bond is one unit, resulting in 3209 different substructures. In the fingerprint 

vector of length 3209, each bucket indicates if a certain substructure is present, and we minimize 

information loss by accounting for frequency if a substructure is present multiple times in a single 

repeating unit, known as the Morgan fingerprint with frequency (MFF)42. Finally, we shorten the 

fingerprint vector by only using the 114 most common substructures in the training set as input 

features. Unlike group-contribution methods, fingerprinting is dynamic and can evolve to include 

new chemical structures and connectivities between neighboring repeating units. 

4.2 Training and interpretation of supervised ML models 

The calculated molecular features are then used as inputs for multitask ML models and trained 

to learn gas permeabilities (He, H2, O2, N2, CO2, and CH4), in Step 3. For each of our supervised 

ML models, training is based on the log of the permeability measured in Barrers and, for a given 

polymer, the permeability values are averaged across multiple literature sources, if available. Many 

polymer entries in our training database have missing data, where gas permeabilities are not 

available for all six gases under study. Yuan et al. have demonstrated effective imputation of 

missing gas permeability data using the MICE algorithm56, if at least one gas permeability is 

available. We use their source code to impute missing gas permeabilities to augment our dataset. 

For MICE, we compare a linear predictive model, Bayesian linear regression (BLR), with a 

nonlinear predictive model, extremely randomized trees (ERT). By filling in missing gas 

permeabilities, imputation allows us to train multitask ML models. This improves our models via 

parameter sharing, which is physically reasonable, as permeabilities between different gases are 

related for a given membrane chemistry. 
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We train multitask RF and DNN models to predict gas permeabilities based on chemical 

descriptors and fingerprints, with 20% of the data reserved for the test set and the remaining 80% 

used for training, selected randomly. RFs reduce variance in decision trees by making regression 

predictions based on the average of many decision trees: during the growth of each tree, each new 

decision rule is made using only a random subset of datapoints and features87. RFs thus build 

generalizable models of non-linear relationships. We train each RF using 200 estimators, with 

training capped at the square root of the number of features for each decision tree and a max tree 

depth of 10. Additionally, we train dense multilayer perceptrons. These DNNs have 5 hidden layers 

with 64, 64, 32, 16, and 8 nodes, respectively; ReLU activation; and dropout of 0.1. The multitask 

models output 6 permeabilities for the 6 gases of study. The DNNs are trained using minibatch 

gradient descent with a batch size of 64, the Adam optimizer, and mean-squared-error loss.  

Due to their density and complexity, deep learning models can be susceptible to particularly 

high variance. Especially, when trained on a small dataset, there is inherent stochasticity resulting 

from the network's initialization and the order of data processing during training. There exist many 

ways to quantify and reduce uncertainty for problems with chemical inputs71,88. One simple way 

to improve the predictive capacity of such models is through ensembling, or averaging together 

several models trained under different conditions. For example, given an ensemble of distinct 

models ℰ ൌ ሼ𝑀ଵ,𝑀ଶ, … ,𝑀௡ሽ and inputs 𝑥, the ensemble prediction is given by the mean of all the 

model predictions 

𝑀ഥሺ𝑥ሻ ൌ ෍
𝑀ሺ𝑥ሻ
𝑛

ெ∈ℰ

 

The uncertainty of the prediction can then be measured as the variance between model outputs. 

𝑈ሺ𝑥ሻ ൌ ෍
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ଶ

𝑛
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While there are many ways to perform ensembling, we choose to use bootstrapping, or training 

each model in the ensemble with a different random subset of the training data. First, we randomly 

select 20% of the data to be the holdout set, which is used for performance scoring. 16 independent 

models are trained, using 80% of the entries in the non-holdout set each time, selected at random. 

The training of our DNN ensemble on MFFs with BLR imputation of permeabilities is given in 

Fig. S11 of Supporting Information. 
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Alongside the models trained in Step 3 of our workflow, we can perform explainable ML. To 

strengthen our physical understanding of how chemical features are linked to performance in gas 

separation membranes, our primary tool involves assessing SHAP values from each model57. In 

essence, the SHAP approach considers how well a model performs when each feature is neglected 

during training. By analyzing the quantitative impact of leaving out a feature on the model 

prediction, a feature importance can be assigned. Moreover, each sample’s impact on the final 

model prediction can also be evaluated.  

Once the ML models are trained and achieve good performance, we then screen over nine 

million hypothetical polymers (summarized in Table 1) to predict their gas permeabilities, in Step 

4. Our screening predictions are then used to identify promising polymer candidates with high 

permeability and selectivity. The code and datasets for our ML implementation can be found at 

https://github.com/jsunn-y/PolymerGasMembraneML.  

4.3 Permeability validation using MD simulations 

In Step 5, to validate the gas permeabilities of selected polymeric membranes, all-atom MD 

simulations, using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)89, are 

performed to calculate each gas’s permeability as the product of its solubility and diffusivity34: 

𝑃௜ ൌ 𝐷௜ ൈ 𝑆௜ 

The polymer consistent force field (PCFF)90–92 is employed to describe the interatomic interactions 

of both polymer and gas, which has been widely used to calculate the mechanical properties, 

cohesive energies, heat capacities and elastic constants of organic polymers91,93,94.  

We construct the polymeric membrane models via the multi-step crosslinking of binary 

components in the polymers of interest, as most high-performance polymers are polyimides or 

ladder polymers. The reactive atoms are first assigned to each monomer, and 45 of each component 

are packed into a 3D-periodic amorphous cell. Geometry optimization and 5 annealing cycles of 

the packed system are carried out. The optimized structure is then cross-linked under the NVT 

ensemble within an initial cutoff distance of 4.5Å. Covalent bonds are formed between reactive 

atoms, and the cross-linked network is relaxed under the NPT ensemble for 1 ns. After that, the 

next cross-linking step continues with an increased cutoff distance of 0.5Å until the cross-linking 

degree reaches 90%. During the cross-linking process, extra hydrogen atoms are removed, and 

partial charges are updated to follow assignments from the force field and charge neutrality. The 

generated, cross-linked polymer structure is used for subsequent calculations. Details of the cross-
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linking results for selected ladder polymers and polyimides are presented in Fig. S12-S16 of 

Supporting Information. 

For solubility calculations, MD simulations are performed with a time step of 1.0 fs in the 

following sequence: (1) energy minimization, (2) 0.5 ns NVT-MD simulation at 600 K, (3) 0.5 ns 

NPT-MD simulation at 600K and 1 bar, (4) 5 thermal annealing cycles from 600 to 300K with a 

temperature interval of 50K at 1 bar, (5) 0.5 ns NPT-MD simulation at 300K and 1 bar, and (6) 

0.5ns NVT-MD simulation at 300K. Finally, the solubility coefficients of relevant gases are 

evaluated at infinite dilution, which are equal to their Henry’s constants95. 

Before simulations of diffusivity, gas molecules, such as H2, CH4, CO2, O2 or N2 are inserted 

into the simulation box of the cross-linked polymer. The system is first equilibrated through a 21-

step MD equilibration protocol95. The system is then equilibrated for 1 ns under the NVT ensemble 

at 300K, followed by 2 ns under the NPT ensemble at 300K and 1 atm. Production runs are then 

performed for a duration of 7 ns. The first 2 ns are used for equilibration and the remaining 5 ns 

for analysis. The diffusion coefficient of gas molecules in the cross-linked polymer is estimated 

by the mean squared displacement (MSD) defined as  

MSDሺtሻ ൌ  
1

6𝑁
 
𝑑
𝑑𝑡

lim
௧→ஶ

෍  〈|𝑟௜ሺ𝑡ሻ െ 𝑟௜ሺ0ሻ|ଶ〉
ே

௜ୀ଴

 

where N is the number of gas molecules and 𝑟௜ሺ𝑡ሻ is the position of molecule 𝑖 at time 𝑡. MSD is 

calculated from the ensemble average ⟨ ⋯⟩  of the trajectory, and we use the multiple-origin 

method to improve the statistical accuracy. In addition, to account for molecular adsorption to the 

polymer membrane at the saturation state, we consider the diffusivity of different numbers of gas 

molecules: 5, 10, 20, 30, 40, 50, and 100. We find that using 20, 30, or 40 gas molecules result in 

similar diffusivities, which are averaged to give the calculated diffusivity. Finally, based on the 

solution-diffusion mechanism, gas permeability (𝑃௜) in a polymer membrane can be expressed as 

the product of the diffusivity (𝐷௜) and the solubility constant (𝑆௜). As summarized in Table S7 of 

Supporting Information, our benchmark study on the solubility, diffusivity, and permeability of 

five pertinent gases (H2, N2, O2, CO2, and CH4) in a PIM-1 membrane agrees well with available 

experimental data and simulation results33,61, which suggests that our MD model and method are 

physically reasonable. 
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