Deep radio-interferometric imaging with POLISH: DSA-2000 and weak lensing

Liam Connor, Katherine L. Bouman, Vikram Ravi and Gregg Hallinan

1Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125, USA
2Computing and Mathematical Sciences (CMS), Department of Electrical Engineering, California Institute of Technology, MC 249-17, Pasadena, CA 91125, USA

Accepted 2022 April 15. Received 2022 April 14; in original form 2021 November 15

ABSTRACT
Radio interferometry allows astronomers to probe small spatial scales that are often inaccessible with single-dish instruments. However, recovering the radio sky from an interferometer is an ill-posed deconvolution problem that astronomers have worked on for half a century. More challenging still is achieving resolution below the array’s diffraction limit, known as superresolution imaging. To this end, we have developed a new learning-based approach for radio interferometric imaging, leveraging recent advances in the classical computer vision problems of single-image superresolution and deconvolution. We have developed and trained a high dynamic range residual neural network to learn the mapping between the dirty image and the true radio sky. We call this procedure POLISH, in contrast to the traditional CLEAN algorithm. The feed-forward nature of learning-based approaches like POLISH is critical for analysing data from the upcoming Deep Synoptic Array (DSA-2000). We show that POLISH achieves superresolution, and we demonstrate its ability to deconvolve real observations from the Very Large Array. Superresolution on DSA-2000 will allow us to measure the shapes and orientations of several hundred million star-forming radio galaxies (SFGs), making it a powerful cosmological weak lensing survey and probe of dark energy. We forecast its ability to constrain the lensing power spectrum, finding that it will be complementary to next-generation optical surveys such as Euclid.

Key words: methods - machine learning - techniques: image processing - gravitational lensing: weak

1 INTRODUCTION

High-resolution (HR) imaging of astronomical radio sources plays a critical role in studying our Universe. However, a fundamental challenge of HR imaging is that resolution is limited by aperture size (i.e. dish or mirror diameter), rendering single-dish telescopes insufficient in many cases. Alternatively, a radio interferometer is an array of antennas whose radio waves are coherently combined to obtain HR images (Ryle & Vonberg 1946). Radio interferometry allows one to synthesize a much larger aperture, with the angular resolution now defined by the longest ‘baseline’, i.e. greatest separation, \(D \), between antennas (Thompson, Moran & Swenson 1986; Burke & Graham-Smith 1996). The diffraction limit of an interferometric array is given by \(\theta \approx \lambda/D \), where \(\lambda \) is the observing wavelength. Probing scales below this limit is known as ‘superresolution’. Interferometry has led to countless new discoveries where single-dish instruments were inadequate, including the first-ever direct image of a black hole (Event Horizon Telescope Collaboration 2019) and the precise localization of extragalactic transients (Hallinan et al. 2017; Ravi et al. 2019).

Recovering an image of the sky from an interferometer requires solving an ill-posed deconvolution problem. In particular, the placement of antennas in the interferometer defines a point spread function (PSF) that corrupts the true astronomical image. Pre-eminent observatories such as the Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimeter/submillimeter Array (ALMA) have 271 and 662 radio antennas, respectively. In contrast, the upcoming Deep Synoptic Array (DSA-2000) in the Big Smoky Valley, Nevada, will contain and combine an unprecedented 2000 antennas. The DSA-2000’s impressive number of antennas corresponds to a PSF that can be more easily deconvolved, resulting in images with higher fidelity, higher dynamic range, and lower uncertainty. This ‘radio camera’ will be the most powerful radio survey instrument to date and is expected to increase the known sample of astronomical radio sources by a factor of 1000.

The DSA-2000, which will yield unparalleled image quality, will also result in massive computational challenges: the telescope will need to churn through over 80 Tbs\(^{-1}\) of data. Unlike past radio interferometers that can save data to disc for later analysis, it will be impossible for the DSA-2000 to save raw data to disc. Specifically, the telescope will not preserve its visibility data. It is therefore essential that imaging on DSA-2000 be made fast, automated, and deterministic. Past methods for radio interferometric imaging are too slow, require a human-in-the-loop, or result in suboptimal image quality. Thus, it is critical that automated, feed-forward approaches be developed to transform quickly raw dirty images into high-fidelity

- E-mail: liam.dean.connor@gmail.com

1https://public.arao.edu/telescopes/vla/
2https://www.almaobservatory.org/en/home/
3https://www.deepsynoptic.org

© 2022 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society
reconstructions of the radio sky. We capitalize on recent advances in deep learning to develop an imaging pipeline for the DSA-2000 that can be used to deliver science-ready astronomical images in quasi-real time.

It is also essential that DSA-2000 be able to achieve super-resolution. With a PSF width of roughly 3 arcmin, many of the $\sim10^8$ star-forming radio galaxies (SFGs) detected by DSA-2000 will be unresolved in the dirty image. If these distant galaxies can be resolved with super-resolution, we will be able to carry out a powerful cosmological weak lensing survey on DSA-2000. By number of sources, such a survey is competitive with upcoming Stage IV optical weak-lensing experiments. Radio weak lensing is also highly complementary to upcoming optical surveys because the gravitational lensing signal is achromatic, whereas systematics will be different across wavelengths (Harrison et al. 2016; Camera et al. 2017). We therefore have a strong incentive to not only develop a robust feed-forward imaging framework, but one that provides superresolution.

In this work, we demonstrate that recent advances in the classical problems of single-image superresolution (SISR) and deconvolution through efficient neural network architectures make such imaging with the DSA-2000 possible. This manuscript is organized as follows. We first offer background on interferometric imaging, the DSA-2000, and the connection to SISR and deconvolution in Section 2. We then describe our deep learning-based approach in Section 3, which we call POLISH (a demonstration is shown in Fig. 1). As we show, POLISH enables imaging at angular resolutions on the sky below the intrinsic resolution of the interferometric telescope array (\(\approx 3\) arcsec for DSA-2000, see Fig. 2). Results based on simulated DSA-2000 data as well as on real astronomical data from the VLA are presented in Section 4. Where previous algorithms were made to deconvolve dirty images from sparse arrays, POLISH was designed to deconvolve images that are already relatively clean, hence its name. However, our demonstration on the VLA data has shown that POLISH is a generic radio interferometric deconvolution procedure. In Section 5, we show how superresolution on DSA-2000 will enable a powerful weak lensing survey. Finally, we discuss other scientific applications and show how feed-forward imaging could transform radio astronomy in coming years.

2 BACKGROUND

2.1 Interferometric imaging

In radio interferometry, each pair of antennas measures a Fourier coefficient of the underlying astronomical image, where the spatial frequency probed is related to the projected baseline between the antennas as well as the observing wavelength. Imaging then requires solving an inverse problem: recover the true sky image, \(I_{\text{sky}}\), using finite, and often sparse, spatial frequency measurements. Given enough antennas, one could densely sample the entire spatial frequency plane. In the absence of noise, these complex measurements, known as ‘visibilities’ \(V\), could then be used to recover an image through an inverse Fourier transform:

\[
I_{\text{sky}} = F^{-1}(V).
\]

(1)

Since we only have access to a finite number of spatial frequency Fourier coefficients in practice (i.e. a finite number of antenna pairs and a finite range of radio frequencies), we do not have full access to \(V\). We mathematically represent this by applying a sampling function, \(S\), to the noisy measurements in the Fourier plane,

\[
I_d = F^{-1}((V + n_{\text{vis}}) S),
\]

(2)

where \(n_{\text{vis}}\) represents independent Gaussian noise at each spatial frequency and \(I_d\) is known as the ‘dirty image’, visually demonstrated in Fig. 3. Invoking the convolution theorem, we can rewrite this equation as

\[
I_d = F^{-1}(V) \otimes F^{-1}(S) + n_{\text{sky}},
\]

(3)

where \(\otimes\) denotes convolution and \(n_{\text{sky}} = F^{-1}(n_{\text{vis}}) \otimes F^{-1}(S)\). The inverse Fourier transform of the sampled visibilities, \(I_d\), is degraded by the sampling function. By noting that the Fourier transform of our sampling function is just the instrument’s PSF, we can replace \(F^{-1}(S)\) with a convolution kernel \(k\). This kernel depends not only on the telescope configuration but also the radio bandwidth, as can be seen in Fig. 4. Finally, we are free to choose a pixelization scheme such that the resolution of the recovered image, \(\hat{I}_{\text{sky}}\), is \(s\) times higher resolution than \(I_d\). By substituting equation (1), we obtain a mathematical description of the noisy and low-resolution (LR) image obtained by the interferometer, \(I_d\), as a function of our target, \(\hat{I}_{\text{sky}}\):

\[
I_d = (I_{\text{sky}} \otimes k) \downarrow_s + n_{\text{sky}},
\]

(4)

where \(\downarrow_s\) is a downsampling operation. The inversion is challenging because for every \(I_d\) there exist an infinite number of \(\hat{I}_{\text{sky}}\) that would satisfy equation (4); i.e. interferometric deconvolution is an ill-posed inverse problem. It is also difficult for computational reasons, as the large spatial extent of the PSF, or kernel \(k\), requires large input and output images.

The goal of our work is to learn this mapping such that equation (4) can be inverted and an estimate for the true sky, \(\hat{I}_{\text{sky}}\), can be automatically recovered with a single pass through a neural network.

2.2 The Deep Synoptic Array (DSA-2000)

The Deep Synoptic Array, i.e. DSA-2000, is an ambitious new instrument expected to be complete by 2026 (Hallinan et al. 2019). It will survey the radio universe with unprecedented speed and depth, but this power comes at the expense of serious computational challenges. The DSA-2000 will consist of 2000 × 5 m dual-polarization antennas observing the sky between 0.7 and 2.0 GHz. By the Nyquist–Shannon sampling theorem, the DSA-2000 must sample the electric field at more than 4 billion times per second, resulting in a raw data rate of over 10 TB s\(^{-1}\). At the next stage in the pipeline, a single image of the sky produced using 15 min of visibility measurements requires \(\approx 20\) TB of data. This tremendous data rate prevents the use of imaging algorithms that store data and iteratively transform from visibilities in the Fourier plane to images in the sky plane. Instead, computational resources require that the DSA-2000 imaging pipeline rapidly recovers an image of \(I_{\text{sky}}\) from \(I_d\) directly. In our proposed method, POLISH, we have developed a feed-forward approach to invert a 2000 × 2000 pixel image, \(I_d\), into a sky reconstruction, \(\hat{I}_{\text{sky}}\), in just a few seconds on a laptop.

2.3 Prior interferometric imaging techniques

Over the past half-century, considerable effort has been put into radio interferometric image reconstruction. While significant progress has been made, state-of-the-art algorithms do not satisfy the requirements for efficient superresolution imaging on the DSA-2000. Imaging algorithms can be broadly categorized into two methodologies: CLEAN deconvolution and regularized maximum likelihood (RML) approaches.
2.3.1 CLEAN

The de facto standard image reconstruction algorithm used in radio astronomy is known as CLEAN (Hög bom 1974; Clark 1980). CLEAN attempts to iteratively deconvolve the PSF kernel k from I_d to recover I_{δ}, by assuming that the sky is made up of a collection of point sources. At each step, single pixels are added to a sky model at the locations of bright pixels in I_d. The model pixels are scaled by the brightness of the corresponding pixels in I_d. The sky model is then convolved with a Gaussian ‘restoring beam’ to provide a smooth estimate of the recovered image. This final blurring step, necessitated by the point-source assumption in CLEAN, precludes CLEAN from recovering high spatial frequencies. This is because the restoring beam smooths data to the angular scale of the central component of the PSF. Besides not being able to deliver superresolution, standard iterative algorithms like CLEAN introduce severe imaging artefacts near very bright or diffuse radio sources (see Fig. 8). There are variants on the standard Hög bom CLEAN algorithm that allow for better reconstruction of diffuse or structured images, such as multiscale CLEAN, that are less sensitive to the point-source assumption (Wakker & Schwarz 1988; Cornwell 2008). In this paper, we focus on standard image-plane CLEAN, as that is the likely
alternative algorithm to POLISH that would be used on a radio camera such as DSA-2000.

2.3.2 Regularized maximum likelihood

RML methods are Bayesian-inspired techniques that solve for an image by minimizing an objective function, which includes a term that penalizes poor data fit and an image regularization term (Wiaux et al. 2009; Bouman et al. 2016; Sun & Bouman 2020). Some image regularization terms employed include maximum entropy (Cornwell & Evans 1985; Narayan & Nityananda 1986), total variation, and ℓ_1 sparsity (Pratley et al. 2018). RML methods have had recent success in the radio interferometry community in their use for reconstructing the first image of a black hole, M87* (Event Horizon Telescope Collaboration 2019). Since RML methods do not rely on the CLEAN assumption that the sky is composed of point sources, they can achieve superresolution (Abdulaziz, Dabbech & Wiaux 2019). However, they are very computationally expensive since they are iterative and model every measurement in the visibility domain. Though RML methods provide a more natural way of achieving

Figure 3. A schematic of the POLISH method of image reconstruction. The top row shows how the true sky is transformed by a radio interferometer and then recovered by our neural network. The bottom three figures show the PSF kernels used in this work: the DSA-2000 with just 10 MHz of its bandwidth used (left), and the full-band (1300 MHz) PSF of the DSA-2000 (middle), and an example VLA array configuration (right). Note that these kernels are plotted over the same extents as the observed sky images, highlighting that the kernels cause artefacts from bright sources that extend over the entire images.

Figure 4. The neural network architecture that we have adapted for radio imaging, based on WDSR (Yu et al. 2018). A dirty image is fed to the network as an input and its output is a deconvolved reconstruction of the sky with s times greater resolution in each direction. The network relies on residual blocks and a global skip connection. Batch normalization is removed.
superresolution than CLEAN, these algorithms are not well suited for the DSA-2000 where fast, feed-forward image reconstruction is essential.

2.4 Deconvolution and single-image superresolution

Deconvolution is a classic inverse problem that aims to reconstruct a sharp image by removing an imaging system’s PSF from its measured blurry image (Riad 1986; Starck, Pantin & Murtagh 2002). Traditional approaches to deconvolution include the Weiner filtering and regularized inversion; however, recently deep learning approaches have demonstrated impressive results on the task (Xu et al. 2014; Yan & Shao 2016). SISR is an ill-posed inverse problem in which one attempts to obtain an HR output from its corresponding LR image (Glassner, Bagon & Irani 2009; Yang, Ma & Yang 2014). Here too, deep learning-based approaches to SISR have made significant progress, and efficient neural network architectures continue to be developed to learn the mapping between the high- and low-resolution images (Dong et al. 2015; Ledig et al. 2017; Yang et al. 2019). SISR shares conceptual similarities with deconvolution, since one can frame the SISR problem as removing the downsampling operation’s PSF from the image. However, unlike deconvolution, the mismatch in dimensions between the desired HR and input LR image causes the inverse problem to be ill-posed. The challenge of image reconstruction in radio interferometry can be formulated as a joint deconvolution and SISR inverse problem. In fact, replacing I_d/I_{sky} with I_d/I_{HR} in equation (4) reproduces the generalized SISR image degradation equation used in Yang et al. (2019).

There are none of the four critical differences between standard deconvolution-SSIR and astronomical imaging with radio interferometers. First, images of the radio sky require large dynamic ranges. In the annual New Trends in Image Restoration and Enhancement data challenge for SISR, the image pairs were RGB eight-bit precision and roughly 2000 \times 2000 pixels. A typical 1 deg2 field on the sky measured with the DSA-2000 radio interferometer will have \sim20000 unique sources with a range of brightness values approaching five orders of magnitude. Thus, we require at least 16-bit integers or preferably, 32-bit floats. Secondly, both the sky and instrument response are dependent on observing frequency. We therefore prefer multifrequency input data with an arbitrary number of channels, a generalization of the three colour channels used for RGB images. Thirdly, the PSF in radio astronomy can be highly spatially extended, unlike the simple Gaussian blurring kernel or bi-cubic downsampling typically assumed in many superresolution applications. The PSF can also have significant radial and azimuthal structure (refer to Fig. 4). Fourthly, while the response of our instrument is knowable in principle, calibration errors and other systematics lead to perturbations of the PSF. Therefore, our neural network must learn not just a single kernel, but a physically realistic distribution of PSFs (akin to partially blind deconvolution).

3 METHODS

The application of neural networks to superresolution and deconvolution aims to learn the mapping between an input (convolved, lower resolution) image and the true, higher resolution image. This is done by training the neural network with a large number of image pairs (I_d/I_{sky} in our case) such that, when fed an input image the network can reproduce an accurate reconstruction of I_{sky}. The training process penalizes any disagreement between the reconstructed image \hat{I}_{sky} and the true image, I_{sky}, through its ‘loss function’. In effect, the neural network learns deconvolution. Radio interferometric imaging is therefore a natural application of the striking recent advances in learning-based deconvolution and superresolution.

We modify the previously proposed Wide Activation for Efficient and Accurate Image Super-Resolution (WDSR; Yu et al. 2018) architecture to allow for high-dynamic range and multifrequency input/output data, as well as to handle uncertainty in the PSF. This architecture is shown in Fig. 4. Our adaptation, POLISH, takes as input a blurry image, I_d, a tensor with dimension (n_x, n_y, n_z), where n_x and n_y are spatial dimensions and n_z is the number of frequency channels. POLISH outputs a superresolved reconstruction of the sky, \hat{I}_{sky}, whose shape is ($s \times n_x \times s \times n_y$). Here, s is the upsampling factor and takes values 2 or 3 in our work. The architecture depends on a residual network design with a single global skip connection and a residual block called ‘WDSR_b’. The final operation before the global skip connection and the primary path are summed is known as a pixel shuffle. These layers upsample the image by a factor of s, using a subpixel convolution with stride $1/s$ (Shi et al. 2016). To ensure high-dynamic range deconvolution, POLISH now accepts as input 16-bit or 32-bit data.

We train the POLISH network, G_n, on N image pairs $(I_d^{(n)}, I_{sky}^{(n)})$, related through equation (4), to minimize an ℓ_1 loss:

$$\hat{\theta} = \arg \min_{\theta} \sum_{n} \left| \left| I_d^{(n)} - G_{\theta}(I_{sky}^{(n)}) \right| \right|_1.$$

The model is trained with roughly 10^6 total epochs and a constantly decaying learning rate between 10^{-3} and 5×10^{-4}. After each 1000 epochs of training, the model is tested on 10 images from the validation set, and a checkpoint is saved if its peak signal-to-noise ratio (PSNR) has improved. For results presented in this main paper, we use 800 image pairs for our training data and 100 pairs in our validation set. Each model takes roughly 20 GPU hours to train using an NVIDIA TITAN RTX GPU with 24 GB of memory. Before PSNR is calculated, or an I_d is fed to POLISH, data are normalized such that the image’s pixel values fall between 0 and $2^{10\text{th}} - 1$.

3.1 Learning a PSF distribution

In radio interferometry, an idealized PSF kernel is known a priori, as it is simply the inverse Fourier transform of the sampling function, $k_{\text{ideal}} = F^{-1}(S)$. However, in practice the instrumental response will cause the PSF to deviate from the ideal model due to e.g. calibration errors. We therefore want the POLISH network to learn a distribution of PSFs, rather than a single PSF kernel. We build this into our training set by randomly perturbing the PSF in physically motivated ways when generating training image pairs. In particular, for each training pair the dirty image is created by applying a kernel that has been transformed in the following way:

$$k = \Lambda_3(\phi)\Lambda_2(y)\Lambda_1(\alpha)k_{\text{ideal}}.$$

These three transformations include a radial stretch, $\Lambda_1(\alpha) : r \rightarrow \alpha r$ where the PSF shape is conserved but its size varies by tens of per cent; this degradation is motivated by ionospheric effects that broaden the kernel but never shrinks it (i.e. α is drawn from (0, 1]; Intema et al. 2009). $\Lambda_2(y)$ warps the PSF with random distortions (Smirnov 2011), characterized by a parameter y, as seen in Fig. 7.
Finally, an affine transformation\(^6\) \(\Lambda_{\phi}(\phi)\) both contorts the PSF and shifts it with a spatial translation, similar to what occurs when a telescope is mispointed.

3.2 Loss function and performance metric

We have tried training our model using \(L^1\) and \(L^2\) loss functions. Both are pixel-wise loss functions that measure the mean absolute error and mean squared error between input and output images, respectively. We find that the \(L^1\) loss gives better results in terms of time for training to converge, in line with previous EDSR and WDSR networks (Lim et al. 2017; Yu et al. 2018). The final results presented here were trained using \(L^1\) loss.

As a way of assessing the veracity of our reconstructed image and the performance of our neural network, we use two metrics. The first is PSNR, which a standard statistic used in computer vision. PSNR is a pixel-by-pixel estimator of the ratio of maximum signal and corrupting image noise, expressed in decibels. It is given by

\[
\text{PSNR} = 20 \log \left(\frac{\text{MAX}_i}{\text{MSE}} \right),
\]

where \(\text{MAX}_i\) is the maximum possible pixel value in an image, and \(\text{MSE}\) is the mean squared error across all pixels. For an eight-bit RGB image, \(\text{MAX}_i\) is 255. In general, it is \(2^N - 1\), where \(N\) is the number of bits per sample. The MSE is calculated as the average square difference between the true image and the superresolved image \((\text{ISR})\), given by

\[
\text{MSE} = \frac{1}{N_x N_y} \sum_l \sum_m (I_{\text{sky}}(l, m) - I_{\text{ISR}}(l, m))^2.
\]

PSNR depends on pixel-wise error, making it sensitive to translations of the image, or ‘astrometric error’ in our case. Since we are concerned here with small distortions to galaxy shapes, we also employ a more perception-based metric known as the structural similarity index measure (SSIM\(^7\); Wang et al. 2004). SSIM compares various windows within an image to assess the statistics of those regions, rather than directly computing absolute differences in pixels. For two boxes \(x\) and \(y\) with dimensions \(N \times N\),

\[
\text{SSIM}(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{\mu_x^2 + \mu_y^2 + c_1(\sigma_x^2 + \sigma_y^2 + c_2)^2}.
\]

Here, \(\mu\) is the mean of that box, \(\sigma^2\) is the variance, \(\sigma_{xy}\) is the covariance, and \(c_1\) and \(c_2\) are two variables to stabilize the division with weak denominator. We use both SSIM and PSNR to test the performance of POLISH.

4 Experimental Set-up and Results

The performance of POLISH is assessed on both realistic simulations mimicking data from the DSA-2000, as well as real experimental data from the VLA at 2–4 GHz. We compare the POLISH reconstruction with image-plane CLEAN and the true image (in the case of simulated sky data), using both PSNR and SSIM to quantify reconstruction quality. These are summarized in Table 1.

\(^6\)https://mathworld.wolfram.com/AffineTransformation.html

\(^7\)https://en.wikipedia.org/wiki/Structural_similarity

4.1 Synthetic training data

We model the radio sky and measurement noise to simulate a physically realistic training set. This is done by first simulating a \(\sim 2000 \times 2000\) pixel image of the true sky, \(I_{\text{sky}}\) with a field of view of \(\sim 0.3 \times 0.3\) deg. DSA-2000 will primarily detect radio galaxies with a detection rate corresponding to an average of 13 000 galaxies per square degree above a signal-to-noise (SNR) of 6 (Hallinan et al. 2019). We populate each realization of \(I_{\text{sky}}\) with \(N\) sources, where \(N\) is randomly drawn from a Poisson distribution whose mean is 13 000 times the sky coverage in degrees. The galaxies are two-dimensional Gaussian ellipsoids with random orientation angles on the sky. The statistics of their brightness, ellipticity, and angular size are chosen to match the empirically measured distributions for radio galaxies (Tunbridge, Harrison & Brown 2016). The galaxy peak flux values range from a few to several thousand \(\mu Jy\) per pixel. Finally, we model the spectral index of each source with a Gaussian distribution centred on \(-0.55\) and with a standard deviation of 0.25, based on the observed spectra of SFGs near the DSA-2000 band, 0.7–2 GHz (Tisnić et al. 2019).

A dirty image, \(I_d\), corresponding to each true sky image is obtained through the process mathematically described in equation (4). The PSF kernel used to degrade \(I_{\text{sky}}\) is obtained by sampling from equation (6). The unperturbed PSF is computed for each telescope configuration using the packages CASA (McMullin et al. 2007) and wsclean (Offringa et al. 2014). Before applying the PSF kernel to obtain \(I_d\), zero-mean i.i.d. Gaussian noise with a standard deviation \(\sigma_{\text{sky}}\) is applied to mimic \(n_{\text{sky}}\). The convolved image is then downsampled by a factor \(s\). The parameters \(\sigma_{\text{sky}} = 0.5 \mu Jy\) per pixel and \(s = 3\) are used to simulate DSA-2000 dirty images, while values of \(\sigma_{\text{sky}} = 3 \mu Jy\) per pixel and \(s = 2\) are used for generating VLA training data used in Section 4.2.3.

Results presented in the main paper consist of 16-bit single-channel input data, where a multifrequency dependence has been included in the PSF kernel but not \(I_{\text{sky}}\). On DSA-2000, we use two PSFs: one that uses the full radio bandwidth (1300 MHz) with 15 min of earth-rotation synthesis and one that uses just \(\sim 1\) per cent of the observing bandwidth (a narrow 10 MHz range of wavelengths) for a single snapshot, shown in Fig. 3. If the PSF is generated across multiple frequencies, it is effectively averaged over the band to produce a single channel.

4.2 Results

Fig. 1 visually compares the performance of POLISH against the baseline CLEAN algorithm on synthetic DSA-2000 observations, using an SKA (Square Kilometer Array) Data Challenge image as \(I_{\text{sky}}\) (Bonaldi et al. 2021). The input dirty image, corresponding to a 1300 MHz bandwidth PSF, is shown on the left. Although POLISH was only trained on images with Gaussian sources, it is able to recover more complex underlying sharp structure. As demonstrated by the increase in PSNR and SSIM, POLISH recovers a substantially improved image compared to both the measured dirty image and the CLEAN reconstruction, at nearly 3 dB higher than the latter. Image-plane CLEAN produces more speckle and sidelobe artefacts than POLISH, leading to false-positive detections of radio galaxies in our simulation. For example, SOURCE-EXTRACTOR tends to find approximately one false-positive galaxy per 20 simulated galaxies in the CLEAN reconstruction, whereas the POLISH neural network ‘hallucinates’ just one source per 50 true galaxies.

Fig. 5 shows a visual example of POLISH results on DSA-2000 synthetic data, comparing results on data generated with a 10 and
Table 1. Results from image reconstruction comparison between CLEAN and POLISH for the full-band case (1300 MHz) and the single-channel scenario (10 MHz). POLISH achieves a higher PSNR and SSIM than CLEAN, indicating better pixel-wise and perceptual fidelity, respectively.

<table>
<thead>
<tr>
<th>Bandwidth (MHz)</th>
<th>PSNR (POLISH)</th>
<th>PSNR (CLEAN)</th>
<th>SSIM POLISH</th>
<th>SSIM CLEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>55.9 ± 4.7</td>
<td>50.0 ± 6.0</td>
<td>0.998 ± 0.0016</td>
<td>0.989 ± 0.007</td>
</tr>
<tr>
<td>10</td>
<td>55.1 ± 3.8</td>
<td>47.4 ± 3.6</td>
<td>0.988 ± 0.0016</td>
<td>0.976 ± 0.009</td>
</tr>
</tbody>
</table>

Figure 5. A simulated DSA-2000 interferometric observation of distant radio galaxies and the image reconstruction by image-plane CLEAN (middle left) and POLISH (middle right). The bottom row shows the sky convolved with DSA-2000’s PSF using less than 1 per cent (single-channel snapshot); this case is critical for H I and OH science. The top row PSF uses the full-band with 15 min of integration and has a more complete sampling in the Fourier plane. In both cases, POLISH outperforms the image-plane CLEAN baseline, especially for the 10 MHz PSF where substantial artefacts exist in the CLEAN reconstruction. The brightness of each image is independently scaled for visualization purposes.

1300 MHz bandwidth PSF. In order to best see the improvement, each panel shows a zoom-in on a 0.06 deg × 0.06 deg region of the full simulated sky, where dozens of radio galaxies with different sizes, shapes, and orientations can be seen. In the 10 MHz bandwidth PSF, less than 1 per cent of the available radio wavelengths are used to construct the PSF; reconstructing an image with only a small portion of the full PSF bandwidth is important for H I and OH studies on DSA-2000. This region of the sky has two particularly bright ‘galaxies’, which makes the PSF visible in the 10 MHz bandwidth dirty image.

In both cases, POLISH substantially outperforms the CLEAN baseline. POLISH achieves a mean PSNR = 55.9 ± 4.7 and SSIM = 0.998 ± 0.0016 for our radio galaxy simulation with the 1300 MHz PSF on 50 validation images, compared with PSNR = 50.0 ± 6.0 and SSIM = 0.989 ± 0.007 on CLEAN. The 10 MHz PSF results in PSNR = 55.1 ± 3.8 and SSIM = 0.988 ± 0.0016 using POLISH. For CLEAN, this was PSNR = 47.4 ± 3.6 and SSIM = 0.976 ± 0.009. These results are presented in Table 1.

4.2.1 Superresolution

Superresolution is critical for many scientific goals of the DSA-2000. We therefore investigate whether spatial scales below the width of the PSF’s central lobe (∼3 arcsec) can be reliably accessed with POLISH. We quantify the superresolution capability of POLISH using the galaxy simulations described in Section 4.1. First, the size of each ‘galaxy’ is extracted using the astronomical fitting software SOURCE-EXTRACTOR (Bertin & Arnouts 1996). This is done on the true image, CLEAN image, and the POLISH image. The fitted galaxy sizes are then compared on a source-by-source basis; for each galaxy, we contrast the input (true sky) and output (POLISH and CLEAN reconstructions) semimajor (θa) and semiminor axes (θb). If the reconstructed value, ̂θ, is below the PSF angular scale of ∼3 arcsec, then superresolution has been achieved. As can be seen in Fig. 6, galaxies in the POLISH image are consistently the same size as galaxies in the true image, even at subarcsecond scales well below the DSA-2000’s PSF size. In contrast, the traditional CLEAN algorithm cannot achieve superresolution and instead asymptotes to the PSF central component’s angular size.

4.2.2 Model mismatch

When a distribution of PSFs is used during training, POLISH can more robustly reconstruct the sky in the presence of instrumental

The number of validation images was limited by CLEAN computational requirements.
in the DSA-2000 PSF are greater than what we expect for actual experimental data; it is unlikely that the true PSF will be 40 per cent larger than the modelled PSF, and distortions as severe as the $\gamma = 30$ ‘warp’ would require drastic miscalibration.

4.2.3 Deconvolving real astronomical data

In practice, POLISH will be trained offline on simulated data and then applied to real data in quasi-real time. We show that POLISH can reliably deconvolve real observations, having only been trained on simulations. To demonstrate this, real astronomical observations (Hallinan et al. 2017) were obtained from the VLA, a Y-shaped, 27-telescope interferometer in New Mexico, including a modelled PSF for that observation’s configuration. We then trained POLISH on our radio galaxy simulation described in Section 4.1, but with I_0/d_{sky} image pairs created with the VLA PSF.
Reconstructing the sky from the VLA data is a more challenging problem than what we will be faced with at DSA-2000, as it has far fewer antennas and therefore a much more degraded PSF (Fig. 4). Evidenced by the strong artefacts in the dirty image of Fig. 8, the VLA’s PSF is much less suppressed off-axis than that of DSA-2000. The PSF is also highly azimuthally asymmetric due to the Y-shape of the array, leading to six radial ‘struts’ expanding outwards from each source in the dirty image.

In Fig. 8, we demonstrate that POLISH can deconvolve the real VLA dirty image, leaving behind fewer imaging artefacts than the traditional image-plane CLEAN algorithm. Fig. 8 shows a comparison of the dirty (input) image, CLEAN reconstruction, and POLISH reconstruction (left to right) for a 0.1 \times 0.1 deg region of the 0.4 \times 0.4 deg full image, including a further zoom-in on particularly bright radio galaxies (bottom row). The difference between CLEAN and POLISH for the bright galaxies is striking. CLEAN leaves behind residual structures from the PSF, whereas POLISH produces shapes like those expected for distant radio galaxies. These residual structures include speckles that are likely not real radio point sources, as they lie in a line on the struts of the PSF response from bright galaxies; this is consistent with our the increased false-positive rate of CLEAN versus POLISH in our simulated sky reconstruction.

We have chosen not to compare POLISH with RML methods for the following reasons. There exists a wide spectrum of RML algorithms and a true comparison would require comparing POLISH against a large set of reconstructions, each with its own finely tuned set of regularization parameters; some would perform poorly, and some may do well, depending on our choice of parameters. We therefore cannot construct an apples-to-apples comparison that would meaningfully contrast an efficient feed-forward algorithm such as POLISH with RML methods.

This result is very promising for two reasons. First, we have shown that a relatively simple simulated data set can train a neural network that will deconvolve real radio interferometric data. Secondly, the VLA’s sampling of the Fourier plane is much less complete than that of DSA-2000. The fact that POLISH can still perform under these circumstances shows that deep learning-based techniques are not only a promising solution for the DSA-2000, but also for other current and future radio interferometers (Dewdney et al. 2009; Jonas & MeerKAT Team 2016; Hotan et al. 2021).

5 RADIO WEAK LENSING AND DSA-2000

Weak gravitational lensing is a powerful probe of the Universe’s composition and expansion history, and is an essential tool for constraining the physical nature of dark energy (Kaiser 1998; Hoekstra & Jain 2008; Mandelbaum 2018). Weak lensing imparts a distortion on distant galaxy shapes known as ‘shear’, causing a separation-dependent correlation between galaxy shapes that is determined by the Universe’s large-scale structure and its evolution with time. Measuring the power spectrum of this cosmic shear allows us to constrain the cosmological parameters. To date, weak lensing research has been significantly more advanced at optical wavelengths. However, the achromaticity of gravitational lensing means that the large-scale structure will imprint itself the same way across the electromagnetic spectrum, while the systematics across wavelengths will vary. Observations in different bands are therefore highly complementary. For a detailed treatment of radio weak lensing in the context of the SKA, see Brown et al. (2015), Harrison et al. (2016), Bonaldi et al. (2016), and Camera et al. (2017).

In the radio, few surveys thus far have had sufficient angular resolution, sensitivity, and sky coverage to detect the large numbers of SFGs required to do weak lensing cosmology. Using ~9 \times 10^5 sources in the FIRST survey at 1.4 GHz, Chang, Refregier & Helfand (2004) fit galaxies in UV space to make the first-ever radio detection of weak lensing. Demetroullas & Brown (2016) cross-correlated an optical shear map containing ~9 million galaxies in the Sloan Digital Sky Survey with a radio shear map from FIRST, resulting in a 2.7\sigma detection of weak lensing. More recently, the SuperCLASS survey used 0.26 deg^2 of radio data from eMERLIN and the VLA,
Figure 9. DSA-2000 will detect an enormous number of star-forming galaxies. These can be used for weak lensing cosmology if resolution below the telescope’s PSF width can be achieved.

as well as 1.53 deg2 of optical data from the Subaru telescope, but had too few sources to make a detection (Harrison et al. 2020). Despite the required catch-up at long wavelengths, there are benefits to doing weak lensing in the radio. For example, the PSF of a radio interferometer can be known a priori through forward modelling, which is not true for optical telescopes. Furthermore, as both optical and radio lensing experiments will likely be systematics limited, cross-correlation provides a robust and unbiased estimator of the shear power spectrum (Camera et al. 2017; Harrison et al. 2020). Also, finally, sensitive radio telescopes such as DSA-2000 and the SKA are expected to probe higher redshifts than comparable optical surveys, with a fatter tail at high z.

The DSA-2000 will survey the whole sky north of declination -30° between 0.7 and 2.0 GHz down to a root mean square noise of just 0.5 μJy. The survey will contain approximately 10^9 sources, primarily star-forming radio galaxies, as can be seen in Fig. 9. This is over 1000 times more galaxies than the FIRST sample where a radio weak lensing signal was first detected (Chang et al. 2004), and with a much cleaner PSF than the VLA (see Fig. 4). However, with a PSF whose full width at half-maximum (FWHM) is roughly 3 arcsec, many radio galaxies will be unresolved for the DSA-2000 in the dirty image. Using POLISH to achieve superresolution, DSA-2000 could be competitive and complementary with Stage IV weak lensing experiments such as Euclid and the Vera C. Rubin Observatory. Sheet maps from DSA-2000 will therefore enable a symbiosis between wavelengths, where cross-correlating radio/optical shear maps allow for tight constraints on both dark energy and modified gravity (Harrison et al. 2016).

5.1 Radio weak lensing systematics

Shape noise on the shear power spectrum falls in proportion to the number of galaxies in the survey. However, systematic uncertainties will play a large role in upcoming weak lensing surveys, whether in the radio or optical. For example, the intrinsic alignment of galaxies can break the assumption that galaxy position angles and shapes are inherently uncorrelated. Biases in the measurement of shear must be accounted for and carefully calibrated out, as well as uncertainty in redshift estimation (Mandelbaum 2018). Finally, the PSF must be deconvolved out of the image, and residual PSF errors will lead to galaxy shape distortions. In the case of ground-based optical telescopes, time-variable seeing and related systematics make PSF modelling a central effort in weak lensing analysis (Gatti et al. 2021).

In the radio, weak lensing experiments suffer from overlapping but distinct systematics. Intrinsic alignment bias will affect galaxies in any weak lensing survey, but can potentially be calibrated out in the radio using the polarized emission of star-forming galaxies, which is unaltered by lensing (Brown & Battye 2011; Harrison et al. 2016). The PSF of a radio interferometer can be modelled deterministically (see Section 2.1), in contrast to an optical telescope. However, PSF modelling is still a source of significant uncertainty because the PSF of an interferometer is typically poorly behaved, with significant sidelobes and azimuthal structure thanks to sparse sampling of the aperture. This makes image reconstruction, and therefore shear measurement, more sensitive to errors in the PSF model even if the response can be forward modelled.

The DSA-2000 will skirt some of these issues by densely sampling the UV plane and by optimizing antenna configuration to produce an azimuthally smooth PSF and highly attenuated sidelobes. While its suppressed sidelobes and smoothness will reduce errors introduced by PSF modelling and deconvolution, the nominal beam size of 3 arcsec means that many SFGs will have angular size below our diffraction limit, hence our requirement of superresolution. The DSA-2000 will therefore have fewer image reconstruction relics that bias galaxy shape measurement, but will be limited by resolution. For reference, the Dark Energy Survey (DES) has a median seeing of roughly 1 arcsec and has produced strong cosmological constraints from its weak lensing experiment (Gatti et al. 2021), which sets an achievable baseline for POLISH.

5.2 Forecasting

We would like to estimate how well a weak-lensing survey on DSA-2000 will be able to constrain the cosmological parameters, both in the case where superresolution of a factor of a few is achieved (POLISH SR in Table 2) and when spatial resolution is limited by the synthesized beam size of 3 arcsec (No SR in Table 2). We compare simulations for DSA-2000 with simulations of SKA1 and the Euclid. Euclid is a visible to near-infrared space telescope expected to launch in mid- to late-2022 and is considered a Stage IV experiment. For these forecasts, we use the same parameters assumed by Harrison et al. (2016). SKA1 will be a mixed array of 133 15 m SKA dishes and 64 13.5 m dishes from the MeerKAT telescope and a nominal PSF of 0.5 arcsec. Its weak lensing survey will be on Band 2 at 0.95–1.76 GHz (Harrison et al. 2016). As an empirical benchmark, we take the recently published DES Year 3 Results (Abbott et al. 2021). DES is a Stage III experiment that is already producing cosmological strong constraints from its optical weak lensing survey. We show these survey parameters in Table 2. We base our estimate of the effective number of usable galaxies on both the estimated PSF sizes and the observed distribution of galaxy sizes. Owen & Morrison (2008) find that half of SFGs above 15 μJy have major axes greater than 1 arcsec. However, recent work has argued that μJy radio sources may be more compact than previously believed, with a median FWHM of 0.3 arcsec (Cotton et al. 2018; Jiménez-Andrade et al. 2021).

Table 2. Parameters used for forecasting the constraining power of a weak lensing experiment on different surveys, including DSA-2000 with and without POLISH’s superresolution. \(N_{gal}\) is the total number of detections, \(n_{gal}\) is the on-sky density, \(f_i\) is the fraction of galaxies with spectroscopic redshift, and \(\sigma_{\mu}\) is the uncertainty on photometric redshifts. The DES Y3 row corresponds to the real values obtained from the year 3 galaxy shape catalogue (Gatti et al. 2021); the other rows are estimates of survey parameters.

<table>
<thead>
<tr>
<th>Survey</th>
<th>(N_{gal})</th>
<th>Sky coverage (deg(^2))</th>
<th>(n_{gal}) (sq arcmin(^{-1}))</th>
<th>(f_i)</th>
<th>(\sigma_{\mu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA-2000: POLISH SR</td>
<td>(10^9)</td>
<td>32,000</td>
<td>6/3(^a)</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>DSA-2000: No SR</td>
<td>(10^9)</td>
<td>32,000</td>
<td>6/0.5(^a)</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>SKA1</td>
<td>(5 \times 10^7)</td>
<td>5,000</td>
<td>2.7</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Euclid</td>
<td>(1.6 \times 10^9)</td>
<td>15,000</td>
<td>30</td>
<td>0.33</td>
<td>0.04</td>
</tr>
<tr>
<td>DES Y3</td>
<td>(10^6)</td>
<td>4,143</td>
<td>6.7/5.6(^a)</td>
<td>0.0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\(^a\)Effective aerial number density of galaxies. On DSA-2000, we assume that only half of galaxies will be sufficiently superresolved to produce a shape measurement.

For this reason, we assume that only one half of sources will be resolved with POLISH, assuming an effective resolution of 3 arcsec/SNR. For the case where superresolution is not achieved, we assume that under 10 per cent of sources will be resolved. For this reason, we take the effective areal density for DSA-2000 with POLISH to be 3 galaxies per square arcminute, while only 0.5 galaxies per square arcminute will be useable without superresolution. We assume that SKA1 will be able to resolve O(1) of detected galaxies, so we do not adjust its \(n_{gal}\). The same is true for Euclid, which is space based and therefore diffraction limited at its nominal resolution of 0.2 arcsec.

Forecasting weak lensing constraints requires each survey’s expected redshift distribution, areal density of galaxies, \(n_{gal}\), total sky coverage, and information about the error in lensed galaxy redshifts. Obtaining redshifts of the lensed galaxies is an important component of weak lensing, as the cross-correlation angular power spectra between different redshift bins offer information on the evolution of structure over cosmic time (Bonnett et al. 2016). For this analysis, we follow Harrison et al. (2016) in using the MCMC parameter estimation code COSMOSIS (Zuntz et al. 2015). Specifically, we use code they have developed for forecasting the SKA’s radio weak lensing survey,\(^{10}\) but with the putative DSA-2000 parameters (Hallinan et al. 2019). On DSA-2000, we assume that 15 per cent of source will have spectroscopic redshifts (i.e. zero redshift uncertainty). The error on photometric redshifts will be approximately 0.05. DSA-2000 will obtain galaxy redshifts using several different methods. Approximately 30 million galaxies at \(z < 1\) will have spectroscopic redshifts from the DSA’s H I survey. The SPHEREx near-infrared all-sky survey (Doré et al. 2014) will determine the redshifts of over one billion galaxies with \(\sigma_z/(1+z) \leq 10\) per cent and a subset of several hundred million galaxies with \(\sigma_z/(1+z) \leq 1\) per cent (see here\(^{11}\) for current forecasts). Of these, three quarters can be cross-matched with the DSA-2000 catalogue.

We focus here on DSA-2000’s ability to constrain the matter power spectrum and dark energy, DSA-2000 produces constraints that are nearly as tight as Euclid. All four surveys provide an excellent opportunity for cross-correlation and cross-validation, particularly between the different wavelengths (Harrison et al. 2016; Camara et al. 2017).

6 DISCUSSION AND CONCLUSION

We have developed and demonstrated POLISH: a high-dynamic range residual neural network for fast, accurate, and superresolved astronomical imaging with radio interferometers. Feed-forward approaches like POLISH will be essential in analysing data from upcoming instruments with enormous data rates where stream processing is critical, such as the upcoming DSA-2000 (Hallinan et al. 2019). We have shown that POLISH is highly effective at deconvolving the PSF in both simulated and real astronomical data. It also achieves superresolution and outperforms the interferometric deconvolution algorithm of the last five decades, image-plane CLEAN, in both reconstruction accuracy (PSNR and SSIM) and resolution. We have shown how method forward-modelling approaches such as RML are not a viable option for surveys such as DSA-2000, where data rates preclude the preservation of visibilities. In its current form, POLISH (like CLEAN) does not provide uncertainty in image reconstruction. Looking forward, we plan to estimate uncertainty in the reconstructed image within the POLISH framework using Bayesian deep learning to produce a posterior for \(I_{S(y)}\).

Besides addressing the deconvolution problem in radio-interferometric images, POLISH makes possible new, currently inaccessible science by achieving superresolution. When applied to data from the DSA-2000, POLISH will allow shape measurements of nearly \(\sim 10^9\) galaxies, enabling a weak lensing survey. We have forecasted the DSA-2000’s ability to constrain cosmological parameters and compared it with both upcoming and current weak lensing experiments. We have also shown the significant improvement in constraints when achieving superresolution with POLISH versus when resolution is set by the diffraction limit.

For the specific application of weak lensing with POLISH, future work will benefit from a more detailed, forward modelled simulation of shear estimation systematics and PSF errors. Beyond the fraction of SFGs that can be resolved, it is important to know how different image reconstruction algorithms affect galaxy shapes as a function of S/N, galaxy size, redshift, and proximity to bright sources. This exercise would result in a mock galaxy shape catalogue using one or more imaging techniques, including for other radio weak lensing experiments. For example, the SKA will be less constrained by resolution than DSA-2000, but may benefit from the learning-based, accurate reconstructions provided by POLISH. The MeerKAT

\(^{10}\)https://bitbucket.org/joezuntz/cosmosis-ska-forecasting/src/master/
\(^{11}\)https://github.com/SPHEREx/Public-products
International GHz Tiered Extragalactic Exploration (MIGHTEE) survey will achieve μJy sensitivity over 20 deg2 with a well-behaved PSF (Jarvis et al. 2016). Though its nominal 6 arcsec resolution is larger than most SFGs, MIGHTEE would provide an interesting application of POLISH to radio weak lensing. More generally, we anticipate that feed-forward techniques such as POLISH that deliver robust deconvolution and superresolution will be valuable for upcoming high-volume radio surveys.

ACKNOWLEDGEMENTS

We are grateful to Schmidt Futures for supporting the Radio Camera Initiative, under which this work was carried out. We thank Martin Krasser for his Tensorflow 2.x implementation of several superresolution algorithms and his advice on this paper’s application. We thank Joe Zuntz for help with his COSMOSIS code and Ian Harrison for valuable conversations. We also thank Nitika Yadlapalli, Yujing Huang, and Jamie Bock for helpful discussion.

DATA AVAILABILITY

The code for POLISH can be found at https://github.com/liamcon/polish-pub/. This includes tools for simulating the microJansky radio sky as well as code to train and use the POLISH neural network.

REFERENCES

Abbott T. M. C. et al., 2021, Phys. Rev. D, 105, 023520
Bonnett C. et al., 2016, Phys. Rev. D, 94, 042005
Brown M. et al., 2015, Proc. Sci., Weak Gravitational Lensing with the Square Kilometre Array. SISSA, Trieste, PoS#23
2626 L. Connor et al.

Hallinan G. et al., 2017, Science, 358, 1579
Mandelbaum R., 2018, ARA&A, 56, 393
Ravi V. et al., 2019, Nature, 572, 352
Riad S., 1986, Proc. IEEE, 74, 82
Zuntz J. et al., 2015, Astron. Comput., 12, 45

This paper has been typeset from a TeX/XeTeX file prepared by the author.