
A Matched Survey for the Enigmatic Low Radio Frequency Transient ILT
J225347+862146

Yuping Huang (黃宇平)1,2,6 , Marin M. Anderson1,2,3 , Gregg Hallinan1,2 , T. Joseph W. Lazio3, Danny C. Price4,5 , and
Yashvi Sharma1

1 Cahill Center for Astronomy and Astrophysics, MC 249-17, California Institute of Technology, Pasadena, CA 91125, USA; yupinghyper@gmail.com
2 Owens Valley Radio Observatory, California Institute of Technology, 100 Leighton Lane, Big Pine, CA 93513-0968, USA

3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
4 International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia

5 Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA
Received 2021 October 21; revised 2021 November 19; accepted 2021 December 4; published 2022 February 3

Abstract

Discovered in 2011 with LOFAR, the 15 Jy low-frequency radio transient ILT J225347+862146 heralds a
potentially prolific population of radio transients at <100MHz. However, subsequent transient searches in similar
parameter space yielded no detections. We test the hypothesis that these surveys at comparable sensitivity have
missed the population due to mismatched survey parameters. In particular, the LOFAR survey used only 195 kHz
of bandwidth at 60MHz, while other surveys were at higher frequencies or had wider bandwidth. Using 137 hr of
all-sky images from the Owens Valley Radio Observatory Long Wavelength Array, we conduct a narrowband
transient search at ∼10 Jy sensitivity with timescales from 10 minutes to 1 day and a bandwidth of 722 kHz at
60MHz. To model the remaining survey selection effects, we introduce a flexible Bayesian approach for inferring
transient rates. We do not detect any transient and find compelling evidence that our nondetection is inconsistent
with the detection of ILT J225347+862146. Under the assumption that the transient is astrophysical, we propose
two hypotheses that may explain our nondetection. First, the transient population associated with ILT J225347
+862146 may have a low all-sky density and display strong temporal clustering. Second, ILT J225347+862146
may be an extreme instance of the fluence distribution, of which we revise the surface density estimate at 15 Jy to
1.1× 10−7 deg−2 with a 95% credible interval of (3.5× 10−12, 3.4× 10−7) deg−2. Finally, we find a previously
identified object coincident with ILT J225347+862146 to be an M dwarf at 420 pc.

Unified Astronomy Thesaurus concepts: Radio transient sources (2008); Radio interferometry (1346); Non-thermal
radiation sources (1119); Bayesian statistics (1900); M dwarf stars (982)

Supporting material: machine-readable table

1. Introduction

Over the last decade, a new generation of low radio frequency
(ν 300MHz; wavelength λ 1 m) interferometer arrays based
on dipoles has emerged. Dipole arrays simultaneously offer a large
effective area (∼λ2/4π) and field of view (FOV) and are thus well
suited to synoptic surveys of the time-domain sky. Scientific
exploitation of these instruments has been enabled by advances in
processing technology. Progress in digital back ends (e.g., Clark
et al. 2013; Hickish et al. 2016) accommodates a wider bandwidth
and larger number of dipoles. New data flagging (e.g., Offringa
et al. 2012; Wilensky et al. 2019), calibration (e.g., Noordam 2004;
Smirnov & Tasse 2015), and imaging (e.g., Sullivan et al. 2012;
Offringa et al. 2014; Tasse et al. 2018; Veenboer & Romein 2020)
algorithms have drastically improved data quality and processing
speed. Dipole-based instruments like the Long Wavelength Array
(LWA; Taylor et al. 2012; Ellingson et al. 2013), LOw Frequency
ARray (LOFAR; van Haarlem et al. 2013; Prasad et al. 2016),
Murchison Widefield Array (MWA; Tingay et al. 2013; Wayth
et al. 2018), Owens Valley Radio Observatory Long Wavelength

Array (OVRO-LWA; Kocz et al. 2015; Anderson et al. 2018;
Eastwood et al. 2018), and Square Kilometre Array-Low (SKA-
Low; Dewdney et al. 2009) prototype stations (Wayth et al. 2017;
Davidson et al. 2020) have carried out increasingly deeper and
wider transient surveys.
Low radio frequency transient surveys may probe different pop-

ulations of transients than higher-frequency (GHz) radio surveys.
At low radio frequencies, synchrotron-powered incoherent extra-
galactic transient sources often evolve on timescales of years to
decades and are often obscured by self-absorption (Metzger et al.
2015). Meanwhile, we expect coherent emission to be more
common at low radio frequencies. The longer wavelength allows a
larger volume of electrons to emit in phase and may lead to
stronger emission (Melrose 2017). Observationally, some coherent
emission mechanisms prefer low radio frequencies (e.g., electron
cyclotron maser emission; Treumann 2006) or have steep spectra
(e.g., pulsars; Jankowski et al. 2018). Despite their potential
prevalence at low radio frequencies, the luminosity function for
coherent emission sources at low radio frequencies remains poorly
characterized. Initial transient surveys probing timescales of
seconds to years at these frequencies have made significant
progress into the transient rate–flux density phase space, but the
transient populations at these frequencies remain poorly under-
stood compared to higher radio frequencies.
To date, radio transient surveys below 350MHz have only

yielded eight transient candidates across all timescales, with no
populations or definitive multiwavelength associations identified
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(see Table 1 of Anderson et al. 2019 for a summary and Kuiack
et al. 2021a for an additional candidate). In addition to the rarity
of detections, scintillation due to the ionosphere or near-Earth
plasma, typically lasting a few seconds (Kuiack et al. 2021b) to
minutes (Anderson et al. 2019), also complicates the interpreta-
tion of individual events. One can identify these events by their
spectral features over a wide bandwidth and their coincidences
with underlying fainter sources.

Of all the low-frequency radio transient detections so far, the
Stewart et al. (2016) transient, ILT J225347+862146, stands
out for a few reasons. The high flux density, relatively precise
localization (11″), and high implied rate (16 15

61
-
+ sky−1 day−1)

make the transient promising for follow-up observations and
searches for the associated population. The transient was
detected during a 4 month long LOFAR Low-Band Antennas
monitoring campaign of the Northern Celestial Pole (NCP)
with irregular time coverage, totaling 400 hr of observing time
with a snapshot FOV of 175 deg2. The observing bandwidth
was 195 kHz at 60MHz. The transient peaked at 15–25 Jy and
evolved on timescales of around 10 minutes. The fact that the
transient was unresolved on the maximum projected baseline
length of 10 km and the relatively long duration of the transient
argue against a scintillation event in the near field due to the
ionosphere or near-Earth plasma.

The search for the underlying population of ILT J225347
+862146 was one of the goals of the first nontargeted transient
survey with the OVRO-LWA (Anderson et al. 2019). Despite
having searched for an order of magnitude larger sky area than did
Stewart et al. (2016) at a comparable sensitivity and frequencies,
Anderson et al. (2019) reported no detected transients.

One hypothesis that may explain the nondetection by Anderson
et al. (2019), which searched in images integrated over the full
27–85MHz frequency coverage of the OVRO-LWA, is that the
emission associated with this transient is confined to a narrow
band of frequencies. Coherent transient emission is known to
exhibit narrowband morphology. Recently, Callingham et al.
(2021) detected a burst from an M dwarf binary, CR Draconis,
that only occupied a fractional bandwidth of Δν/ν= 0.02 at an
observing frequency ν= 170MHz. On the brightest end of
coherent emission, fast radio bursts also commonly only appear in
a fraction of the observing bandwidth with typical Δν/ν∼ 0.2
(see, e.g., Pleunis et al. 2021), with an extreme case reachingΔν/
ν= 0.05 (Kumar et al. 2021).

Motivated by the narrowband hypothesis, the purpose of this
work is to search for narrowband transients with timescales
from 10 minutes to 1 day in 137 hr of all-sky monitoring data
with the OVRO-LWA. With a comparable bandwidth and
sensitivity, we also aim to replicate the Stewart et al. (2016)
experiment with two orders of magnitude higher surface area
searched. We also develop a Bayesian model for survey results
so that we can fully account for our varying sensitivity as a
function of FOV and robustly assess whether the survey results
are consistent.

We introduce the OVRO-LWA observation and data collection
procedure in Section 2. We describe the visibility flagging and
calibration procedures in Section 3.1, the imaging steps in
Section 3.2, and the transient candidate identification pipeline in
Section 3.3. In Section 4, we introduce a Bayesian approach for
modeling transient surveys and comparing different survey results.
Section 5 details the result of our survey. In Section 6, we present
an M dwarf coincident with the transient ILT J225347+862146

and discuss the implications of our work. We conclude in
Section 7.

2. Observations

The OVRO-LWA is a low radio frequency dipole array
currently under development at OVRO in Owens Valley,
California. “Stage II” of the OVRO-LWA, identical to that in
Anderson et al. (2019), produced the data for this work. The final
stage of the array will come online in 2022, with 352 antennas
spanning 2.4 km. The Stage II OVRO-LWA consisted of 256
dipole antennas spanning a maximum baseline of 1.5 km.
This transient survey makes use of data from a 5 day

observing campaign, the parameters of which we summarize in
Table 1. Full cross-correlations across the entire 256-element
array were recorded to enable all-sky imaging. Stage II of the
array only allowed integer second integration time. As a result,
we chose the 13 s integration time to enable differencing of
images at almost the same sidereal time (see the motivation for
sidereal image subtraction in Section 3.2), because 1 sidereal
day is, within 0.1 s, an integer multiple of 13 s. We searched for
transients in the 611 s integrated images (henceforth referred to
as the 10 minute search).
Unlike Anderson et al. (2019), which searched for broadband

(Δν/ν> 1) counterparts to ILT J225347+862146, we explore the
possibility that the event was narrowband, with Δν/ν= 1. In our
narrowband search, we chose a central frequency of 60MHz,
identical to that used in Stewart et al. (2016). Stewart et al. (2016)
used a bandwidth of 195 kHz, equivalent to Δν/ν= 0.003. In
order to ensure that our sensitivity is well matched to the peak flux
density of ILT J225347+862146 (15–25 Jy), we use a bandwidth
that is 3.7 times larger (722 kHz) to reach the desired noise level
in 10minute integrated images. This decision is well justified
because our search is still sensitive to events with Δν/ν> 0.012,
which is a narrower bandwidth than any known phenomenon
discussed in Section 1. While we only use 722 kHz of bandwidth
for the search, we subsequently incorporate the full 57.8MHz
bandwidth for candidate characterization.

3. Data Reduction and Analyses

3.1. Flagging and Calibration

Flagging of bad data and calibration for this work largely
follow the procedures outlined in Anderson et al. (2019), which
we summarize here. For each day of observation, we identify
and flag bad antennas from their autocorrelation spectra and
derive the direction-independent (bandpass) calibration solu-
tions during Cyg A transit with the bandpass task in CASA 6
(McMullin et al. 2007; Raba et al. 2020). The bandpass
calibration sets the flux scale. We then apply the daily bandpass
solutions and flags to each 13 s integration for the rest of the
day. For each integration where Cyg A or Cas A is visible, we

Table 1
Parameters of the Observing Campaign

Parameter Value

Start time 2018-03-21 01:28 UTC
End time 2018-03-26 18:53 UTC
Total observing time 137 hr
Maximum baseline 1.5 km
Frequency range 27.38–84.92 MHz
Channel width 24 kHz

2

The Astrophysical Journal, 925:171 (18pp), 2022 February 1 Huang et al.



use TTCal7 (Eastwood 2016), which implements the StEFCal
algorithm (Salvini & Wijnholds 2014), to solve for their
associated direction-dependent gains and subtract their cor-
rupted visibility from the data, a process known as peeling
(Noordam 2004). Peeling solutions are derived once per 13 s
integration per 24 kHz frequency channel. Finally, for each
integration, we find bad channels by detecting outliers in
averaged visibilities per channel over baselines longer than 30
m. The 30 m cutoff suppresses flux contribution from the
diffuse emission in the sky and allows for more robust outlier
detections. The channel flags are subsequently applied to the
13 s integration.

Our modifications to the Anderson et al. (2019) flagging and
calibration approach are as follows.

1. Anderson et al. (2019) used 13 s of data during Cyg A
transit to derive the bandpass calibration. In this work, we
use 20 minutes of data around Cyg A’s transit. The
calibration integration time is longer than the typical
ionospheric and analog gain fluctuation timescales of the
array and thus offers more robust solutions that are more
representative of the instrument bandpass.

2. To further identify baselines that have excess power due
to cross talk and common-mode noise, we follow
Eastwood et al.ʼs (2018) strategy and derive baseline
flags by identifying outliers in 12 hr averaged visibility
data without phase tracking after bandpass calibration.
We pick the 12 hr of the day when the galaxy is below the
horizon. Averaging the visibility without phase tracking
attenuates the sky signals and highlights stationary excess
power on baselines. Figure 1 illustrates this strategy.
These flags are generated and applied each day.

3. For each day, we randomly select two integrations to
validate the flags and calibration solutions. We identify
additional baselines and antennas that show excess
visibility amplitude by visual inspection and add them
to the per-day set of flags.

These flagging and calibration steps produce visibility data
with flags at 13 s time resolution.

3.2. Imaging and Sidereal Image Differencing

In principle, image differencing allows us to remove diffuse
emission and search for transients below the Jansky-level
confusion limit (Cohen 2004). However, when differencing
OVRO-LWA images that were a few minutes apart, Anderson
et al. (2019) observed the sensitivity degrading compared to the
seconds-timescale search. They concluded that in searches for
transients beyond a few integrations, sources’ motions across
the antenna beams introduced significant direction-dependent
errors that failed to subtract over the course of a few minutes.
To circumvent the limitations due to the antenna beams,

in this work, we expand on the sidereal image-differencing
technique initiated by Anderson et al. (2019). We difference
integrations that are, within 0.1 s, 1 sidereal day apart, so that
all persistent sources remain in the same positions of the
antenna beams. Sidereal image differencing allows clean
source subtraction without incorporating the individual antenna
beams into calibration and imaging. This section details steps
for generating 10 minute integrated and sidereally differenced
images (see also Figure 2). For each pair of 10 minute groups
of 13 s visibility data that are 1 sidereal day apart, we perform
the following operations.

1. We merge the flags for the two groups and apply the
merged flags to all integrations within the groups. This
ensures that the resultant images for the two groups have
the same point-spread function.

2. We apply a per-channel, per-antenna, per-integration
amplitude correction to the integrations from the first day
so that their autocorrelation amplitudes match those from
the second day. This corrects for gain amplitude
variations on short timescales (most notably temper-
ature-dependent analog electronics gain variation that
correlates with the 15 minute air-conditioning cycle in the
electronics shelter).

3. We change the phase center of all visibility data to the
same sky location, the phase center in the middle of the

Figure 1. Amplitude diagnostics for all pairs of baselines before (left) and after (right) baseline flagging. Due to cross talk between adjacent signal paths, a priori
flagging of antennas adjacent to each other in the signal path has been applied before baseline flagging. The amplitude shown is the frequency-averaged amplitude
after time averaging for 12 hr without phase tracking. Therefore, outliers indicate bad antennas or baselines with excess stationary power. The final upgrade of the
OVRO-LWA array will feature redesigned electronics with much better signal path isolation and thus minimize signal coupling between nearby signal paths.

7 https://github.com/ovro-lwa/TTCal.jl/tree/v0.3.0/
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time integration. We then image each 13 s integration
with wsclean (Offringa et al. 2014) using Briggs 0
weighting and a inner Tukey tapering parameter
(-taper-inner-tukey) of 20 λ. The weighting and
tapering scheme suppresses diffuse emission, especially
toward the galactic plane, without introducing ripple-like
artifacts corresponding to a sharp spatial scale cutoff. The
typical FWHM of the synthesized beam is 23 13¢ ´ ¢.

4. During imaging, we allow deconvolution of the Sun and
the Crab pulsar by masking everything else in the sky
with the -fits-mask argument of wsclean. We set the
CLEAN threshold to 50 Jy. This removes side lobes in the
images due to the Sun and the Crab pulsar: the Sun
moves in celestial coordinates from day to day, and the
Crab pulsar exhibits strong variability.

5. Each image from the first day is subtracted from its
sidereal counterpart from the second day to form the
differenced image. We then coadd the group of differenced
images to form the 10minute differenced image. We chose
the coadding approach because it is more efficient to
parallelize than gridding all 10minutes of visibility. For a
subset of our data, we confirm that the coadded differenced
images suffer from no sensitivity loss or artifacts by
comparing them to differenced images produced directly
by imaging the full 10 minute visibility data set.

Figure 3 shows the main classes of problematic image-
differencing artifacts that our procedure removes. Our
procedure aims at reducing the rms estimate of the noise due
to the far side lobes of these artifacts in the rest of the image.
The sidereally differenced images that our procedure produces
are the data product on which we perform source detection to
search for transients. Figure 4 shows the noise characteristics of
the sidereally differenced images.

We use Celery,8 a distributed task queue framework, with
RabbitMQ9 as the message broker to distribute the computing
workload for this project across a 10-node computing cluster
near the telescope. Each node has 16 cores and 64 GB of RAM.
The snapshot of the pipeline source code used for this work can
be found at https://github.com/ovro-lwa/distributed-pipeline/
tree/v0.1.0.

3.3. Source Finding and Candidate Sifting

We use the source detection code10 developed by Anderson
et al. (2019) to detect sources in the sidereally subtracted
images. The algorithm divides each image into 16 tiles and
estimates the local image noise in each tile. It then groups
bright pixels with a hierarchical agglomerative clustering
(HAC) algorithm to identify individual sources. Anderson
et al. (2019) tuned the parameters of the HAC algorithm for
detecting sources in dirty subtracted images of the OVRO-
LWA. The source detection algorithm only reports sources
with a peak flux density 6.5 times the local standard deviation
σ. Based on the number of independent synthesized beams
searched (Frail et al. 2012), we estimate the probability of
detecting a 6.5σ outlier due to Gaussian noise fluctuation over
the entire survey to be<5× 10−3.
For each detected source, we visually inspect its cutout and

all-sky images in an interactive Jupyter (Kluyver et al. 2016)
notebook widget11 that records the labels for all detected
sources. We developed the tool with the ipywidgets12 and
matplotlib (Hunter 2007) packages. We can rule out a
large number of artifacts based on their appearances and
positions in the sky; radio frequency interference (RFI) sources
and meteor reflections are often resolved and/or close to the
horizon. We label point sources detected in the subtracted
images that only appear in either the “before” or “after” images
as candidate transients.
For these candidates, we generate spectra time series

(dynamic spectrum) over the entire 58MHz of bandwidth
and reimage them with different weighting schemes to ascertain
the properties of these candidates. For candidates that appear
near Vir A, Tau A, or Her A, we deconvolve the bright source
to test whether a given candidate is part of the bright source’s
side lobe.

3.4. Quantifying Survey Sensitivity

We quantify the noise in subtracted images with the standard
deviations at zenith reported by the source detection code.

Figure 2. Cartoon representation of the imaging and differencing steps that produce the differenced images that we search for transients. The inputs are calibrated
visibility from two time steps being subtracted, separated by 1 sidereal day. Each input visibility integration (represented by the fringe pattern) is 13 s long. The group
of visibility data from each day consists of 47 integrations. The flag merge, gain scale, imaging, source removal, subtract, and coadd steps are detailed in Section 3.2.

8 https://docs.celeryproject.org/en/stable/
9 https://www.rabbitmq.com/

10 https://github.com/ovro-lwa/distributed-pipeline/blob/v0.1.0/orca/
extra/source_find.py
11 https://github.com/ovro-lwa/distributed-pipeline/blob/v0.1.0/orca/
extra/sifting.py
12 https://github.com/jupyter-widgets/ipywidgets
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The power beam of an OVRO-LWA dipole approximately
follows a cos1.6( )q pattern, where θ is the angle from zenith
(Anderson et al. 2019). Therefore, for a given snapshot with
noise at zenith σz, the primary beam–corrected image noise at
an angle θ from zenith is given by cosz

1.6( )s q . Furthermore,
the number of artifacts increases as the zenith angle increases
due to both horizon RFI sources and increased total electron
content through the ionosphere at lower elevations. Therefore,
we define the zenith angle cutoff for our survey as when the
marginal volume probed with increasing zenith angle is small.
The volume probed for a nonevolving population of transients
uniformly distributed in space has the following dependencies
on FOV and sensitivity:

V S d , 1
0

0
3 20

( )òµ W
q

-

where S0 is the sensitivity as a function of solid angle Ω, and θ0
is the zenith angle limit of a survey. This is equivalent to the
figure of merit defined in Macquart (2014) for such a
population of transients. Substitute in the dependency of
sensitivity on zenith angle, and we get

V dcos sin

cos .
0

1.6 3 2

3.4
0

0

( )ò q q q

q

µ

µ-

q
- -

We choose a zenith angle cut of θ0= 60°, which encompasses
90% of the available survey volume. The beam-averaged noise

s̄ is therefore given by

d d

d d

sin

sin
. 20

2

0 cos

0

2

0

z0

1.6

0
¯ ( )

ò ò

ò ò
s

q q f

q q f
=

p q s
q

p q

For a zenith angle cut of θ0= 60°, this evaluates to 1.72σz.
Since our sensitivity varies significantly over the FOV, we

also quantify our sensitivity in terms of total sky area versus
sensitivity aggregated over all images in our survey. Our
approach is similar to that of Bell et al. (2014), albeit with
much finer flux density bins. Figure 5 shows the cumulative
sky area as a function of sensitivity for 10 minute timescale
transients. The binned sky area and sensitivity {Ωtot,i, Si} form
the basis of our Bayesian modeling of transient detections
detailed in Section 4.2.
The aforementioned approach assumes that the sky is static

with respect to the primary beam. However, Earth rotation
rotates the sky across the primary beam. We do not account for
this effect in our analysis due to the short integration time and
the smoothness of the primary beam. The rotation modifies the
sensitivity estimate for each point in the sky by a
negligible<1% for a 10 minute integration.

4. Estimating the Transient Surface Density

While our survey aims to match Stewart et al. (2016) as
much as possible, there remain a number of differences. Most
notably, our sensitivity varies by factor of ∼8 across the survey
due to the gain pattern of a dipole antenna and different levels
of sky noise at different times of the day. Therefore, in this
section, we devise a Bayesian scheme for inferring transient

Figure 3. Images illustrating the effects that raise the noise level in sidereal image differencing and how we mitigate them. The rms noise is the rms noise reported by
the source detection code. (a) The Sun moves by ∼1° day–1. Deconvolving the Sun during imaging reduces the noise due to its side lobes. (b) The analog gain scaling
and inner Tukey weighting suppress image-differencing artifacts due to the diffuse sky, especially in the direction of the Galactic plane.
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rates so that we can incorporate varying sensitivity as a
function of sky area surveyed. The Bayesian approach also
facilitates testing whether two survey results are consistent, an
important question when the implied rates of two surveys are
significantly different.

4.1. The Frequentist Confidence Interval

Once we count the number of transients n detected in a
survey, we can estimate the rate of low-frequency transients.
For a given timescale, the rate of transients above a certain flux
density threshold S0 is typically parameterized by the surface
density ρ, which gives the number of transients per sky area.
For a given population of transients that occur with a surface
density ρ above a certain flux threshold S0, the number of
detections in a given survey with a total independent sky area
surveyed Ωtot follows a Poisson distribution with a rate
parameter

. 3tot ( )l r= W

The probability mass function (PMF) of the Poisson distribu-
tion is given by

P n
e

n
, 4

n

Pois( ∣ )
!

( )l
l

=
l-

where P nPois( ∣ )l is the probability of obtaining n detections.
Gehrels (1986) computed a table of confidence interval values
for λ for a range of probability and number of detections in a
given survey, from which one can derive the confidence
interval on the surface density ρ. The 95% upper limit on the
surface density ρ, along with the survey sensitivity S0, is the
typical metric quoted in low-frequency radio transient surveys
and is plotted in the phase-space diagram (Figure 6).
Our survey is sensitive to transients with a decoherence

timescale (Macquart 2014) T from 10 minutes to 1 day. Since
each of our snapshots has the same FOV ΩFOV, the total
independent sky area surveyed is given by

N

T 10minutes
, 5tot FOV ( )W W ⎢

⎣
⎢

⎥

⎦
⎥

where N is the number of 10 minute sidereally differenced
images, and ⌊ · ⌋ is the floor function. Following conventions in
the low-frequency transient search literature, we quote the 95%
confidence upper limit on ρ at the average sensitivity of the
survey.

4.2. Bayesian Inference for Transient Surveys

For wide-field instruments at low frequencies, the survey
sensitivity can vary by more than an order of magnitude with
time and FOV. Different sensitivity probes a different depth for
a given population of transients. By reducing the information
contained in a survey to its typical sensitivity, the above
approach does not use all information contained within a
survey. To address the variation of sensitivity across a survey,
Carbone et al. (2016) modeled the surface density ρ above a
flux threshold S0 as a power law of sensitivity:

*
*

S S
S

S
, 60

0( ) ( )r r> =
g-

⎜ ⎟
⎛
⎝

⎞
⎠

Figure 4. (a) Time series of noise at zenith in 10 minute subtracted images over the entire observation. A higher noise level corresponds to daytime. Noise level spikes
typically occur at sunrise, at sunset, when a horizontal radio frequency interference source flares up, and when the Crab pulsar scintillates. (b) Histogram of image-
plane noise measured in all integrations. The two modes of the distribution correspond to daytime (when both the Sun and the galactic plane are up) and nighttime
observations.

Figure 5. Cumulative sky area surveyed at a 10 minute timescale as a function
of detection threshold.
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where γ is the power-law index, and ρ* is the reference surface
density at flux density S*. The Poisson rate parameter is then
given by

*
*

S

S
. 70

tot ( )l r= W
g-

⎜ ⎟
⎛
⎝

⎞
⎠

For a given γ, the reference surface density ρ* can be inferred
from the number of detections in parts of the survey with
different sensitivity.

Here we develop a Bayesian approach that extends the
Carbone et al. (2016) model. Apart from enabling future
extensions to the model, the main utilities of the Bayesian
approach are as follows.

1. It allows us to marginalize over the source-count power-
law index γ for an unknown population when inferring
the surface density ρ*.

2. It outputs a posterior distribution over ρ*, which can be
integrated to inform future survey decision-making.

3. It allows for robust hypothesis testing of whether the
survey results are consistent with each other.

Our baseline model,1, jointly infers γ and ρ* for a single
population of transients, thereby naturally accommodating our

survey’s change of surface area with sensitivity. The alternative
model,2, proposes that our survey probes a population with
surface density rρ*, with r as a free parameter. In other words,
2 proposes that our survey and Stewart et al. (2016) select
for different population of transients. A model comparison
between1 and2 informs us whether two transient surveys
yield inconsistent results. We now elaborate on the details of
the models. The notebooks that implement the models are
hosted at https://github.com/yupinghuang/BIRTS.

4.2.1. The Setting

To infer the model parameters θ for a given model and
measured data D, we use Bayes’ theorem to obtain the posterior
distribution, the probability distribution of θ given the data,


 


p D

p D p

p D
,

,
. 8( ∣ ) ( ∣ ) ( ∣ )

( ∣ )
( )q q q

=

Several other probability distributions of interest appear in
Bayes’ theorem: p D ,( ∣ )q is the likelihood function, the
probability of obtaining the measured data D given a fixed
model parameter vector θ under model; p( ∣ )q is the prior
distribution, specifying our a priori belief about the parameters;
and p D( ∣ ) is the evidence, the likelihood of observing data

Figure 6. The radio transient phase-space diagram shows the transient surface density as a function of limiting flux density for nontargeted transient surveys
at <300 MHz to date. Each point denotes the typical sensitivity and 95% frequentist upper limit of the transient surface density of the survey. Surveys with detections
are marked in bold. The color denotes the timescale of the search, ranging from timescales of 1 s (Kuiack et al. 2021a) to 5.5 yr (de Ruiter et al. 2021). Surveys
conducted at different frequencies are marked with different shapes. Surveys with similar surface density and flux density limits may probe different populations of
transients if they operate in different frequencies or timescales. Each of the solid gray lines traces a hypothetical standard candle population in a Euclidean universe,
i.e., a cumulative flux density distribution (Equation (6)) power-law index of γ = 3/2. References: Hyman et al. (2002), Hyman et al. (2005), Hyman et al. (2009),
Lazio et al. (2010), Jaeger et al. (2012), Bell et al. (2014), Cendes et al. (2014), Obenberger et al. (2015), Carbone et al. (2016), Polisensky et al. (2016), Rowlinson
et al. (2016), Stewart et al. (2016), Feng et al. (2017), Murphy et al. (2017), Anderson et al. (2019), Hajela et al. (2019), Varghese et al. (2019), Kuiack et al. (2021a),
de Ruiter et al. (2021), Sokolowski et al. (2021).
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D under model. Normalization of probability to 1 requires
that

  p D p D p d, , 9( ∣ ) ( ∣ ) ( ∣ ) ( )ò q q q=

which gives the evidence p D( ∣ ) the interpretation of the
likelihood of observing data p(D) averaged over the model
parameter space.

4.2.2. Representing Data

We encode the results of surveys in the data variable
{Di}= {S0,i, Ωtot,i, ni}, where S0,i is the sensitivity associated
with the ith bin, Ωtot,i is the differential total area surveyed in
the ith bin, and ni is the number of detections in the ith bin. The
Stewart et al. (2016) detection with LOFAR can then be written
as a one-bin data point:

D 15 Jy, 3.3 10 deg , 1 . 10L
5 2{ } ( )= ´

For the OVRO-LWA, {S0,i, Ωtot,i} is the differential sensitiv-
ity–sky area curve described in Section 3.4.

4.2.3. A Single-population Model

For a single survey, or for multiple surveys where we assume
that the selection criteria do not affect the observed rate of the
transients, a Poisson model with a single reference surface
density ρ* and source-count power-law index γ is appropriate.
We denote this model1 and the parameters θ1= (ρ*, γ).

For all of the survey data encoded in {Di}, the model states
that for each sensitivity bin S0,i with sky area Ωtot,i, the
detection count ni follows a Poisson distribution:

 n P n
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where we use the ∼ operator to denote that each ni
independently follows the distribution specified by the Poisson
PMF PPois defined in Equation (4). We choose the reference
flux density S* = 15 Jy.

With the model specified, we adopt the uninformative prior
distributions p(γ)∝ γ−3/2 and p(ρ*)∝ 1/ρ* derived in Appendix.
Integrating the joint posterior distribution 

*
p D, , 1( ∣ )r g gives

the marginalized posterior distribution for ρ*. To understand the
sensitivity of the posterior distribution on the choice of prior
distributions, we also derive the posterior with uniform priors on γ
and ρ*. In all cases, we bound the prior distribution on γ to (0, 5)
and on ρ* to (10−14, 10−3) deg−2.

Even though the Poisson distribution can be integrated
analytically over λ, with our modifications, the likelihood
function cannot be integrated analytically. For this two-
parameter model, the integral can be done by a Riemann sum
over a grid. However, we adopt a Markov Chain Monte Carlo
(MCMC) approach to integrate the posterior distribution. The
MCMC approach allows extensions of the model. For example,
one may wish to incorporate an upper flux density cutoff Fmax

for the flux density distribution. We extend this model to test
the consistency of different survey results in the next section.
The MCMC approach will also allow future work to turn more
realistic models for transient detections (see, e.g., Trott et al.
2013; Carbone et al. 2017, and references within) into inference
problems, which will enable more accurate characterizations of
the transient sky.

We use the No-U-Turn Sampler (NUTS; Hoffman & Gelman
2014), an efficient variant of the Hamiltonian Monte Carlo (HMC;
Duane et al. 1987) implemented in the Bayesian inference
package pymc3 (Salvatier et al. 2016), to sample from the
posterior distribution. We allow 5000 tuning steps for the NUTS
to adapt its parameters and run four chains at different starting
points. We check the effective sample size and the R̂ statistics
(Vehtari et al. 2021) provided by pymc3 for convergence of the
samples to the posterior distribution.

4.2.4. A Two-population Model

To answer whether our survey results are consistent with
Stewart et al. (2016), we develop a second model 2 as the
competing hypothesis. It states that the transient counts from
our survey with the OVRO-LWA, ni O{ } , are drawn from a
different Poisson distribution from which the LOFAR counts
ni L{ } are drawn. We introduce the surface density ratio, r,
which modifies the effective transient surface density ρ* for our
survey. In other words, 2 posits that our survey probes a
population with a different surface density rρ* than did Stewart
et al. (2016). The model can be written as


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Our physical interpretation of2 is that the two surveys probe
populations with different averaged transient surface densities.
The parameterization with the surface density ratio r captures

a wide range of selection effects, which may result in different
specifications of the prior distribution on r. Since our survey
covers the galactic plane, our all-sky rate can be enhanced if the
population is concentrated along the galactic plane. We
speculate that a natural prior on r is then a uniform prior. On
the other hand, the time sampling of Stewart et al. (2016)
extends over 4 months, while we have a continuous 5 day
survey. If the decoherence timescale of the transient event is
much longer than the 10 minute emission timescale (e.g., long-
term activity cycles), it reduces the number of epochs and thus
the effective total area Ωtot for our survey. In this case, a
uniform prior on 1/r might be more appropriate. Lacking
compelling evidence, we do not assume a particular source of
rate modification and prefer the uninformative prior p(r)∝ 1/r
derived in Appendix, which is invariant under the reparameter-
ization r→ 1/r. Finally, we can put an additional constraint of
r> 1 or r< 1 on the prior, depending on whether we are testing
the hypothesis that the surface density of the population probed
by our survey is higher or lower than Stewart et al. (2016).
This parameterization, however, does not capture the narrow

bandwidth of the signal because a narrow bandwidth modifies
the effective flux of the transient, which appears inside the
exponentiation by γ in Equation (7). Since we explicitly search
for narrowband transients (Section 2), we do not consider such
a model.

4.2.5. Testing Survey Consistencies via Model Comparison

With the two models we developed, the question of whether
two survey results are inconsistent translates to deciding which
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model is preferred given the data. Given the dearth of
information contained in surveys with few or no detections, a
particular class of methods may inadvertently bias the result.
Therefore, we test three different methods for Bayesian model
comparisons as outlined below and compare their results.

WAIC. The first class is based on estimating the predictive
accuracy of the models. One popular example is the Widely
Applicable Information Criterion (WAIC; Watanabe 2013;
Vehtari et al. 2017), which can be easily computed from
posterior samples. Given S samples of the parameters θs from
the computed posterior and all the data yi, the WAIC is given
by

S
p y p yWAIC log

1
Var log ,

13

s s
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n
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i

n

s
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i
1 1 1
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where Vars
S

1= denotes the variance taken over the posterior
samples. The first term is an estimate of the expected predictive
accuracy of the model, while the second term, the effective
degree of freedom, penalizes more complex models that are
overfitted. The difference in the WAIC between two models,
ΔWAIC, then gives a measure of how well the two models
may predict out-of-sample data.

Bayes factor. The second class of model comparison method
is based on the Bayesian evidence defined by Equation (9); i.e.,
how efficiently a model explains the observed data. Between
the two models, one computes the Bayes factor

 

 
B

p D p

p D p
, 1412

1 1

2 2

( ∣ ) ( )
( ∣ ) ( )

( )=

where p 1( ) and p 2( ) are the prior distributions on each
model, usually taken to be equal when no model is preferred
a priori. Models with a larger parameter space are penalized by
the resultant lower prior density. Scales exist for interpreting
the significance of the Bayes factor (Kass & Raftery 1995).

Mixture model. The third method advocates for the use of a
mixture model of the two contesting models in question and
basing model comparison off the posterior of the mixture
parameter (Kamary et al. 2014). The mixture approach avoids
the computational cost and some theoretical difficulties of the
Bayes factor. To construct the mixture model, we refer to the
distribution function that generates the data under1 as f1 and
the distribution function that corresponds to2 as f2, such that
Equation (11) is equivalently n f: i1 1~ , and Equation (12) is
 n f: i2 2~ . With a parameter α that denotes the mixture
weight for model 2, 0� α� 1. We construct the mixture
model m from 1 and 2 for the purpose of model
comparison. Herem is given by

 n f n S

f n S

: 1 , ,

, , . 15
m i i i i

i i i

1 1 tot, 0,

2 2 tot, 0,

( ) ( ∣ )
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q
q

a
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~ - W
+ W

The mixture weight, α, can be interpreted as the propensity of
the data to support2 versus1. If α→ 1, then2 generates
the data. If α→ 0,1 generates the data. Kamary et al. (2014)
showed that the posterior distribution of α asymptotically
concentrates around the value corresponding to the true model
and recommended the posterior median â as the point estimate
for α. We adopt Beta(0.5, 0.5) as the prior for the mixture
weight α, per the recommendation of Kamary et al. (2014).

Beta(0.5, 0.5) equally encourages the posterior density of α to
concentrate around 0 and 1. We also test the sensitivity of our
results to the prior on α by using a uniform prior on α.
Implementation. We compute ΔWAIC and its standard

deviation from the HMC posterior samples for 1 and 2.
Given the low dimensionality of the model, we are able to
compute the Bayes factor with the Sequential Monte Carlo
algorithm (Ching & Chen 2007; Minson et al. 2013)
implemented in pymc3. We implement the mixture model as
a separate model in pymc3 and sample from the posterior with
the HMC algorithm to infer the mixture weight α. We obtain
the median of the posterior distribution of α and visually
examine the posterior for a concentration of probability density
around 0 or 1. We present and interpret these model selection
metrics in Section 5.3.

5. Results

5.1. Artifacts

Table 2 shows the number of transient candidates after each
sifting step. All 9057 detected sources turned out to be artifacts.
All of the artifact classes detailed in Anderson et al. (2019)
appear in our data: meteor reflections, airplanes, horizon RFI
sources, and scintillating sources. Figure 7 shows a bright
meteor reflection candidate, which appears as an unresolved
source in the image. In addition to the artifacts detailed in
Anderson et al. (2019), we identify two classes of artifacts that
are unique to our sidereal differencing search with a long
integration time: refraction artifacts and spurious pointlike
sources near the NCP.
The first class of artifacts that we identify is refraction

artifacts (also described in Kassim et al. 2007). The bulk
ionosphere functions as a spherical lens for a wide-field array
(Vedantham et al. 2014). Due to the difference in the bulk
ionospheric content between two images that are 1 day apart,
sources are refracted by different amounts in the two images
and result in artifacts that have a dipole shape in the subtracted
images (see Figure 8 for an example). We identify these
artifacts by visual inspection and cross-matching detections
against the persistent source catalog generated as a by-product
of Anderson et al. (2019). However, for more sensitive
searches in the future, the number of refraction artifacts will
increase; collectively, their side lobes may raise the noise level
significantly. Image-plane dedistortion techniques like fits_
warp (Hurley-Walker & Hancock 2018) and direct measure-
ment and removal techniques (see, e.g., Reiss 2016) can be
used to suppress these refraction artifacts and their side lobes in

Table 2
Number of Transient Candidates Remaining after Each Major Vetting Step of

the Transient Detection Pipeline

Search Step Detection Count

Source detection 9057
Persistent source matching 2317
Visual inspection 2a

Reimaging 0

Note.
a One of the two remaining candidate is a side lobe of a scintillating Vir A and
disappears after deconvolving Vir A. The second candidate is the bright meteor
reflection shown in Figure 7.
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future searches, provided that the ionospheric phase remains
coherent across the array.

The second class of artifacts is spurious point sources near
the NCP. Two prominent sources, one at δ= 86° and the other
at δ= 76°, were repeatedly detected. Their flux density values
correlate with that of a source of RFI in the northwest, which

we attribute to an arcing power line (Figure 9). For a long
integration time, the slow fringe rate near the NCP may allow
low-level near-field RFI sources and their side lobes to show up
as pointlike sources (Perley 2002; Offringa et al. 2013a). For
this reason, we exclude the 15° radius around the NCP from
our subsequent analyses.
We note that even though the Stewart et al. (2016) survey

centered on the NCP, and they did not test for an RFI source
outside their 10° FOV, it is unlikely that their detection is a
side lobe of a source of RFI. Unlike the OVRO-LWA, which
cross-correlates all dipole antennas, LOFAR first beamforms
on the station level (each station consisting of 96 signal paths,
typically 48 dual-polarization antennas) and then cross-
correlates voltages from different stations. The station-based
beamforming approach suppresses sensitivity to sources
outside the main beam. In addition, although all of the
individual LOFAR dipole antennas are aligned, the antenna
configurations of the Dutch LOFAR stations are rotated with
respect to each other (van Haarlem et al. 2013), making it
even less likely for the pair of stations in each baseline to be
sensitive to the same direction far beyond the main beam.
Finally, deep LOFAR observations of the NCP did not reveal
RFI artifacts (Offringa et al. 2013b). Therefore, despite the
high decl. of the Stewart et al. (2016) survey field, we
conclude that the side lobe of a horizon RFI source likely did
not lead to their transient detection.

Figure 7. Diagnostics of the unresolved reflection candidate OLWA J1436+5103. (a) Discovery images of the candidate from the 722 kHz wide search. The three
panels show the differenced image, the image from the day before, and the image when the source appears. The title text displays the date of occurrence, coordinates,
flux density, S/N, and distance to closest match in the persistent source catalog. (b) Dynamic spectrum for the 10 minute integration within a single 2.6 MHz subband.
The source is confined within a single time integration and only part of the subband bandwidth. (c) Spectrum of the source across the full 58 MHz bandwidth in the
single integration when the source is bright. The shaded region indicates the broadcast frequencies of channel 3 television. The coincidence of the emission
frequencies with channel 3 TV broadcast frequencies points to this source as a reflection artifact, likely from a meteor.

Figure 8. Example of a refraction artifact in a differenced image. The position
offset of the source between the two images gives rise to the dipole pattern in
the differenced image.
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5.2. Limits on Transient Surface Density

Figure 4 illustrates the noise characteristics of the survey.
Across the survey, the mean noise level in subtracted images is
1.57 Jy with a standard deviation of 0.39 Jy. Given our 6.5σ
detection threshold, the mean noise level translates to a
sensitivity of 10 Jy at zenith. The cumulative sky area surveyed
as a function of sensitivity is shown in Figure 5, with the
differential area per sensitivity bin recorded in Table 3. As we
find no astrophysical transient candidates in our search, we
seek to put an upper limit in the transient surface density–
flux density phase space. Our search is done with sidereal
image differencing with an integration time of 10 minutes.
The number of sidereally differenced 10 minute images N
(Equation (5)) is N= 659 after flagging integrations with
excessive noise.

Because we exclude the sky area with decl. above 75° and
altitude angle below 30°, we calculate the snapshot FOV and the
FOV-averaged sensitivity numerically. We begin with a grid
defined by the cosine of the zenith angle, cos q, and the azimuth
angle, f, such that each grid cell has the same solid angle Ω. We
then exclude cells that do not satisfy our decl. cut. Finally, we
evaluate the total solid angle integral d dcos( )ò ò q fW = and
the beam-averaging integral (Equation (2)) by a Riemann sum
over the remaining grid cells. We find that the effective snapshot
FOV for our survey is ΩFOV= 9800 deg2, and the FOV-averaged
sensitivity is 1.7σz.

Therefore, for a given population of transients with timescale
T from 10 minutes to 1 day, the total sky area searched for a
transient with timescale T is

N
T

T
10minutes

6.5 10
10minutes

deg . 16

tot FOV

6 2 ( )

W = W
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We found no 10 minute transients at an averaged sensitivity of
S0= 17 Jy. At this flux level, we apply the approach described
in Section 4.1 and place a 95% confidence frequentist limit on

the transient surface density at

T
4.6 10

10minutes
deg . 177 2 ( )r ´ - -⎡

⎢⎢
⎤
⎥⎥



We place our limits in the context of other surveys at similar
frequencies in Figure 6. Even though our upper limit is a factor of
30 more stringent than that of Stewart et al. (2016), our upper limit
is marginally consistent with their 95% confidence lower limit of
1.5× 10−7 deg−2 at an 11minute timescale and 15 Jy.
We apply our Bayesian model1 to the detection threshold–

sky area data (Table 3). The model jointly infers the flux density
distribution power-law index γ and the reference surface density at
15 Jy, ρ*, because our survey probes different amounts of volume
depending on γ. The estimate on ρ* is averaged over the prior on
γ. In the uninformative prior case, the posterior distribution of ρ*
is dominated by the prior for much of the probability density
because the data do not contain much information. We report a
99.7% credible upper limit of 2.1× 10−7 deg−2, at which point
the posterior distribution has deviated from the prior significantly.
In the case of a uniform prior over (0, 5) on γ and flat prior on ρ*,
we find a 95% credible upper limit of 3.9× 10−7 deg−2 and a
99.7% credible upper limit of 8.2× 10−7 deg−2.

5.3. Consistency with Stewart et al. (2016)

Table 4 compares the parameters of our survey to Stewart et al.
(2016) and Anderson et al. (2019). Our survey features a similar
bandwidth, sensitivity, and timescale as the transient ILT J225347
+862146. We ask whether our results are consistent with the
Stewart et al. (2016) detection in a Bayesian model comparison
setting. We consider the Stewart et al. (2016) detection as a data
point DL (Equation (10)) and our survey as a collection of data
points {DO,i} given by Table 3. Model 1 posits that both
observations can be explained by a single population, whereas
2 posits that our survey’s selection effect results in a reduced
transient rate (or, equivalently, that our survey probes a different
population with a reduced surface density). We consider the
WAIC, the Bayes factor B12, and the mixture-model parameter α
as three separate tests. We vary the prior on the surface density
ratio r and show the metrics in Table 5.
For all of the priors we chose for r, the difference in WAIC,

which estimates the predictive power of each model, is
comparable to its standard deviation estimated across all data.
The high standard error estimate is consistent with the fact that
all but one data point, the detection, contain very little
information. The WAIC test is therefore inconclusive.
We are able to compute the Bayes factor with good precision,

as estimated from the results from multiple parallel MCMC

Figure 9. Light curves of the point-source artifact at δ = 86° and the horizon
radio frequency interference (RFI) source. The flux scale for the artifact is on
the left vertical axis, and the flux scale for the horizon RFI source is on the
right. The light curves of these two sources are correlated.

Table 3
Sky Area per Detection Threshold Bin at a 10 Minute Timescale

Detection Threshold (Jy) Sky Area (deg2)

5.33 242.36
5.44 381.59
5.54 479.56
5.65 835.37
... ...
58.07 14.1

Note. Table 3 is published in its entirety in machine-readable format. A portion
is shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)
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chains. The Bayes factor gives the ratio of the posterior probability
of each model. In our case, where we assume the prior probability
on each model to be equal, the Bayes factor corresponds to the
ratio of the likelihood of observing the data under each of the two
models. The only addition in model2 compared to1 is the
surface density ratio r for our survey relative to Stewart et al.
(2016). We compute the Bayes factor for different prior
distributions over r. We rely on the scale suggested by Kass &
Raftery (1995), which categorizes the Bayes factor significance as
“not worth more than a bare mention” ( B0 log 1 212( )< < ),
“substantial” ( B1 2 log 112( )< < ), “strong” ( B1 log 12( )< <
2), and “decisive” ( Blog 212( ) > ), to interpret the Bayes factor
B12. The uniform prior on rmodel presents “substantial” evidence,
the uninformative prior model “strong”, and the uniform prior on
1/r model “strong” evidence that2 is preferred. Although the
Bayes factor varies by up to an order of magnitude with the choice
of prior, in all cases, the Bayes factor prefers2. Therefore, we
conclude that the Bayes factor test prefers the two-population
model,2.

The mixture weight α tells a similar story as the Bayes
factor. Figure 10 shows a sample posterior distribution of α.
For all of the 2 variants, the posterior distribution of α
concentrates toward 1, exhibiting a preference for2 (Kamary
et al. 2014). All of the posterior median estimates for α, â are
close to 1. We draw identical conclusions in the case when the
prior on α is uniform as well but only show results for the prior
α∼ Beta(0.5, 0.5).

In the tests that are conclusive, we find strong evidence in
support of model2, suggesting that our nondetection is not
consistent with Stewart et al. (2016) under a single Poisson
population model. Since we did not have a detection, our goal
for testing the survey result consistency is to inform designs for
future surveys aiming to uncover this population. The degree to
which the statistical evidence is in favor of the two-population
model, 2, prompts us to consider why our survey may be
inconsistent with Stewart et al. (2016). Because our survey is
narrowband and at comparable sensitivity, the only remaining
nontrivial differences between our survey and that of Stewart
et al. (2016) are the choice of survey field and the time
sampling. We consider how these differences may explain the
inconsistency and their implications on future survey strategies
in Section 6.

6. Discussion

Motivated by the hypothesis that the Stewart et al. (2016)
transient, ILT J225347+862146, may be narrowband, we
searched for narrowband transients in 137 hr of all-sky data
with the OVRO-LWA at a matching timescale and sensitivity
as ILT J225347+862146. Having searched almost two orders
of magnitude larger sky area for a 10 minute timescale transient

Table 4
Survey Parameters of This Work with Comparisons to the Previous OVRO-LWA Survey (Anderson et al. 2019) and Stewart et al. (2016) at the Relevant Timescale

This Work Anderson et al. (2019) Stewart et al. (2016)

Timescale 611 s–1 day 13 s–1 day 30 s, 2 minutes, 11 minutes,a 55 minutes, 297 minutes
Central frequency (MHz) 60 56 60
Bandwidth (kHz) 744 58,000 195
Resolution (arcmin) 23 × 13 29 × 13.5 5.4 × 2.3
Total observing time (hr) 137 31 348
Snapshot FOV (deg2) 9800 17,045 175
Average rms (Jy beam−1)b 1.57 1.68 0.79c

95% surface density upper limit (deg−2)d 4.6 × 10−7 5.53 × 10−7 1.4 × 10−5

95% surface density lower limit (deg−2)d L L 1.5 × 10−7

Notes.
a The search at this timescale yielded a detection.
b Average rms is quoted at the 6 minute timescale for Anderson et al. (2019) and the 11 minute timescale for Stewart et al. (2016), the timescales of interest in this
work.
c The detected transient had a flux density of 15 Jy in a single integration, but the flux density was suppressed in the detection image due to deconvolution artifacts.
d Frequentist estimate.

Table 5
Model Comparison Metrics between the Single-rate Model,1, and the Two-
rate Model,2, with Different Priors on the Rate Ratio r for the OVRO-LWA

Survey

Prior Predictive Accuracy
Bayes
Factor

Mixture
Model

ΔWAIC12 σΔWAIC,12 B12 â

r ∼ Uniform(0, 1) 1.6 1.3 3.53 0.78
p(r) ∝ 1/r 4.0 3.1 28.8 0.97
1/r ∼ Uniform(1, 2 × 104) 4.1 3.1 31.8 0.97

Note. Here ΔWAIC12 is the difference in WAIC, σΔWAIC,12 is its uncertainty,
B12 is the Bayes factor, and â is the posterior median of the mixture weight. In all
cases, we additionally bound 0 < r < 1 due to our nondetection. Larger values of
ΔWAIC12, B12, and â mean a greater preference for2 relative to1.

Figure 10. Posterior distribution of the mixture weight α with an uninformative
prior on all parameters. We adopt the posterior median 0.94 to be the point
estimate for α. The posterior concentrates toward α = 1, indicating a
preference for model2.
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than did Stewart et al. (2016), we did not detect any transient.
Using a collection of Bayesian model comparison approaches,
we found compelling evidence that our nondetection is
inconsistent with Stewart et al. (2016). We discuss the
implications of our nondetection followed by details of an M
dwarf coincident with ILT J225347+862146 in this section.

6.1. Implications of Our Nondetection

Despite matching the Stewart et al. (2016) survey as much as
possible while searching a much larger sky area, we did not detect
any transient. We also find compelling statistical evidence that our
survey results are inconsistent with those of Stewart et al. (2016)
under a single Poisson transient population model. Assuming that
the transient is astrophysical, we are left with two classes of
possibilities. First, Stewart et al. (2016)may have been an instance
of discovery bias. Second, the remaining differences in survey
design may have led to our nondetection. We explore each of
these scenarios and their implications on future surveys aiming at
unveiling the population associated with ILT J225347+862146.

6.1.1. Was It Discovery Bias?

Perhaps the conceptually simplest solution for reconciling
the Stewart et al. (2016) results with subsequent nondetections
is that they found a rare instance of the population (see, e.g.,
Macquart & Ekers 2018, for a discussion of the discovery bias
at the population level). One such recent example is the first
discovered fast radio burst, the “Lorimer burst” (Lorimer et al.
2007). The inferred rate from the Lorimer burst for events with
similar fluence (∼150 Jy ms) was 400 sky−1 day−1. However,
subsequent searches at similar frequencies but much greater
FOVs yielded an estimate of ∼10± 4 sky−1 day−1 for events
with a fluence greater than 100 Jy ms (Shannon et al. 2018). To
estimate how lucky Stewart et al. (2016) was if our survey and
theirs truly probe the same population, we integrate the
probability of obtaining a detection with a survey like Stewart
et al. (2016), (1− PPois(n= 0|λ= ρ*Ωtot,L)), over the marginal
posterior distribution of the surface density at 15 Jy, ρ*,
inferred from our data DO. This probability turns out to be

0.0018 under the uninformative prior and 0.02 under the
uniform prior.
On a technical note, previous surveys have quantified luck

by calculating the null-detection probability assuming a fixed γ
and using either the frequentist point estimate (e.g., Kuiack
et al. 2021a) or the 95% confidence interval (e.g., Anderson
et al. 2019) from the detection. The use of the point estimate
does not account for the significant uncertainty in the
parameter, whereas the use of the confidence interval does
not capitalize on the fact that the detection probability decays
very quickly as λ approaches zero. Because it integrates over
the posteriors of both γ and ρ*, our estimate of luck uses all of
the information available and makes minimal assumptions.
The detection probability that we calculated suggests that it

is still plausible that Stewart et al. (2016) was a very lucky
incident and the event is a extreme outlier of the fluence
distribution. Curiously, although the Stewart et al. (2016)
survey ran for about 4 months, the transient was detected on the
first day of the survey, within the first 30 11 minute snapshots
taken. Using the single-population model 1 with an
uninformative prior, combining our nondetection with the
Stewart et al. (2016) detection yields a 95% credible interval
for the surface density ρ* of (3.5× 10−12, 3.4× 10−7) deg−2

and a point estimate of 1.1× 10−7 deg−2. In comparison, the
surface density point estimate implied by the Stewart et al.
(2016) detection is 2.9× 10−6 deg−2. If we are indeed probing
the same population as Stewart et al. (2016), our nondetection
establishes that the population associated with their detection is
much rarer than their detection has implied.
Future surveys that aim at finding this transient will likely

have diminishing returns, because the population can be many
orders of magnitude rarer than the Stewart et al. (2016)
detection implied. The best effort to uncover the population
associated with ILT J225347+862146 in this case coincides
with the systematic exploration of the low-frequency transient
phase space. Future surveys will have to reach orders of
magnitude better sensitivity, run for orders of magnitude longer
time periods, and, ideally, use more optimized time-frequency
filtering in order to make significant progress uncovering
transients in the low-frequency radio transient sky. The Stage
III expansion of the OVRO-LWA, scheduled to start observing
in early 2022, will feature redesigned analog electronics that
suppress the coupling in adjacent signal paths that limit our
current sensitivity. With the Stage III array, the thermal noise in
a subtracted image across the full bandwidth on a 10 minute
timescale will be 30 mJy. The processing infrastructure
developed in this work and elsewhere (see, e.g., Ruhe et al.
2021) represents significant steps toward turning low-fre-
quency radio interferometers into real-time transient factories.

6.1.2. Was It Selection Effects?

On the other hand, the model comparison results compel us
to consider the more likely scenario that our survey design has
not selected for the same population as Stewart et al. (2016).
While there is only one detection, our Bayesian approach did
account for the uncertainty that comes with the dearth of
information by drawing conclusions from the full posterior
distribution. Our survey searched for narrowband transients,
as did Stewart et al. (2016). The only remaining substantial
differences between our survey and Stewart et al. (2016) are
their choice of the NCP as the monitoring field and their time
sampling, spreading 400 hr of observing time over the course

Figure 11. Palomar DBSP spectrum of the M dwarf 2MASS J22535150
+8621556 coincident with the radio transient ILT J225347+862146. The
location of the 6562 Å Hα line is indicated. An SDSS inactive M4 dwarf
template spectrum (Bochanski et al. 2007) is plotted with offset for reference.
The feature at 7300 Å was present in other sources during the same night of
observation and is thus likely not astrophysical.
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of 4 months. We seek hypotheses that involve these two
differences and not luck.

First, we consider the possibility that the choice of the NCP
as the monitoring field made Stewart et al. (2016) much more
likely than us to detect an instance of the population. For an
extragalactic population of transients, the event distribution
should be isotropic. If the transient population is galactic, the
events should concentrate along the galactic plane. If the
distance scale of the population is less than the galactic scale
height of<400 pc, the events will appear uniform over the sky.
If the distance scale of the population is much greater than the
galactic scale height, the events will concentrate at low galactic
latitudes. ILT J225347+862146 has a galactic latitude of
b= 28°.6. Finally, if a population of transients uniformly
distributes across the sky, but there is a bias against finding
sources at low Galactic latitudes, then the observed population
may concentrate around high Galactic latitudes. Most of the
sky area that our survey probes is in high Galactic latitudes.
Thus, no populations of astrophysical transients should
concentrate only around the NCP when a sufficient depth is
probed. The NCP preference can only be due to a extremely
nearby progenitor relative to the rest of the population. The
NCP hypothesis requires Stewart et al. (2016) to again be
lucky, the consequences of which we already discussed in
Section 6.1.1.

The other possibility, which ascribes less luck to Stewart
et al. (2016), is that the difference in time sampling between
our survey and that of Stewart et al. (2016) led to our
nondetection. Our survey consisted of 137 hr of continuous
observations, whereas Stewart et al. (2016) monitored the NCP
intermittently over the course of 4 months, totaling ∼400 hr of
observations. Under a Poisson model, the cadence of observa-
tions, as long as it is much greater than the timescale of the
transient, does not affect the distribution of the outcome. So a
population that is sensitive to sampling cadence will necessa-
rily have a non-Poisson temporal behavior. We explore one
simple scenario here with an order-of-magnitude estimation.
Over a timescale of years, suppose there is a constant number
of sources in the sky capable of producing this class of
transients detectable by Stewart et al. (2016). Assuming that
Stewart et al. (2016) were unaffected by the time clustering
behavior of the bursts, we take the mean surface density
ρ= 0.006 deg−2 and the mean burst rate r= 0.003 hr−1 from
the FOV and total observing time of Stewart et al. (2016). We
take their point estimate of surface density and extrapolate that
there are 60 such sources accessible to our survey based on our
snapshot FOV. In order for the probability of our observation
falling outside any source’s activity window to be >68%, the
probability of nondetection for an average individual source
should be >0.681/60= 0.994. If we consider a model where
each source turns on for a short window w, emitting bursts at
roughly the observed burst rate by Stewart et al. (2016), then
turns off for a much longer time that averages around T, T? w.
Our nondetection can be readily realized if the repeating
timescale of the source T> 137 hr/0.006∼ 103 days. Stellar
activity cycles or binary orbital periods can potentially give rise
to these timescales. In contrast, the 4 month time span of
Stewart et al. (2016) has a probability of 120/103= 0.1 of
hitting the activity window. This estimate still requires Stewart
et al. (2016) to be somewhat lucky and the number of sources
in the sky to be few, but we do note that there is significant
uncertainty associated with this estimate. Assuming that

ILT J225347+862146 is a typical member of this population
that produces temporally clustered bursts, because the OVRO-
LWA has a factor of 50 larger FOV, we can readily test this
hypothesis by spreading ∼100 hr of observations over the
course of ∼20 days. Although the added complexity of this
explanation only made our nondetection slightly more
consistent with Stewart et al. (2016), the test for it is
straightforward.
In summary, we have two remaining viable hypotheses.

First, the Stewart et al. (2016) detection may represent an
extreme sample of the fluence distribution, in which case, more
sensitive and longer surveys may uncover the population.
However, improving survey sensitivity and duration has
diminishing returns if one’s sole goal is to detect members of
this population, since the surface density and the fluence
distribution power-law index of the population cannot be well
constrained from existing observations (see also Kipping 2021).
It is, however, likely that the population will eventually be
revealed as low-frequency transient surveys become more
sensitive and more automated. The other hypothesis, that the
populations are clustered in time, can be readily tested by
spacing out the observing time with a wide-field instrument like
the OVRO-LWA and AARTFAAC (Prasad et al. 2016).
A potential alternative to our phenomenological approach for

inferring the properties of this class of transients is population
synthesis (see, e.g., Bates et al. 2014; Gardenier et al. 2019) for
potential progenitors. However, the significant uncertainty
associated with the single detection will likely give incon-
clusive results.

6.1.3. Limitations

Two limitations may hinder our ability to understand the
population underlying ILT J225347+862146 with our survey:
unoptimized matched filtering for the population and incom-
plete characterization of survey sensitivity.
Although our choice of integration time and bandwidth is

well matched to the event ILT J225347+862146, our choice
may not be well matched to the population of transients
underlying ILT J225347+862146. It is possible that the
population has widely varying timescales and frequency
structures that our survey is not optimized for. Even if our
filtering is well matched to the typical timescales and
frequencies, because our 10 minute integrations do not overlap,
we may miss transients that do not fall entirely in a time
integration. However, because our FOV is much greater than
that of Stewart et al. (2016), and these features are common to
both our survey and that of Stewart et al. (2016), filtering
mismatch for the population alone cannot explain our
nondetection and does not alter the implications of our results.
We only searched around 60MHz in order to replicate the
Stewart et al. (2016) survey as much as possible, but the
transient population should manifest at other similar frequen-
cies as well. To maximize the chance of detecting a transient, a
future transient survey with the OVRO-LWA may feature
overlapping integrations, overlapping search frequency win-
dows, and different search bandwidths across the >57MHz
observing bandwidth.
We quantified our sensitivity in terms of the rms of the

subtracted image and assume that our search is complete down
to the detection threshold. Although we do routinely detect
refraction artifacts down to our detection threshold, and we
exclude regions in the sky that are artifact-prone, the most
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robust way to assess completeness is via injection-recovery
tests that cover different observing times, elevation angles, and
positions in the sky. The completeness function over flux
density can then be incorporated into our Bayesian rate
inference model.

6.2. An M Dwarf Coincident with ILT J225347+862146

Without a detection of another instance of the transient
population, we revisit an optical coincidence of the Stewart
et al. (2016) transient for clues on the nature of the population.
In an attempt to elucidate the nature of ILT J225347+862146,
Stewart et al. (2016) obtained a deep (r 22.5¢ ~ ) image of the
field. There was no discernible galaxy in their image. For a
galactic origin, Stewart et al. (2016) considered radio flare
stars, particularly M dwarfs, as viable progenitors to this
population of transients. In their optical image, they found one
high proper motion object within the 1σ localization circle.
They concluded that the object did not have colors consistent
with an M dwarf, noting, however, that their color calibration
had significant errors.

We cross-matched the 1σ radius localization region of
ILT J225347+862146 with the Gaia (Gaia Collaboration et al.
2016) Early Data Release 3 source catalog (Gaia Collaboration
et al. 2021) and found two matches. The closer match, at an
offset of 10″, is an M dwarf at a distance of 420 22

18
-
+ pc (Bailer-

Jones et al. 2021). The M dwarf is indeed the high proper
motion object identified by Stewart et al. (2016). The farther
offset match at 13″ is a K dwarf at a distance of 1.7± 0.2 kpc
(Bailer-Jones et al. 2021).

In order to prioritize follow-up efforts, we used the
procedures outlined below to evaluate the significance of the
coincidence and attempted to identify a posteriori bias. We did
not seek to claim an association of the star with the transient in
this exercise. Rather, we assessed whether the coincidence
warranted further investigation into any of these objects. We
emphasize that only more instances of the population or
observed peculiarities of the coincident stars that may explain
the transient can lend credence to the association claim of the
transient with a stellar source.

For each object, we randomly selected locations in the
Stewart et al. (2016) survey field and searched for objects with
a parallax greater than the 1σ upper bound of the object within
the 1σ localization radius of 14″ and calculated the fraction of
trials that resulted in matches. The calculated fraction
represented the chance of finding any object within the 14″
localization radius with a greater parallax than the match in
question. We found this chance coincidence probability to be
1.9% for the M dwarf and 15% for the K dwarf. The probability
of finding any galactic Gaia source within a 14″ radius in the
Stewart et al. (2016) field is 16%. We used distance as a
discriminating factor because bright transients from a nearer
source are, in general, energetically more plausible. The low
chance association rate is not due to survey incompleteness for
dim sources because Gaia is >99% complete down to G> 20
at this decl. (Boubert & Everall 2020). Although our chance
coincidence criteria were quite general, the criteria were
determined after we identified the coincidence. As such, the
significance of the coincidence may be inflated. Based on the
low chance coincidence rate, we decided to obtain follow-up
data on the M dwarf.

We obtained a spectrum of the M dwarf with the Double
Spectrograph (DBSP; Oke & Gunn 1982) on the 200 inch Hale

telescope. The spectrum is consistent with an inactive M4
dwarf, exhibiting no excess Hα emission or signs of a
companion (Figure 11). The Gaia (Gaia Collaboration et al.
2021), Wide-field Infrared Survey Explorer (Wright et al.
2010), and Two Micron All Sky Survey (2MASS; Skrutskie
et al. 2006) colors are consistent with a main-sequence M4
dwarf. Table 6 summarizes the basic properties of the M dwarf.
We searched for signs of variability in other wavelengths. The
M dwarf was marginally detected in the Transiting Exoplanet
Survey Satellite (TESS; Ricker et al. 2015) full-frame images
(FFIs) for sectors 18, 19, and 20, as well as the Zwicky
Transient Facility (ZTF; Masci et al. 2019) Data Release 6, and
not detected in the Monitor of All-sky X-ray Image (MAXI;
Matsuoka et al. 2009). The light curves from TESS,13 ZTF, and
MAXI did not show any transient behavior, with the caveat of
low signal-to-noise ratios.
If the M dwarf was responsible for the transient, the implied

peak isotropic spectral luminosity Lν∼ 3× 1021 erg Hz−1 s−1.
The peak luminosity of the transient, assuming that the
emission is broadband, is νLν∼ 2× 1029 erg s−1. The peak
luminosity and spectral luminosity would be many orders of
magnitude higher than those of the brightest bursts ever seen
from stars at centimeter to decameter wavelengths (e.g.,
Spangler & Moffett 1976; Osten & Bastian 2008, although
they were both targeted observations). Given the lack of
observed peculiarity of the M dwarf, we are unable to ascertain
its association with the transient.

7. Conclusion

We presented results from a 137 hr transient survey with the
OVRO-LWA. We designed the survey to search in a narrow
bandwidth, in a much greater sky area, and with enough
sensitivity to detect events like the low-frequency transient
ILT J225347+862146 discovered by Stewart et al. (2016). We
also presented an M dwarf coincident with this transient and
optical follow-up observations. This work represents the most
targeted effort to date to elucidate the nature of the population
underlying this transient. The main findings of this work are as
follows.

1. We adopted a Bayesian inference and model comparison
approach to model and compare transient surveys. Our

Table 6
Basic Parameters for the Coincident M Dwarf

Parameter Value

2MASS designation 2MASS J22535150+8621556a

Gaia designation Gaia EDR3 2301292714713394688b

R.A. (J2000) 22h53m51 45
decl. (J2000) 86 21 55. 56+  ¢ 
Distance 420 22

18
-
+ pcc

Gaia G magnitude 18.8b

Gaia Bp-Rp color 2.59b

Spectral type M4V

Notes.
a 2MASS (Skrutskie et al. 2006).
b Gaia EDR 3 (Gaia Collaboration et al. 2021).
c Gaia EDR 3 geometric distance (Bailer-Jones et al. 2021).

13 Generated with simple aperture photometry from the FFIs with the package
lightkurve (Lightkurve Collaboration et al. 2018).
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Bayesian approach accounts for our widely varying
sensitivity as a function of FOV and different transient
population properties. It can be readily extended to model
the nuances of each transient survey.

2. Despite searching for almost two orders of magnitude
larger total sky area, our narrowband transient search
yielded no detections. One possible explanation for our
nondetection and the nondetection of the Anderson et al.
(2019) broadband search is that Stewart et al. (2016)
detected an extreme sample of the fluence distribution
(i.e., discovery bias). In this scenario, we revised the
surface density of transients like ILT J225347+862146 to
1.1× 10−7 deg−2, a factor of 30 lower than the estimate
implied by the Stewart et al. (2016) detection. The 95%
credible interval of the surface density is (3.5× 10−12,
3.4× 10−7) deg−2.

3. The alternative explanation is that the population produces
transients that are clustered in time with very low duty
cycles and low all-sky source density. Therefore, compared
to the 4 month time baseline of Stewart et al. (2016), our
short time baseline (5 days) was responsible for our
nondetection. Because of our much larger FOV compared to
Stewart et al. (2016), the allowed parameter space for this
hypothesis is small. However, the cost for testing this
hypothesis is relatively low.

4. Owing to the availability of the Gaia catalog, we
identified an object within the 1σ localization region of
ILT J225347+862146 as an M dwarf at 420 pc, with an
a posteriori chance coincidence rate of<2%. However,
we are unable to robustly associate this M dwarf with the
transient based on follow-up spectroscopy and existing
catalog data.
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Appendix
Derivation of an Uninformative Prior

When surveys contain very few detections, the choice of
prior can impact the results of the inference quite significantly.
Here we derive a prior on our model parameters that is less
informative than a uniform prior. We write our model in
simplified notations as

*
S , A1( )l r= g-

where λ/Ωtot→ λ, S/S*→ S when compared to Equation (3).
We seek to derive a prior distribution density function p(ρ*, γ)
that is invariant under reasonable reparameterization, such that
it does not encode information based on the parameterization of
the problem. Here we follow Jeffreys (1946) and VanderPlas
(2014) and derive one such prior using the symmetry of the
model under an exchange of variables. Since S and λ are
symmetric in this relationship, the model can also be rewritten
as

*
S , A2( )r l= ¢ g- ¢

i.e., a model of typical flux density changing with occurrence
rate. We can solve for the transformation

* *
1r r¢ = g

and 1g g¢ = .
The prior density function transforms as follows:

* * * *
p d d q d d, , , A3( ) ( ) ( )r g r g r g r g= ¢ ¢ ¢ ¢

where
*

q ,( )r g¢ ¢ is the prior density function on the
reparameterized parameters. Because we claim the same
ignorance whether we parameterize the problem with (ρ*, γ)
or

*
,( )r g¢ ¢ , the prior distribution function on the two

parameterizations must be the same:

* * *
p q, , . A4( ) ( ) ( )r g r g= ¢ ¢

The determinant of the Jacobian matrix of the transformation

* *
, ,( ) ( )r g r g ¢ ¢ is 1 31r g- -g .
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The change of variable theorem then gives

* * * *
p d d p d d, , 1 . A5

1

3
1

1

( ) ( ) ( )r g r g
r
g

r g r g= - g
-g

/

Imposing that ρ* and γ are independent in our prior, a
functional form that satisfies the above requirement is

* *
p 1 , A6( ) ( )r rµ

p . A73 2( ) ( )g gµ -

When we modify ρ to rρ in the two-population model 2

(Equation (12)), Equation (A6) is satisfied when p(r)∝ 1/r.
This prior density is also invariant under the reparameterization
r→ 1/r.
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