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The classical mechanics of a system of two nonlinearly coupled oscillators driven by an oscillating electric
field is studied. The presence of quasiperiodic and chaotic motion in the unforced system is shown to
influence the nature of energy absorption. Two essentially different types of behavior are observed. In the
first, energy is exchanged in a multiply periodic manner between the system and the forcing field. In the
second regime, the energy exchange is erratic and a statistical analysis of a family of trajectories shows the
role of the chaotic motion in the unforced system in the dissociation process. A theory for rate of

photodissociation is presented and results are compared with those obtained from an ensemble of exact

classical trajectories.

i. INTRODUCTION

The phenomenon of multiphoton absorption in mole-
cules has received considerable attention in the past few
years. 4,2 The promise of isotope separation through
selective absorption, and bond (or mode) specific chem-
istry in general, spurred experimental studies on sev-
eral systems, 2 most notably SF,;. Several theoretical
models®* have been proposed for the treatment of multi-
photon absorption-induced dissociation. These include
models with level population dynamics and use of an as-
sumption of rapid intramolecular energy transfer pro-
cess {which leads to an RRKM-type expression for the
overall dissociation). 3> ‘" In some models®‘®’‘® ki-
netic equations have been derived for the level popula-
tion dynamics and that of the off-diagonal density matrix
elements of such vibrationally excited molecules. One
of the most prevalent (qualitative) schemes is based on
the separation of molecular eigenstates into sets of dis-
crete, quasicontinuous and continuous levels with co-
herent absorption in the discrete set and incoherent ab-
sorption by the quasicontinuum and continuum (e.g.,
Ref. 1), followed by dissociation from the continuum.

Due to the high densities of states at most energies
in a typical molecule, any but the most simplified quan-
tal treatments are presently impractical. A classical
study, on the other hand, does not suffer from such a
limitation (although all quantum effects cannot always
be successfully incorporated). Of interest here is the
actual classical phenomenology of (forced) driven mo-
lecular systems, and in particular the nature of mode-
mode energy transfer in facilitating dissociation.

As an initial approach to this question, we study a
system of nonlinearly coupled oscillators under the in-
fluence of an external field coupled to only one of the
degrees of freedom. In essence, this resembles a sim-
plified molecule interacting with a laser field. Forced
oscillators have often been studied in the literature in
the context of laser-molecular interaction,® and also in
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the theory of mechanical vibrations.® (The single forced
oscillator has an extensive history, ! as in the Duffing
equation, ) For systems with more than one vibrational
degree of freedom, exact analytic results are usually
not possible when the coupling is nonlinear, even in the
autonomous case. For the latter case, there is the
well-known KAM theorem®'® 3®’ regarding the stability
of the motion in nonlinear, nonintegrable Hamiltonian
systems. An extension of this theorem3'®’ is applicable
to the nonautonomous case at hand and guarantees the
stability of the {driven) motion for sufficiently small
forcing fields.

In Secs. II and LI are described the classical Hamil-
tonian and some features of the autonomous and forced
system dynamics. Analytical and statistical descrip-
tions are presented in Sec. IV, followed by numerical
results from trajectories and comparison with the the-
ory of Sec. IV in Sec. V. A concluding discussion is
given in Sec. VI.

it. THE CLASSICAL HAMILTONIAN OF THE
AUTONOMOUS SYSTEM

The Hamiltonian of the unforced coupled oscillator
system investigated here is

H =3(pt+pl+wlx? +wly?) +2x(y? +m4?) @.1)

where (x, p,, w,) and (y, p,, w,) denote the coordinate,
momentum, and zeroth-order frequency, respectively.
The values of parameters chosen here are w,=1.3, w,
=0.7, x=0.1, and 7= - 1; this type of Hamiltonian has
often been used in the nonlinear dynamics literature.®
The three saddle points for the dissociation channels
are located at (x, y) = (5. 633, 0) and (- 2,45, £7.708) with
a minimum dissociation energy of E = 6. 54 units (at the
last two points).

It is well known that the dynamics of the Hamiltonian
H has a rich structure associated with it, o manifested
as trajectories that are either quasiperiodic in time or
“chaotic.” The essential difference between these two
types of motion is that the former trajectories are con-
fined to a torus in phase space while the latter are not.
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This difference is easily characterized by the Poincaré
surface of section,® which for the former type are
smooth curves, while for the latter they are a seemingly
random splatter of points.

It has become convenient in the discussion of such
systems to describe a “critical energy” E, above which
the initial conditions lead to mainly chaotic-type trajec-
tories. ! (It must be pointed out that either type of be-
havior can occur at any energy. Only the relative frac-
tion of chaotic trajectories changes with energy.) For
purposes of characterization, the surface of section for
x=0 and p, >0 at selected energies is shown in Fig. 1.
The areas of stability (i.e., leading to quasiperiodic
motion) persist up to high energies and are primarily
located along the positive diagonal in the (y, p,) plane.
We can further extract the relative fractions of phase
space that lead to chaotic motion by measuring the rela-
tive areas not covered by the smooth curves in Fig. 1
as in Fig. 2,

The ground state energy of the quantized system can
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FIG. 1. Surfaces of section for the present system at selected
energies.
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FIG. 2. Relative fraction of phase space covered by tori as a

function of energy.

be determined semiclassically by a variety of meth-
ods.®® 1! We find the semiclassical zero-point energy
tobe!'® 0.9970, which is also the exact quantum result, 12

Hi. THE NONAUTONOMOUS (FORCED) SYSTEM

The interaction with the driving term is chosen to oc-
cur through the y degree of freedom, giving the total
Hamiltonian

H=H' -Fycoswt . 3.1)
Hamilton’s equations obtained from Eq. (3.1) are

X=py, Y=by,

be= - (Wix+ 2y +3amx?) (3.2)

py=~ (wﬁy + 2)\xy) + F coswt ,

and can be integrated numerically'®; the initial conditions
uniquely determine the trajectory in phase space.

We first consider some principal qualitative features
associated with a typical such trajectory. Shown in Fig.
3 is the total energy content of the oscillators E [i.e.,
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FIG. 3. Time dependence of the total energy for a given set
of initial conditions (x=0.2284, y=1.2776, P, =-0,2115, P,
=0.9945, F=0.1), in rounded-off values. The separate
regimes are classified as periodic and erratic.
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H' ()} as a function of time. Two regions of behavior
may be identified, separated by a vertical line in Fig. 3:

(1) regular energy exchange between the system and
the field, with a definite set of associated frequencies;

(2) erratic energy exchange between the system and
the field with several associated frequencies—in marked
contrast to the previous region. Arrival at this region
was, for all trajectories studied here, ultimately ac-
companied by dissociation, as in Fig. 3.

A related type of behavior was observed in an earlier
classical trajectory studyﬁ“” of multiphoton absorption
in CD4Cl [Fig. 4 of Ref. 5(b)]: The presence of nine nor-
mal modes of vibration in CD;C]1 made the motion more
complicated than that in Fig. 3. Nevertheless, in that
study there seems to be rather periodic energy exchange
between the molecule and the field in the initial period
of excitation, followed by energy absorption with some-
what erratic oscillations, similar qualitatively to the
present observations. The actual behavior of individual
trajectories can differ considerably in the extents to
which they sample the two regimes. [See also Fig. 2 of
Ref. 5(d).] It was noted in the CD;Cl+ laser system that
different initial conditions led to widely different disso-
ciation times—an observation that is common to this
work. Before presenting the numerical resulis obtained
by integrating Eqs. (3.2), we first give an approxi-
mate analytic and statistical theory of the process.

IV. ANALYTICAL AND STATISTICAL DESCRIPTIONS
A. The regular regime

We first examine the regular regime. The first analy-
sis given below is based on the Krylov-Bogoliubov—
Mitropolsky (KBM) method, 14 which has the advantage of
physical intuitiveness; the perturbation solution is con-
structed upon an approximate solution.

1. Application of KBM-type theory

It is convenient to combine Eqs. (3.2) to yield

%+ (W4 3Im)x + 292 =0, (4.1a)

P+ (w?+ 2xx)y = F coswt . 4.1b)

The case of principal interest here is one permitting ex-
tensive energy absorption—that of zeroth-order external
resonance, i.e., w=w,. Exact solutions to Egs. 4.1)
with A= 0 are divergent (secular, i.e., they grow lin-
early in time) for w=w,. In practice, the nonlinearity
(the axy® term) removes the secularity. Equation (4.1)
is rewritten in terms of a perturbation parameter X to
facilitate the application of KBM:

%+ wlx =2, (x,y) +\F, coswt , (4. 2a)

'3')+w§y=7\f,(x,y)+>\F,coswt, 4. 2b)
with

F,=0, Fy=F/), fy=- (3" +3m?), f,=~2xy . (4.2¢)
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The solution to Eqgs.
seen to be

(4. 2) with A= 0 is immediately

x()=A, cos(w,t+6,), y(t)=A,cos{w,t+6,). (4.3)

We seek the A # 0 solution. by introducing time-dependent

amplitudes A, (f) and A,(¢) and phases 8,(¢) and 0,(t), with

the standard add1t1ona1 restriction of KBM 4 e. , with
x{t)=- w, A, sin{w,t+96,) ,

P(0) = - w, A4, sinfw,t+6,) . 4.4

It is straightforward to expand A4, () and 6, (¢), a=x,y,
in powers of A:

Ay(B)=ag (t) +AF(A,, A,
8, (6)=a () +2G(4,, A

0)+-,

0., y
9).,.... ,

»? x’

where a, i, F, and G are to be determined. In the first
approximation, to which we restrict our attention here,
the F’s and G’s which are related to the fast variables
of the problem, are ignored, and one obtains®

2,=0, a4, =2d}/ 4w, ,
a,= - AF, siny,/2w,, (4.5)
a, 9, = - MF, cosy, — a,a,)/ 2w, .
Solving Eqs. (4.5), one finds
a,=const. =AY, a,=Acosy, ,
=y + 0t Yy,=a+pt, @.6)
where @ and y are the initial phases, and
=2/ 4w,, 6=F./2w,(A)Y, A)=2F /A,

The results in this quasiperiodic regime are given
later in Fig. 4(a).

4.7)

2. Application of Lie transforms

A more elegant approach to the perturbative solution
in the regular regime can be effected through the
method of Lie transforms.® A canonical transformation

from the variables (qy p) (qlaxy quy, pl pr’ pl Epy) to
new variables (&, n) is defined through a Lie generator.

S=8(g,mA) -
:SI(E’ 17)"'7\52(5,77)4" v

by the relations

aS
4¢—£¢+Z DH _ewsf;i ,

(4.8)

(4.9)
Pi=m -

where the operator D, is the Lie (Poisson) bracket
Dgf:f!
8f aS
D‘ = (—L —_ -
o ; dE, 9,
and

Dif =DV f) .

From Eqgs. (4.9), any continuous function of (g, p) can

—‘135) (4.10)

om,, 9&,
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FIG. 4. (a) Total energy behavior in the regular regime pre-

dicted by the KBM-type analysis. (b) Total energy behavior
in the regular regime predicted by the Lie-transform analysis
(arbitrary units).

be transformed according to

£la, )= 22 SE D3, m) = Psr(e, ) @.11)

The algorithm for determining the Lie generator S is
well known. !* We utilize the perturbation method in-
cluding up to first order in A terms to determine new
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frequencies @, and @, of motion in the xand y degree of
freedom for the autonomous system defined in Eq. (2.1),
(One could also have applied the method directly to the
nonautonomous system, though now with one extra de-
gree of freedom, 15®)

For the system at hand, the Lie generator is given by
[using the algorithm in Ref. 16(a)]'8¢®

A

2 2
TV T I W +
S dwiw(w, + 2w,) () By + 4, )mi &7
+ (W, + 4w, )mm} + 20tw,makr£5]+00F) . 4.12)
Thus, for the problem with F=0, to order A,
88 as
x(t)= £+ 577: s p,,(i.‘):-q1 - 8—&- ,
4.13)

89S 8S
y(t)=§2+ -8_7;; s P,(f)=n2— 8_};‘?: s

where
£1=Cyco8(@,t+Cy), 1=~ Cyw,sin(@t+C)),

4.14)
£3=Cycos(@,t+Cy), n,==Cyw,sin(@,t+C}),

and

- X(Po)lﬂ

o - _ 2w, + 8w, )P; ~ 8Py (w, +2wy)]
Wy =@y Cuw,wi)’

405w (w, + 2w,)

{4.15)

with

Po = {% [’— Z(wx - zwy)(zwxwg)uz/k

+VY B(w, - 2w,)w, w? /2% + 24P,)] }2
and

Py=w,Ci+ %C% , Cy,Cy,Ci, and C; are constants.

In the regular regime, we find that the overall be-
havior of the total energy is roughly duplicated simply by
treating the total system (with F#0) as a single, y-type
oscillator of altered frequency &,, driven by the exter-
nal field with &, given by Eq. (4.15). Thus, we now get
the equation of motion

(4.16)

where &, is no longer equal to w,. Equation (4.16) is
easily solved to yield

%+ @iy =F coswt,

F
y(t):KSin((:),t-l— 6,)+ m coswt , 4.17)
y

where K and 6; are determined by the initial conditions.

The total energy behavior, i.e., H'(f), determined by
the above equations is shown in Fig. 4(b), and it is seen
by comparison with Fig. 3 that the overall features have
the same qualitative behavior as the numerical results
in the regular regime. A quantitative comparison is
given later. It may be noted that the variable corre-
sponding to B8 in Eqs. (4.6) is given by the Lie-trans-
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form method as 3(®, — w) and determines the “long”
periodicity in the energy behavior. The shorter oscil-
lations are determined by w, with side bands related to

Q@ - w.
B. The erratic regime

In this regime, the total energy of the oscillators
fluctuates in time in an irregular manner. The differ-
ence between this and the previous regime is similar to
that between quasiperiodic and chaotic motion in the
autonomous system. The current absence of rigorous
analytic methods that are applicable for treatment of
chaotic behavior makes a statistical approach a useful
first alternative. The analysis is thus applicable to an
ensemble of trajectories rather thanany particular one.
We shall make the following assumptions: (1) In the
periodic regime for an individual trajectory, the total
energy is approximately the same for all maxima, (2)
The erratic regime sets in for an individual trajectory
when the forcing term leads the system into a portion of
phase space where the underlying motion is chaotic. (3)
All systems in the erratic regime ultimately dissociate.
(4) The probability of entering the erratic regime at a
given peak is simply that fraction (1 - ) of phase space
not covered by tori.

With the above assumptions, we can deduce the follow-
ing: (1) There is a time lag in the appearance of disso-
ciation products which is related to the minimum time
required to absorb the requisite energy (Ey,, — Eo),
where E; is the energy before the laser is started. The
fraction of trajectories surviving beyond the first max-
imum is {. At subsequent maxima, then, the fraction
of surviving trajectories is ¢", where n=1,2,3,... in-
dexes the successive maxima. The long period of the y
motion is 27/8, so that of E, (the energy of the y degree
of freedom) and of E is 7/8. Measuring time from the
first peak, we note that the time at the subsequent peaks
has the values 7/8, 27/8, ... [cf. Eq. (4.5)]. Thus, the
fraction £,(¢) of trajectories that are surviving at time ¢
is given by

fs (t) - gBt/r )

Here 8 depends on the properties of the regular regime,
and ¢ is dependent on those of the autonomous dynamical
system in the regular-chaotic regime.

(4.18)

Equations (4. 6) and (4. 18) embody the central results
of the above simple theory of the dissociation process.
In the following section, we present some numerical re-
sults for f,(f) calculated from trajectories that can be di-
rectly compared to Eq. (4.18) and discuss the implica-
tions of the above analysis.

V. NUMERICAL RESULTS.
A. Regular regime

In the quasiperiodic regime, a quantum state has its
analog in an “eigentorus.” Accordingly, we analyze the
forced system in terms of a family of trajectories whose
initial conditions are chosen uniformly over this torus.
The torus was in turn determined by the approximate
method of Ref. 11(c).

: Infrared multiphoton dissociation

From the simple KBM-type analysis of the regular
regime in Sec, IV A, the periodic solution for y(¢) is
seen to be a product of two sinusoidal functions, with a
“short” periodicity close to that of the uncoupled y os-
cillator and a “long” periodicity given by 27/8. By
using Eqgs. (4.6) or (4.17), the total energy behavior in
the regular regime is qualitatively reproduced: For
each, both the period and the amplitude of the long-
period oscillation in the total energy (Fig. 3) in the
regular regime agree to a factor of about 2 with the
exact results.!” [Because of the simplifying approxi-
mation!®®’ regarding a resonant phase angle, Egs.
(4.6) and (4.17) do not allow for the appreciable x and
v energy exchange occurring in the autonomous system. |
Further calculations are planned.

B. Erratic regime

The connection between the onset of erratic behavior
in the forced system and chaotic behavior in the unforced
system may be examined by turning off the field at par-
ticular times along the trajectory and then allowing the
system to evolve in the absence of the forcing term.
Shown in Figs. 5(a) and 5(b) are two such examples., The
initial conditions for Fig. 5(a) were arrived at during
the excitation in the regular regime; the quasiperiodic
nature of the motion is readily apparent. Quite in con-
trast is Fig. 5(b); the initial conditions correspond to a
point in the erratic regime, and the underlying motion
is seen to be typically chaotic. This motion can be ex-
amined in another manner. In Fig. 5(c), we follow the
crossings of a given trajectory with (x="0,p,>0}y-p,
plane. (The latter is a surface of section for a noncon-
servative system.) These poinis, while not forming a
closed curve in any way, still congregate about the
(positive slope) diagonal—the regions of stability at all
energies (cf. Fig. 1). Thus, if three-dimensional sur-
faces of section were depicted (with energy as the third
axis), in the periodic regime the forced trajectory is
confined to “tubes of stability.” The erratic regime sets
in when, at a given energy, the trajectory escapes from
a tube of stability and samples the underlying chaos.
This motion is thus in accordance with the statistical
description for the dissociation process.

In order to study the ensemble of trajectories, we de-
fine the average energy function

Ng(t)
1

E.0=515 “[1, E,@) , (.1)

which is shown in Fig. 6. Here N,(t) is the number of
surviving trajectories at time #; overall periodicity of
the individual trajectories is retained by the average.
The fraction of surviving trajectories f, ()= N, (¢)/N,(0)]
is depicted in Fig. 7(a). This is seen to be a stepwise
decreasing function, with the time separation between
the large steps about the same as the period of oscilla-
tion of the average energy function in Fig. 6 [i.e., about
5 for 800 time units in Fig. 7(a), compared with five
oscillations in 800 time units in Fig. 6]. Further, if the
positive slope portions of the energy curve E, (f) are
extrapolated to the dissociation energy, the times of in-
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(a) Initial conditions in the periodic regime.
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in the periodic regime.
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FIG. 6. Average energy behavior for the ensemble of trajec-
tories.

tersection correspond to the fime of the largest steps in
7). On a logarithmic scale, f,(f} is very roughly lin-
ear (during the first few half-lives), in accord with Eq.
(4.18) and has a slope at half life of — 0,002, In apply-
ing Eq. (4.18), we estimate £=0.5, E,,,=5.0 (from
Fig. 2), and $=0.02 (from Fig. 6). Thus, (8/7)Ing
==0,004, This value agrees to a factor of 2 with the
empirical value obtained from Fig. 7(b). It must be
emphasized that the model is only a first approximation.
The decrease in slope of the Inf,(f) vs ¢ curve with time
in Fig. 7(b), may be due to the residual unreacted sys-
tems being “locked” into a regular part of phase space
instead of sampling the latter more randomly,

We also studied the system with a weaker driving
force F=0.04. The maximum energy absorbed is ~3.0
units, and at this energy £=1.0 (cf. Fig. 2). No dis-
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FIG. 7. (a) Fraction of surviving trajectories f4(f) as a func-
tion of time for F=0.1. (b) Ln[f,(#)] vs time.
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FIG. 8. Same as Fig. 7(a) but with F=0, 06,

sociation was observed in the entire sample. With an
intermediate power F=0.06, the energy maximum is
~4.0 units when £=0.82. The observed decay time is
consequently longer (see Fig. 8). Here (3/7)ing
=~0,001, which agrees to a factor of 3 with the em-
pirical value of —0.0003.

VI. CONCLUSIONS AND SUMMARY

In our study of this problem we have formulated a
classical phenomenology of a driven coupled oscillator
system. Two essentially different kinds of behavior can
be distinguished: The exchange of energy between sys-
tem and field occurs with a well-defined time scale de-
riving from several aspects of the motion in the forced
and unforced system. Secondly, the energy behavior
can become highly erratic, and the latter motion in-
evitably led to dissociation under the conditions studied.
The contrasting periodic and erratic regimes in the
forced system have their immediate analog in quasi-
periodic and chaotic motion in the autonomous system,
respectively.

A time lag is observed in the appearance of dissocia-
tion when an ensemble of trajectories is analyzed. This
delay is associated with the periodicity of the energy be-
havior, as the minimum time required to absorb the
necegsary energy to dissociate. Further, the distribu-
tion of lifetimes shows a power-law decay, which is tied
into the extent of stability in the motion of the autono-
mous system. This distribution can be understood semi-
quantitatively, and it is demonstrated how the parame-
ters governing the decay rate can be approximately re-
lated to the parameters of the system.

Some similar qualitative conclusions were arrived at
in Ref. 5(d), where a different two degree of freedom
system (harmonic oscillator coupled to a Morse oscil-
lator) with a similar forcing term was studied. For in-
dividual trajectories the two regimes of behavior, de-

Ramaswamy, Siders, and Marcus: Infrared multiphoton dissociation

noted regular and erratic here, were observed, and an
entropy-like quantity was used to determine the onset
of such erratic behavior. Further, in the regular re-
gime, a minimum intensity was seen to be required to
make the chaotic region of phase states accessible,
which is consistent with the results presented in Sec.
V B.

In larger systemsthatare more typically “molecular, ”
the analysis will necessarily become more complicated
than the present one, The present study shows the need
for properly including the role of internal resonances,

In higher-dimensional systems, methods based on
spectral characteristics!® or the Liapunov characteristic
number'® (the mean rate of separation of nearby trajec-
tories) are more suited for measuring the extent of
chaos since surfaces of section become considerably
more difficult to compute. At this time considerable
effort is being devoted in the literature to the prediction
of widespread chaos in such systems, 1°® and it ulti-
mately may be possible to obtain { without recourse to
numerical experiments.
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