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Quantum perturbation theory is used to examine the eigenvalues of a nonseparable Hamiltonian system in the
classically regular and irregular regimes. As a function of the perturbation parameter, the eigenvalues
obtained by exact (matrix diagonalization) methods undergo an avoided crossing. In the present paper
perturbation theory is used as an approximate method to predict the locations of such avoided crossings in
energy-parameter space. The sparsity of such avoided crossings in the Hénon—Heiles system is seen to
produce regular sequences in the eigenvalues even when the classical motion is predominantly chaotic.

I. INTRODUCTION

The behavior of isolated molecules, treated as an-
harmonic coupled oscillators in a rotating frame, is of
considerable interest to the theory of unimolecular reac-
tions, ! infrared multiphoton dissociation, ? and related
topics. Several numerical studies have been made on the
classical dynamics of anharmonic coupled oscillators.?
They suggest regular (quasiperiodic) motion at low en-
ergies and stochastic (chaotic, but nevertheless deter-
ministic) motion at high energies.* These results find
an analytic basis in the Kolmogorov—Arnol’d—Moser
theorem.®

The quantum mechanics corresponding to the regular
{(quasiperiodic) classical regime is now reasonably well
understood with the aid of semiclassical ideas.®” The
quantum-mechanical counterpart of the classically
stochastic regime is the subject of much current in-
terest.?® It has been suggested® that an eigenstate in the
quantum stochastic regime would have a ‘statistical’
wave function, i.e., one in which the average of some
dynamical quantity approximates a microcanonical aver-
age at that energy (e.g., either an average over quantum
states in that neighborhood for high quantum numbers,
or the classical microcanonical ensemble average at
that energy).

A mechanism for forming a statistical wave function
was recently proposed9 in terms of multiple avoided
crossings in plots of eigenvalues of Hamiltonian H versus
a perturbation parameter .

IC=Hy+)\H, . (1.1)

Here H, is a (classically) integrable Hamiltonian and
H, is a nonintegrable perturbation. The typical behavior®‘
of the eigenvalues as functions of a single parameter
when they approach each other, is repulsion, or an
“avoided crossing.” When there were no avoided cross-
ings of these eigenvalues in the vicinity of some value
of A, or if the avoided crossings were isolated, it was
suggested that the corresponding quantum mechanical
motion was “regular.” But when a state was involved
in a sufficient number of avoided crossings in some A
neighborhood together with an overlapping of these
avoided crossings, it was proposed® that the state began
to take on a statistical character. In the present paper
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we present a perturbation method for predicting these
“avoided crossings.”

An alternative approximate method has been used’
to calculate eigenvalue versus perturbation parameter
plots: For a pair of coupled oscillators the higher fre-
quency mode was treated adiabatically during the motion
of the lower frequency one. The resulting equation for
the eigenvalue was solved numerically, We comment on
it later,

Hi. THEORY

The basic idea is the following, In classical canonical
perturbation theory, !! the perturbed system H, is integra-
ble, i.e., it has N well-defined action variables for an
N-coordinate system. When the perturbation A\H, is ap-
plied, the original action variables are no longer good,
and better ones can be calculated using perturbation
theory to some order. (A nonperturbative method for
determing the good action variables has been given in
Ref. 6.) Thus, though the perturbation \H; may some-
times destroy the invariant tori (a currently accepted
belief, based on numerical experiments®*%), the tori
(and thereby integrability) are assumed to still exist
in perturbation theory.

Correspondingly, we assume that if one applies non-
degenerate quantum perturbation theory, ' one assumes
the quantum analog of regular classical motion. Such
perturbatively calculated eigenvalues will have crossings
whenever the avoided crossings occur in the exact sys-
tem. To calculate the splitting in the avoided crossings,
one must supplement such a perturbation method by us-
ing a degenerate perturbation theory'? in the vicinity of
the crossing.

These ideas are tested in the following section for
the Hénon-Heiles potential, 3(*+6) In a recent study'®
for particular values of the parameters, only one avoided
crossing was found in the 99 bound eigenstates. In that
study, regular spacings of eigenvalues were also found
that continued smoothly from the regular (quasiperiodic)
into the classically stochastic regime. Such sequences
are persumed to reflect the absence of quantum mechan-
ical stochasticity (which is quite reasonably believed’
to produce an “irregular spectrum”). Thus, classical
stochasticity is not a sufficient condition for quantum
stochasticity. [Some additional conditions are proposed
in Ref. 9(c).] In the present paper we also calculate
these sequences of eigenvalue differences and compare
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with the results of Ref. 13.

The Hénon-Heiles Hamiltonian (in Cartesian x, vy, p,,
p, coordinates) is

H=5(p2+p2+x®+9%) +2x(y? - 2/3) , @2.1)
and in polar coordinates® ¢ ( 9, p., ps),
W=5(p2+p2/r®)—xr®/3cos36 @2.2)

=Hy+MH,;

It has been studied classically*® and quantum-mechan-
ically.®©»13~15 1n Ref. 6(c), the value of A used was
0.1118 while in Ref, 14, it was 0.088. The perturbative
eigenvalues are calculated below versus A for both

cases, to compare with results in the two systems. The
eigenvectors of H, are denoted |nl) and satisfy
Ho|nl)=EY|nl) =(n+1)|nl) ,
2.3)

{r, 8|nl)=y2,(r, ),

where » is the principal quantum number (E¢, =E?) and
1 is an orbital quantum number varying from —n to +n

in steps of 2, Since the system (2.1) has C, symmetry,
the eigenstates are either of A (singly degenerate: [ =0,

+3, +6, etc.) or E {doubly degenerate; ! is not a multiple

of 3) symmetry. The perturbation H, couples states dif -

fering in the /-quantum number by 3 and in the n-quantum

number by 1 or 3, and these matrix elements are well
known. *® Thus, the perturbation couples states of each
symmetry species separately; a pictorial representa-
tion of the coupling scheme is given in Fig, 1.

The standard form of Rayleigh—Schrodinger perturba-
tion theory!? is employed. The matrix H, is purely off-
diagonal in the |nl) basis, and thus first order perturba-
tion terms vanish. The selection rules further ensure
that all the odd-order perturbation terms vanish as well
(this is apparent from Fig. 1; the nth order contribu-

tion to the perturbed eigenvalue comes from circuits
of n sides beginning and ending at the same site. In
these figures, no such odd-ordered circuits are possible).

Thus, the energy of the n/th eigenstate is given by
Ey=ES+XE2 +N'ER +... . 2.3)

For compactness in presenting the expressions for the
various E%’, we use the notation

m = (ul)
Vs =\ | Hy| $) =l | Hy | 2T,

i.e., V,,is a matrix element of H, in the basis of H,,
and

bps=(En -E)=(Es-Eq.

Thus,
E;?)=Z’|Vmslz/Ams’ (2'33')
s
’ r Vs Ve Vi, V,
E'(n‘“ = ! Ims Vst Vtr Vom
zs: ; Z Ams Amt Amr
2) 0| VmsIz
-Ef E . (2.3b)
S ms

In the above Egs. (2.3a, b), the prime on the summa-
tions indicate that the terms with m equal to the sum-
mation index are to be omitted.

All { states for a given principal quantum number »
are degenerate inzeroth order, Tohigher order inthe per-
turbation, the E states {{ is not a multiple of 3) are al-
ways doubly degenerate; their +! and - states are not
coupled to each other through any circuits of any de-
gree [see Fig. 1{p)]. The A states, on the other hand,
are those for which / is a multiple of 3, and since +{
and -] states are coupled by H,, the perturbation lifts
the degeneracy. As the results in the next section in-
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TABLE I. Comparison of exact quantum results
with 2nd and 4th order perturbation theory for A
=0.1118.
n, I ES E}° E# N
0, 0 0.9986 0.9986 0.9986 0,00
1, £1 1.9901 1.9903 1.9901 0.01
2, 0 2. 9562 2.9569 2.9563 0,00
2, £2 2, 9853 2.9861 2,9854 0,00
3, £1 3.9260 3,9278 3.9262  0.01
3, +3 3.9824 3.9861 3.9843 0. 04!
3.9858
4, 0 4,8702 4,8736 4,8706  0.01
4, £2 4.8987 4,9028 4,8996 0.02
4, £4 4,9863 4,9903 4, 9867 0.01
5, £1 5.8170 5.8236 5,8184 0,02
5, +3 5. 8670 5.8819 5.8764  0,12!
5.8815
5, £5 5.9913 5.9986 5.9923  0.02
6, 0 6.7379 6.7486 6.7404 0,04
6, £2 6.7649 6.7778 6.7693  0.07
6, +4 6.8354 6.8653 6.8562  0.30
6, £6 6.9989 7.0111 7.0009  0.02f
6.9994
7, 1 7.6595 7.6778 7.6654 0.08
7, £3 7.6977 7.7361 7.7232  0.24!
7.7369
7, %5 7.8327 7.8528 7.8389  0.08
7, £7 8.0094 8.0278 8.0125  0.04
8, 0 8. 5541 8.5819 8. 5644 0.12
8, +2 8.5764 8.6111 8.5932  0.20
8, +4 8.6779 8.6986 8.6799  0.02
8, +6 8.8113 8.8444 8. 8244 0.12f
8.8152
8, +8 9.0127 9.0486 9.0266 0.15
9, =1 9.444 9.490 9. 466 0.23
9, +3 9.467 9.549 9.524 0.42t
9.552
9, =5 9.629 9.665 9.639 0.10
9, £7 9.794 9. 840 9.812 0.18
9, 9 10,0354 10.0736 10.0433 0.08!
10.0356
10, 0 10.3052  10.374 10.341 0.35
10, £2 10.318 10. 403 10.370 0.50
10, +4 10.463 10.490 10.457 0.06
10, + 6 10.573 10.636 10.601 0.17°
10.590
10, +8 10.774 10.840 10, 803 0.27
10, £10 11.050 11.103 11.062 0.11
11, +1 11.152 11.261 11.219 0.60
11, +3 11.160 11.319 11.277 0.67f
11.325
11, +5 11.383 11.436 11.392 0.08
11, +7 11.534 11.611 11.565 0. 27
11, 9 11.750 11,844 11,795 0.37
11.752
11, +11 12.065 12.136 12.083 0.15
12, 0 11.966 12.124 12.071 0.88
12, +2 11.968 12.153 12,099 1.09
12, +4 12.206 12.240 12.186 0.16
12, +6 12.277 12.386 12,329 0.13f
12.334
12, =8 12.480 12.590 12.531 0.41
12, £10 12,712 12. 852 12,790 0.618
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TABLE I (Continued)

n, 12 ES E}° E}® a°

12, £12  13.077 13,174 13.106 0.180f
13.087

13, 1 12.762 12.990 12.924 1.38

13, 3 12.748 13.049 12,981 0.85¢
13,032

13, +5 13.081 13.165 13.096 0.11

13, =7 13.233 13.340 13.269 0.27

2Quantum numbers »l in the polar basis.

PExact quantum mechanical eigenvalues from Refs.
6(c) and 13.

%Second order nondegenerate perturbation theory re-
sult.

9Fourth order nondegenerate perturbation theory re-
sult.

°A is the absolute percentage error=(|Ej— E,|1/E,)
x 100,

{Geometric mean of the percentage error.

8ndicates that the state is involved in an avoided
crossing near this value of A.

dicate, nondegenerate perturbation theory is adequate

(at least to the order we have studied) in the absence

of avoided crossings. In order to estimate the approxi-
mate value for the splitting of the A states, a degenerate
perturbation theory is used. From Fig, 1, it can be
seen that for splitting the [ =+ 3 states, 4th order de-
generate perturbation theory must be employed, for
1=+6, 6th order, and, for [ states, [2(I/3) +2]th order
theory. As a consequence, the energy difference be-
tween +] and —! states decreases sharply as ! increases
(see Table I). Since, for a given n, the different +/ pairs
of states are not degenerate, one can, in a first approxi-
mation, treat only individual pairs », +! simultaneously.
Thus, the 2X2 matrix to be diagonalized for the A states
{the notation is m=nl, m' =n, -1)is

EY Vi

yer  ge | (2.4)
Here, E¥’ =E%, p=2(1/3) +2, and V¥, is the matrix
element connecting the +7 and -1 states. Thereby, for
1=3, we have

Vs Vo Vi Voo
V’(n‘i)m, — 44 r " Vms Vst Viy Vem
! Zs: ; Z 'Ams Amt Amr

r

_E’(HZ)Z" Vm_s;_/iﬂ!. , 2.5)
S S

where now the double prime on the summations indicate
the omission of terms with the summation index equal to
either m or m'.

In order to treat the avoided crossings between any two
levels, a locally degenerate perturbation theory can be
used for these two levels, with m, m’ in (2.4) now de-
noting the two states n, I and »'l’, and p, the order of
the chain connecting the two levels. (E¢’ equals E% now
only at the actual crossing point.)
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. RESULTS

Accurate eigenvalues for the Hénon-Heiles system
with Z =1 and X =0. 1118 have been reported® 13 up to
state nl =13, +7. [These were computed by diagonaliz-
ing the Hamiltonian (2. 2) with a large basis set.] The
eigenvalues obtained by using the fourth-order per-
turbation theory are compared with the exact results in
Table I. The splittings of the / =+ 3 states are obtained
by using Egs. (2.4)-(2.5) and presented in Table II,
Even in this low order perturbation theory, the agree-
ment is seen to be good. In almost all the cases, the
difference in Table I rarely exceeds 0.25%. The cases
of large error correspond to either low ! states or near
degeneracies, i.e., at the avoided crossings. The per-
centage errors (4) of the eigenvalues in Table II are
typically smaller than those in Table I. Even well into
the (classically) stochastic regime, when semiclassical
methods are inadequate due to the sparsity of invariant
tori, the quantum perturbation theory is quite good.
One reason for this behavior may be seen by examining
the energy levels for n< 13 as a function of ).

The dissociation energy E, and the number of bound
states,!” N, , are given by

EM=1/62%, 3.1)

N, = 1/423(1 +1/182%) , 3.2)

In Fig. 2, the eigenvalues calculated by nondegenerate
perturbation theory are shown as a function of A in the
interval (0, 0.20). Inthe neighborhoodof A = 0. 1118, only
a few of these states are involved in crossings or avoided
crossings. (The dissociation energy is 13.33.) One
of these pairs'® involves nl =13, +1 and nl =12, +10.

One anticipates that in order to treat these levels proper-
ly, a rediagonalization must be performed in this )
neighborhood. For smaller ), the number of bound states
increases the dissociation energy being much greater

TABLE II. Degenerate perturbation eigenvalues and splittings
for 1=+ 3 states.

nf® E." E,° s, ¢ S, af
3, £3  3.9824 3.9829  0.0034  0.0029  0.000
3.9858 3.9858
5,3  5.8670 5.8705  0.0145  0.0117  0.027
5.8815 5.8822
7,3 7.6977 7.7086  0.0392  0,0292  0.041
7.7369 7.7378
9,3 9.467 9.495 0.085  0.058 0,054
9. 552 9. 553
11, +3  11.160 11.226 0.165  0.102 0.124
11.325 11.328
13, 3 12,748 12. 900 0.284  0.164 0.533
13,032 13.063

%Quantum numbers nl in the polar basis set.

bExact quantum mechanical eigenvalues from Refs. 6(c) and 12.
®Fourth order degenerate perturbation theory result.

dSplitting between + I states (exact).

®Splitting between + [ states (perturbation result).

fGeometric mean of percentage errors (cf. Table I, Footnote e).
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FIG. 2. Eigenvalue vs A diagram for the states in the polar
basis; the eigenvalues are computed via 4th order nondegenerate
perturbation theory in the interval 0.0<A<0.20.

and so, the system is, for any ratio E/E,, more “clas-
sical,” For example, at A=0.088, which was studied
in Ref. 14, the dissociation energy is 21.52. In the
vicinity of ) =0.088, the number of predicted avoided
crossings for the bound E symmetry states is large
(see Fig. 3). It has been pointed out elsewhere!?

that an increased number of avoided crossings leads
to a much stronger irregularity in the level spac-
ings, and a larger number of large second differences
A%E, '

AE;=E,(\ - AN)+2E,(\) —E;(» +A)) , (3.3)

at A =0.088 than at A =0.1118. Thereby, the larger num-
ber of large A’E,’s found in Ref. 14 compared with that
found in Ref, 13 is explained.

We next consider certain regular sequences ob-
served in the eigenvalue differences at A =0.1118, 13
Some of the energy differences computed were

AE =Enl ‘En-l, 1-1 (3.4)

for different n, I’s. Using the perturbation expression
for the energy to order X, one obtains the analytic ex-
pression,
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AE=1+2/6[(n+1) -6(®m -1)-6] . (3.5)
Thus, for the low [ case (I =1 in Table II of Ref. 12),

AE =1 +3%/6[1 - 5n] . (3.6a)
In the intermediate [ case, n ~1 =4, and thus

AE=14+X%/8[n+1-30] . (3.6b)
In the high [ case, n -1 =0, giving

AE=1+)%/6[n+1-6]. (3.6c)

One thus predicts differences AE>1 only for the high [
cases with n> 3 (as observed), in contrast to all other
sequences, where AE <1, The predicted values from
the second order expression in Eq. (3.5) are compared
in Table III with the results of Ref, 13 and the agree-
ment is seen to be good overall.

Approximate eigenvalues versus perturbation parame-
ter curves were obtained in Ref. 10 using an adiabatic
method described there. The results for locating the
avoided crossings were quite reasonable for the system
studied (quartic potential). Interestingly enough, but
still unexplained, the method gave a reasonable answer
even when the assumed higher frequency mode was
actually the lower frequency mode. The method of Ref.
10 is, however, not as simple as the present one, since
it involves the numerical solution of a differential equa-
tion. (Incidentally, diagonalization of a local 2x 2 Ham-
iltonian matrix was added in the vicinity of an “avoided”
crossing, as in the present case also.)

IV. SUMMARY

In this paper the results of quantum perturbation theory
for the eigenvalues of a nonseparable Hamiltonian system
are described. The (nondegenerate) perturbation theory
gives good agreement with exact results, both for the
actual computation of éigenvalues, as well as in locating
the “avoided” crossings; the crossings of the perturba-

A - STATES E—STATES
TT\\% —— e
\\

0251 %\ §x
\w \
> At -_ =
[O) TTme—
E 16.50} :; =
z \\
b R —_—
T
_— %
Brsp R ———
—_— T %
Q\ —_
—_— Eae—————————
1.0 1 1 L L !
0.078 0.088 0.038 0.078 Qo8ss 0.098
A N
FIG. 3. Same as Fig. 2 in the interval 0.078<A<0.098. Only

the higher energy states are shown here.
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TABLE III. Sequence of energy differences,

Enl_ nel,i=1°
nl? Quantum® Perturbation® Egs. (3.6)
Low [ case
7, 1 0.92 0.93 0.93
9, 1 0.89 0.90 0.90
11, 1 0.84 0.88 0.89
13, 1 0.79 0.80 0,87
Intermediate I case
5, 1 0.95 0.95 0,95
6, 2 0.94 0.95 0.95
7, 3 0.95 0.95 0.96
8, 4 0.96 0.96 0.96
9, 5 0.95 0. 96 0.97
10, 6 0.95 0.96 0.97
11, 7 0.95 0.96 0,98
12, 8 0.95 0.97 0.98
High ! case

2, 2 1.00 1.00 1.00
3,3 1.00 1.00 1.00
4, 4 1.00 1.00 1.00
5, 5 1,01 1.01 1.01
6, 6 1.01 1.01 1,01
7,7 1.01 1.01 1.02
8, 8 1.01 1.01 1.02
9, 9 1.01 1.02 1.02
10, 10 1.01 1.02 1.03
11, 11 1.02 1.02 1.03
12, 12 1.01 1.02 1,04

2Quantum numbers zl in the polar basis.

bExact differences from Ref. 13.

®Fourth order nondegenerate perturbation theory
result,

tively computed eigenvalues are seen as the signature

of avoided crossings in the true eigenvalues. Since it has
been proposed that overlapping avoided crossings lead
to a statistical character in the eigenfunctions, the
knowledge of where such crossings occur, coupled with
an estimate of the interaction in that region, may allow
for a quantum-statistical treatment of such states, The
semiclassical and classical extensions of this idea have
interesting implications for the onset of chaotic behavior
in such nonintegrable systems, and will be presented in
a forthcoming publication. !°
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