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ABSTRACT

We seek to completely revise current models of airborne transmis-
sion of respiratory viruses by providing never-before-seen atomic-
level views of the SARS-CoV-2 virus within a respiratory aerosol.
Our work dramatically extends the capabilities of multiscale com-
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putational microscopy to address the significant gaps that exist in
current experimental methods, which are limited in their ability
to interrogate aerosols at the atomic/molecular level and thus ob-
scure our understanding of airborne transmission. We demonstrate
how our integrated data-driven platform provides a new way of
exploring the composition, structure, and dynamics of aerosols and
aerosolized viruses, while driving simulation method development
along several important axes. We present a series of initial scientific
discoveries for the SARS-CoV-2 Delta variant, noting that the full
scientific impact of this work has yet to be realized.
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1 JUSTIFICATION

We develop a novel HPC-enabled multiscale research framework
to study aerosolized viruses and the full complexity of species that
comprise them. We present technological and methodological ad-
vances that bridge time and length scales from electronic structure
through whole aerosol particle morphology and dynamics.

2 PERFORMANCE ATTRIBUTES

Performance Attribute

Our Submission

Category of achievement Scalability, Time-to-solution
Type of method used Explicit, Deep Learning
Results reported on the basis of ~Whole application including I/O

Precision reported Mixed Precision
System scale Measured on full system
Measurement mechanism Hardware performance counters,
Application timers,
Performance Modeling
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3 OVERVIEW OF THE PROBLEM

Respiratory pathogens, such as SARS-CoV-2 and influenza, are the
cause of significant morbidity and mortality worldwide. These res-
piratory pathogens are spread by virus-laden aerosols and droplets
that are produced in an infected person, exhaled, and transported
through the environment (Wang et al., 2021) (Fig 1). Medical dogma
has long focused on droplets as the main transmission route for res-
piratory viruses, where either a person has contact with an infected
surface (fomites) or direct droplet transmission by close contact
with an infected individual. However, as we continue to observe
with SARS-CoV-2, airborne transmission also plays a significant
role in spreading disease. We know this from various super spreader
events, e.g., during a choir rehearsal (Miller et al., 2021). Interven-
tion and mitigation decisions, such as the relative importance of
surface cleaning or whether and when to wear a mask, have unfor-
tunately hinged on a weak understanding of aerosol transmission,
to the detriment of public health.

A central challenge to understanding airborne transmission has
been the inability of experimental science to reliably probe the
structure and dynamics of viruses once they are inside respiratory
aerosol particles. Single particle experimental methods have poor
resolution for smaller particles (<1 micron) and are prone to sample
destruction during collection. Airborne viruses are present in low
concentrations in the air and are similarly prone to viral inactivation
during sampling. In addition, studies of the initial infection event,
for example in the deep lung, are limited in their ability to provide
a detailed understanding of the myriad of molecular interactions
and dynamics taking place in situ. Altogether, these knowledge
gaps hamper our collective ability to understand mechanisms of
infection and develop novel effective antivirals, as well as prevent
us from developing concrete, science-driven mitigation measures
(e.g., masking and ventilation protocols).

Here, we aim to reconceptualize current models of airborne
transmission of respiratory viruses by providing never-before-seen
views of viruses within aerosols. Our approach relies on the use
of all-atom molecular dynamics (MD) simulations as a multiscale
‘computational microscope.” MD simulations can synthesize multi-
ple types of biological data (e.g., multiresolution structural datasets,
glycomics, lipidomics, etc.) into cohesive, biologically ‘accurate’
structural models. Once created, we then approximate the model
down to its many atoms, creating trajectories of its time dependent
dynamics under cell-like (or in this case, aerosol-like) conditions.
Critically, MD simulations are more than just ‘pretty movies. MD
equations are solved in a theoretically rigorous manner, allowing us
to compute experimentally testable macroscopic observables from
time-averaged microscopic properties. What this means is that we
can directly connect MD simulations with experiments, each vali-
dating and providing testable hypotheses to the other, which is the
real power of the approach. An ongoing challenge to the successful
application of such methods, however, is the need for technological
and methodological advances that make it possible to access length
scales relevant to the study of large, biologically complex systems
(spanning nanometers to ~one micron in size) and, correspondingly,
longer timescales (microseconds to seconds).

Such challenges and opportunities manifest in the study of
aerosolized viruses. Aerosols are generally defined as being less
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than 5 microns in diameter, able to float in the air for hours, travel
significant distances (e.g., can fill a room, like cigarette smoke), and
be inhaled. Fine aerosols < 1 micron in size can stay in the air for
over 12 hours and are enriched with viral particles (Coleman et al.,
2021, Fennelly, 2020). Our work focuses on these finer aerosols that
travel deeper into the respiratory tract. Several studies provide the
molecular recipes necessary to reconstitute respiratory aerosols ac-
cording to their actual biologically-relevant composition (Vejerano
and Marr, 2018, Walker et al., 2021). These aerosols can contain
lipids, cholesterol, albumin (protein), various mono- and di-valent
salts, mucins, other surfactants, and water (Fig 1). Simulations of
aerosolized viruses embody a novel framework for the study of
aerosols: they will allow us and others to tune different species,
relative humidity, ion concentrations, etc. to match experiments
that can directly and indirectly connect to and inform our simula-
tions, as well as test hypotheses. Some of the species under study
here, e.g., mucins, have not yet been structurally characterized or
explored with simulations and thus the models we generate are
expected to have impact beyond their roles in aerosols.

In addition to varying aerosol composition and size, the viruses
themselves can be modified to reflect new variants of concern,
where such mutations may affect interactions with particular species
in the aerosol that might affect its structural dynamics and/or vi-
ability. The virion developed here is the Delta variant (B.1.617.2
lineage) of SARS-CoV-2 (Fig 2), which presents a careful integration
of multiple biological datasets: (1) a complete viral envelope with
realistic membrane composition, (2) fully glycosylated full-length
spike proteins integrating 3D structural coordinates from multiple
cryoelectron microscopy (cryoEM) studies (Bangaru et al., 2020,
McCallum et al., 2021, Walls et al., 2020, Wrapp et al., 2020) (3)
all biologically known features (post-translational modifications,
palmitoylation, etc.), (4) any other known membrane proteins (e.g.,
the envelope (E) and membrane (M) proteins), and (5) virion size
and patterning taken directly from cryoelectron tomography (cry-
oET). Each of the individual components of the virus are built up
before being integrated into the composite virion, and thus repre-
sent useful molecular-scale scientific contributions in their own
right (Casalino et al., 2020, Sztain et al., 2021).

Altogether in this work, we dramatically extend the capabilities
of data-driven, multiscale computational microscopy to provide a
new way of exploring the composition, structure, and dynamics
of respiratory aerosols. While a seemingly limitless number of pu-
tative hypotheses could result from these investigations, the first
set of questions we expect to answer are: How does the virus exist
within a droplet of the same order of magnitude in size, without being
affected by the air-water interface, which is known to destroy molec-
ular structure (D’Imprima et al., 2019)? How does the biochemical
composition of the droplet, including pH, affect the structural dynam-
ics of the virus? Are there species within the aerosols that “buffer” the
viral structure from damage, and are there particular conditions under
which the impact of those species changes? Our simulations can also
provide specific parameters that can be included in physical models
of aerosols, which still assume a simple water or water-salt compo-
sition even though it is well known that such models, e.g., using
kappa-Kohler theory, break down significantly as the molecular
species diversify (Petters and Kreidenweis, 2007).
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Figure 1: Overall schematic depicting the construction and multiscale simulations of Delta SARS-CoV-2 in a respiratory aerosol.
(N.B.: The size of divalent cations has been increased for visibility.)

4 CURRENT STATE OF THE ART

Current experimental methods are unable to directly interrogate the
atomic-level structure and dynamics of viruses and other molecules
within aerosols. Here we showcase computational microscopy as a
powerful tool capable to overcome these significant experimental
limitations. We present the major elements of our multiscale com-
putational microscope and how they come together in an integrated
manner to enable the study of aerosols across multiple scales of
resolution. We demonstrate the impact such methods can bring to
bear on scientific challenges that until now have been intractable,
and present a series of new scientific discoveries for SARS-CoV-2.

4.1 Parallel molecular dynamics

All-atom molecular dynamics simulation has emerged as an increas-
ingly powerful tool for understanding the molecular mechanisms
underlying biophysical behaviors in complex systems. Leading sim-
ulation engines, NAMD (Phillips et al., 2020), AMBER (Case et al.),
and GROMACS (Pall et al., 2020), are broadly useful, with each
providing unique strengths in terms of specific methods or capa-
bilities as required to address a particular biological question, and
in terms of their support for particular HPC hardware platforms.
Within the multiscale computational microscopy platform devel-
oped here, we show how each of these different codes contributes
different elements to the overall framework, oftentimes utilizing
different computing modalities/architectures, while simultaneously

extending on state-of-the-art for each. Structure building, simu-
lation preparation, visualization, and post-hoc trajectory analysis
are performed using VMD on both local workstations and remote
HPC resources, enabling modeling of the molecular systems studied
herein (Humphrey et al., 1996, Sener et al., 2021, Stone et al., 2013a,b,
2016b). We show how further development of each of these codes,
considered together within the larger-scale collective framework,
enables the study of SARS-CoV-2 in a wholly novel manner, with
extension to numerous other complex systems and diseases.

4.2 Al-enhanced WE simulations

Because the virulence of the Delta variant of SARS-CoV-2 may be
partly attributable to spike protein (S) opening, it is of pressing
interest to characterize the mechanism and kinetics of the process.
Although S-opening in principle can be studied via conventional
MD simulations, in practice the system complexity and timescales
make this wholly intractable. Splitting strategies that periodically
replicate promising MD trajectories, among them the weighted
ensemble (WE) method (Huber and Kim, 1996, Zuckerman and
Chong, 2017), have enabled simulations of the spike opening of WT
SARS-CoV-2 (Sztain et al., 2021, Zimmerman et al., 2021). WE simu-
lations can be orders of magnitude more efficient than conventional
MD in generating pathways and rate constants for rare events (e.g.,
protein folding (Adhikari et al., 2019) and binding (Saglam and
Chong, 2019)). The WESTPA software for running WE (Zwier et al.,
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2015) is well-suited for high-performance computing with nearly
perfect CPU/GPU scaling. The software is interoperable with any
dynamics engine, including the GPU-accelerated AMBER dynamics
engine (Salomon-Ferrer et al., 2013) that is used here. As shown
below, major upgrades to WESTPA (v. 2.0) have enabled a dramatic
demonstration of spike opening in the Delta variant (Figs. 5, 6) and
exponentially improved analysis of spike-opening kinetics.

The integration of Al techniques with WE can further enhance
the efficiency of sampling rare events (Brace et al., 2021b, Casalino
et al., 2021, Noé, 2020). One frontier area couples unsupervised
linear and non-linear dimensionality reduction methods to iden-
tify collective variables/progress coordinates in high-dimensional
molecular systems (Bhowmik et al., 2018, Clyde et al., 2021). Such
methods may be well suited for analyzing the aerosolized virus.
Integrating these approaches with WE simulations is advantageous
in sampling the closed — open transitions in the Delta S landscape
(Fig. 5) as these unsupervised Al approaches automatically stratify
progress coordinates (Fig. 5D).

4.3 Dynamical Non-Equilibrium MD

Aerosols rapidly acidify during flight via reactive uptake of atmo-
spheric gases, which is likely to impact the opening/closing of
the S protein (Vejerano and Marr, 2018, Warwicker, 2021). Here,
we describe the extension of dynamical non-equilibrium MD (D-
NEMD) (Ciccotti and Ferrario, 2016) to investigate pH effects on
the Delta S. D-NEMD simulations (Ciccotti and Ferrario, 2016) are
emerging as a useful technique for identifying allosteric effects and
communication pathways in proteins (Galdadas et al., 2021, Oliveira
et al., 2019), including recently identifying effects of linoleic acid in
the WT spike (Oliveira et al., 2021b). This approach complements
equilibrium MD simulations, which provide a distribution of config-
urations as starting points for an ensemble of short non-equilibrium
trajectories under the effect of the external perturbation. The re-
sponse of the protein to the perturbation introduced can then be
determined using the Kubo-Onsager relation (Ciccotti and Ferrario,
2016, Oliveira et al., 2021a) by directly tracking the change in atomic
positions between the equilibrium and non-equilibrium simulations
at equivalent points in time (Oliveira et al., 2021a).

4.4 OrbNet

Ca®* ions are known to play a key role in mucin aggregation in
epithelial tissues (Hughes et al., 2019). Our RAV simulations would
be an ideal case-study to probe such complex interactions between
Ca?*, mucins, and the SARS-CoV-2 virion in aerosols. However,
Ca®* binding energies can be difficult to capture accurately due to
electronic dispersion and polarization, terms which are not typically
modeled in classical mechanical force fields. Quantum mechanical
(QOM) methods are uniquely suited to capture these subtle interac-
tions. Thus, we set out to estimate the correlation in Ca?* binding
energies between CHARMM36m and quantum mechanical esti-
mates enabled via Al with OrbNet. Calculation of energies with
sufficient accuracy in biological systems can, in many cases, be
adequately described with density functional theory (DFT). How-
ever, its high cost limits the applicability of DFT in comparison to
fixed charge force-fields. To capture quantum quality energetics
at a fraction of the computational expense, we employ a novel ap-
proach (OrbNet) based on the featurization of molecules in terms
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of symmetry-adapted atomic orbitals and the use of graph neural
network methods for deep-learning quantum-mechanical proper-
ties (Qiao et al., 2020). Our method outperforms existing methods
in terms of its training efficiency and transferable accuracy across
diverse molecular systems, opening a new pathway for replacing
DFT in large-scale scientific applications such as those explored
here. (Christensen et al., 2021).

5 INNOVATIONS REALIZED

5.1 Construction and simulation of
SARS-CoV-2 in a respiratory aerosol

Our approach to simulating the entire aerosol follows a composite
framework wherein each of the individual molecular pieces is re-
fined and simulated on its own before it is incorporated into the
composite model. Simulations of each of the components are useful
in their own right, and often serve as the basis for biochemical and
biophysical validation and experiments (Casalino et al., 2020).

Throughout, we refer to the original circulating SARS-CoV-2
strain as “WT”, whereas all SARS-CoV-2 proteins constructed in
this work represent the Delta variant (Fig. 2). All simulated mem-
branes reflect mammalian ER-Golgi intermediate compartment
(ERGIC) mimetic lipid compositions. VMD (Humphrey et al., 1996,
Stone et al., 2016a), psfgen (Phillips et al., 2005), and CHARMM-
GUI (Park et al., 2019) were used for construction and parameteri-
zation. Topologies and parameters for simulations were taken from
CHARMM36m all-atom additive force fields (Beglov and Roux, 1994,
Guvench et al., 2009, Han et al., 2018, Huang and Mackerell, 2013,
Huang et al., 2017, Klauda et al., 2010, Venable et al., 2013). NAMD
was used to perform MD simulations (Phillips et al., 2020), adopt-
ing similar settings and protocols as in (Casalino et al., 2020). All
systems underwent solvation, charge neutralization, minimization,
heating and equilibration prior to production runs. Refer to Table 1
for Abbreviations, PBC dimensions, total number of atoms, and
total equilibration times for each system of interest.

5.1.1 Simulating the SARS-CoV-2 structural proteins. Fully glyco-
sylated Delta spike (S) structures in open and closed conformations
were built based on WT constructs from Casalino et al. (Casalino
etal., 2020) with the following mutations: T19R, T951, G142D, E156G,
A157-158, L452R, T478K, D614G, P681R, and D950N (Kannan et al.,
2021, McCallum et al., 2021). Higher resolved regions were grafted
from PDB 7]]JI (Bangaru et al., 2020). Additionally, coordinates of
residues 128-167 — accounting for a drastic conformational change
seen in the Delta variant S — graciously made available to us by the
Veesler Lab, were similarly grafted onto our constructs (McCallum
et al., 2021). Finally, the S proteins were glycosylated following
work by Casalino et al. (Casalino et al., 2020). By incorporating
the Veesler Lab’s bleeding-edge structure (McCallum et al., 2021)
and highly resolved regions from 7JJI (Bangaru et al., 2020), our
models represent the most complete and accurate structures of
the Delta S to date. The S proteins were inserted into membrane
patches and equilibrated for 3 X 110 ns. For nonequilibrium and
weighted ensemble simulations, a closed S head (SH, residues 13-
1140) was constructed by removing the stalk from the full-length
closed S structure, then resolvated, neutralized, minimized, and sub-
sequently passed to WE and D-NEMD teams. The M protein was
built from a structure graciously provided by the Feig Lab (paper in
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Figure 2: Individual protein components of the SARS-CoV-2 Delta virion. The spike is shown with the surface in cyan and
with Delta’s mutated residues and deletion sites highlighted in pink and yellow, respectively. Glycans attached to the spike
are shown in blue. The E protein is shown in yellow and the M protein is shown in silver and white. Visualized with VMD.

prep)- The model was inserted into a membrane patch and equili-
brated for 700 ns. RMSD-based clustering was used to select a stable
starting M protein conformation. From the equilibrated and clus-
tered M structure, VMD’s Mutator plugin (Humphrey et al., 1996)
was used to incorporate the I82T mutation onto each M monomer
to arrive at the Delta variant M. To construct the most complete E
protein model to-date, the structure was patched together by re-
solving incomplete PDBs 5X29 (Surya et al., 2018), 7K3G (Mandala
et al., 2020) and 7M4R (Chai et al., 2021). To do so, the transmem-
brane domain (residues 8-38) from 7K3G were aligned to the the
N-terminal domain (residues 1-7) and residues 39 to 68 of 5X29 and
residues 69 to 75 of 7M4R by their C, atoms. E was then inserted
into a membrane patch and equilibrated for 40 ns.

5.1.2  Constructing the SARS-CoV-2 Delta virion. The SARS-CoV-
2 Delta virion (V) model was constructed following Casalino et
al. (Casalino et al., 2021) using CHARMM-GUI (Lee et al., 2016),
LipidWrapper (Durrant and Amaro, 2014), and Blender (Blender
Online Community, 2020), using a 350 A lipid bilayer with an equi-
librium area per lipid of 63 A? and a 100 nm diameter Blender
icospherical surface mesh (Turonova et al., 2020). The resulting
lipid membrane was solvated in a 1100 A3 waterbox and subjected
to 4 rounds of equilibration and patching (Casalino et al., 2021). 360
M dimers and 4 E pentamers were then tiled onto the surface, fol-
lowed by random placement of 29 full-length S proteins (9 open, 20
closed) according to experimentally observed S protein density (Ke
et al., 2020). M and E proteins were oriented with intravirion C-
termini. After solvation in a 1460 A waterbox, the complete V model
tallied >305 million atoms (Table 1). V was equilibrated for 41 ns

prior to placement in the respiratory aerosol (RA) model. The equi-
librated membrane was 90 nm in diameter and remains in close
structural agreement with the experimental studies (Ke et al., 2020).

5.1.3 Building and simulating the respiratory aerosol. Respiratory
aerosols contain a complex mixture of chemical and biological
species. We constructed a respiratory aerosol (RA) fluid based on
a composition from artificial saliva and surrogate deep lung fluid
recipes (Walker et al., 2021). This recipe includes 0.7 mM DPPG,
6.5 mM DPPC, 0.3 mM cholesterol, 1.4 mM Ca®*, 0.8 mM Mg?*,
and 142 mM Na™* (Vejerano and Marr, 2018, Walker et al., 2021),
human serum albumin (ALB) protein, and a composition of mucins
(Fig. 3). Mucins are long polymer-like structures that are decorated
by dense, heterogeneous, and complex regions of O-glycans. This
work represents the first of its kind as, due to their complexity,
the O-glycosylated regions of mucins have never before been con-
structed for molecular simulations. Two short (my, my, ~5 nm) and
three long (ms3, my, ms ~55 nm) mucin models were constructed
following known experimental compositions of protein and gly-
cosylation sequences (Hughes et al., 2019, Mariethoz et al., 2018,
Markovetz et al., 2019, Symmes et al., 2018, Thomsson et al., 2005)
with ROSETTA (Raveh et al.,, 2010) and CHARMM GUI Glycan
Modeller (Jo et al., 2011). Mucin models (short and long) were sol-
vated, neutralized by charge matching with Ca?* ions, minimized,
and equilibrated for 15-25 ns each (Table 1). Human serum albumin
(ALB), which is also found in respiratory aerosols, was constructed
from PDB 1A06 (Sugio et al., 1999). ALB was solvated, neutralized,
minimized, and equilibrated for 7ns. Equilibrated structures of ALB
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Table 1: Summary of all systems constructed in this work.
See Fig 3 for illustration of aerosol construction.

4systems b Abb. C(AxAxA) 4N, €(ns)
M dimers M 125 X 125 x 124 164,741 700
fE pentamers E 123 X 125 X 102 136,775 41
Spikes:

f(open) S 206 X 200 X 410 1,692,444 330
f(closed) S 204 X 202 X 400 1,658,224 330
9(closed, head) SH 172 X 184 X 206 615,593 73ps
Mucins:

£ short mucin 1 m; 123 X 104 x 72 87,076 25
£ short mucin 2 my 120 X 101 x 72 82,155 25
flong mucin 1 ms 810 X 104 x 115 931,778 23
flong mucin 2 my 904 X 106 X 109 997,029 15
flong mucin 3 ms 860 X 111 x 113 1,040,215 18
fS+m1/m2+ALB SMA 227 X 229 X 433 2,156,689 840
JVirion \% 1460 X 1460 X 1460 | 305,326,834 | 41
fResp.Aero.+Vir. RAV 2834 x 2820 x 2828 | 1,016,813,441 2.42
TOTAL FLOPS 2.4 ZFLOPS

“M, E, S, SH, and V models represent SARS-CoV-2 Delta strain. b Abbreviations used
throughout document. “Periodic boundary dimensions. ¢Total number of atoms.
¢Total aggregate simulation time, including heating and equilibration runs.

f Simulated with NAMD. 9Simulated with NAMD, AMBER, and GROMACS.

Figure 3: Image of RAV with relative mass ratios of RA
molecular components represented in the colorbar. Water
content is dependent on the relative humidity of the envi-
ronment and is thus omitted from the molecular ratios.

and the three long mucins were used in construction of the RAV
with m3+m4+m5 added at 6 g/mol and ALB at 4.4 g/mol.

5.1.4  Constructing the respiratory aerosolized virion model. A 100
nm cubic box with the RA fluid recipe specified above was built with
PACKMOL (Martinez et al., 2009), minimized, equilibrated briefly
on TACC Frontera, then replicated to form a 300 nm cube. The RA
box was then carved into a 270 nm diameter sphere. To make space
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for the placement of V within the RA, a spherical selection with
volume corresponding to that of the V. membrane + S crown (radius
734 A) was deleted from the center of the RA. The final equilibrated
V model, including surrounding equilibrated waters and ions (733
A radius), was translated into the RA. Atom clashes were resolved
using a 1.2 A cutoff. Hydrogen mass repartitioning (Hopkins et al.,
2015) was applied to the structure to improve performance. The
simulation box was increased to 2800 A per side to provide a 100 A
vacuum atmospheric buffer. The RAV simulation was conducted in
an NVT ensemble with a 4 fs timestep. After minimizing, the RAV
was heated to 298 K with 0.1 kcal/mol AZ restraints on the viral lipid
headgroups, then equilibrated for 1.5 ns. Finally, a cross-section of
the RAV model - including and open S, m1/m2, and ALB (called the
SMA system) — was constructed with PACKMOL to closely observe
atomic scale interactions within the RAV model (Fig. 4).

5.2 Parameter evaluation with OrbNet

Comparison to quantum methods reveals significant polarization
effects, and shows that there is opportunity to improve the accuracy
of fixed charge force fields. For the large system sizes associated
with solvated Ca?*-protein interaction motifs (over 1000 atoms,
even in aggressively truncated systems) conventional quantum
mechanics methods like density functional theory (DFT) are im-
practical for analyzing a statistically significant ensemble of distinct
configurations (see discussion in Performance Results). In contrast,
OrbNet allows for DFT accuracy with over 1000-fold speed-up,
providing a useful method for benchmarking and refining the force-
field simulation parameters with quantum accuracy (Christensen
etal,, 2021). To confirm the accuracy of OrbNet versus DFT (wB97X-
D/def2-TZVP), the inset of Fig. 4E correlates the two methods for
the Ca?*-binding energy in a benchmark dataset of small Ca?*-
peptide complexes (Hu et al., 2021). The excellent correlation of
OrbNet and DFT for the present use case is clear from the inset
figure; six datapoints were removed from this plot on the basis of a
diagnostic applied to the semi-empirical GFN-xTB solution used
for feature generation of OrbNet (Christensen et al., 2021).

Fig. 4E presents a comparison of the validated OrbNet method
with the CHARMM36m force field for 1800 snapshots taken from
the SMA MD simulations. At each snapshot, a subsystem contain-
ing a solvated Ca?*-protein complex was extracted (Fig. 4E), with
protein bonds capped by hydrogens. For both OrbNet and the force
field, the Ca?*-binding energy was computed and shown in the cor-
relation plot. Lack of correlation between OrbNet and the force field
identifies important polarization effects, absent in a fixed charge
description. Similarly, the steep slope of the best-fit line in Fig. 4E
reflects the fact that some of the configurations sampled using MD
with the CHARMM36m force field are relatively high in energy
according to the more accurate OrbNet potential. This approach
allows us to test and quantify limitations of empirical force fields,
such as lack of electronic polarization.

The practicality of OrbNet for these simulation snapshots with
1000+ atoms offers a straightforward multiscale strategy for refin-
ing the accuracy of the CHARMM36m force field. By optimizing the
partial charges and other force field parameters, improved correla-
tion with OrbNet for the subtle Ca?*-protein interactions could be
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Figure 4: SMA system captured with multiscale modeling from classical MD to Al-enabled quantum mechanics. For all pan-
els: S protein shown in cyan, S glycans in blue, m;/m; shown in red, ALB in orange, Ca”" in yellow spheres, viral membrane
in purple. A) Interactions between mucins and § facilitated by glycans and Ca?*. B) Snapshot from SMA simulations. C) Ex-
ample Ca’* binding site from SMA simulations (1800 sites, each 1000+ atoms) used for Al-enabled quantum mechanical esti-
mates from OrbNet Sky. D) Quantification of contacts between S and mucin from SMA simulations. E) OrbNet Sky energies vs
CHARMM36m energies for each sub-selected system, colored by total number of atoms. Performance of OrbNet Sky vs. DFT
in subplot (0B97x-D3/def-TZVP, R?=0.99, for 17 systems of peptides chelating Ca?* (Hu et al., 2021)). Visualized with VMD.

achieved, leading to near-quantum accuracy simulations with im-
proved configurational sampling. The calculations presented here
present a proof-of-concept of this iterative strategy.

5.3 AI-WE simulations of Delta spike opening

While our previous WE simulations of the WT SARS-CoV-2 S-
opening (Sztain et al., 2021) were notable in generating pathways
for a seconds-timescale process of a massive system, we have made
two critical technological advancements in the WESTPA software
that greatly enhance the efficiency and analysis of WE simulations.
These advances enabled striking observations of Delta-variant S
opening (Figs. 5 and 6). First, in contrast to prior manual bins for
controlling trajectory replication, we have developed automated
and adaptive binning that enables more efficient surmounting of
large barriers via early identification of “bottleneck” regions (Tor-
rillo et al., 2021). Second, we have parallelized, memory-optimized,
and implemented data streaming for the history-augmented Markov
state model (haMSM) analysis scheme (Copperman and Zuckerman,
2020) to enable application to the TB-scale S-opening datasets. The
haMSM approach estimates rate constants from simulations that
have not yet reached a steady state (Suarez et al., 2014).

Our WE simulations generated >800 atomically detailed, Delta-
variant S-opening pathways (Figs. 5B and 6) of the receptor binding
domain (RBD) switching from a glycan-shielded ‘down’ to an ex-
posed ‘up’ state using 72 ps of total simulation time within 14 days

using 192 NVIDIA V100 GPUs at a time on TACC’s Longhorn su-
percomputer. Among these pathways, 83 reach an ‘open’ state that
aligns with the structure of the human ACE2-bound WT S pro-
tein (Benton et al., 2020) and 18 reach a dramatically open state
(Fig. 6). Our haMSM analysis of WT WE simulations successfully
provided long-timescale (steady-state) rate constants for S-opening
based on highly transient information (Fig. 5C).

We also leveraged a simple, yet powerful unsupervised deep
learning method called Anharmonic Conformational Analysis en-
abled Autoencoders (ANCA-AE) (Clyde et al., 2021) to extract con-
formational states from our long-timescale WE simulations of
Delta spike opening (Fig. 5A,D). ANCA-AE first minimizes the
fourth order correlations in atomistic fluctuations from MD simula-
tion datasets and projects the data onto a low dimensional space
where one can visualize the anharmonic conformational fluctu-
ations. These projections are then input to an autoencoder that
further minimizes non-linear correlations in the atomistic fluctua-
tions to learn an embedding where conformations are automatically
clustered based on their structural and energetic similarity. A visual-
ization of the first three dimensions from the latent space articulates
the RBD opening motion from its closed state (Fig. 5D). It is notable
that while other deep learning techniques need special purpose
hardware (such as GPUs), the ANCA-AE approach can be run with
relatively modest CPU resources and can therefore scale to much
larger systems (e.g., the virion within aerosol) when optimized.
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Figure 5: Delta-variant spike opening from WE simulations, and AI/haMSM analysis. A) The integrated workflow. B) Snapshots
of the ‘down’, ‘up’, and ‘open’ states for Delta S-opening from a representative pathway generated by WE simulation, which
represents ~10° speedup compared to conventional MD. C) Rate-constant estimation with haMSM analysis of WE data (pur-
ple lines) significantly improves direct WE computation (red), by comparison to experimental measurement (black dashed).
Varying haMSM estimates result from different featurizations which will be individually cross-validated. D) The first three
dimensions of the ANCA-AE embeddings depict a clear separation between the closed (darker purple) and open (yellow) con-
formations of the Delta spike. A sub-sampled landscape is shown here where each sphere represents a conformation from the
WE simulations and colored with the root-mean squared deviations (A) with respect to the closed state. Visualized with VMD.

5.4 D-NEMD explores pH effects on Delta spike

We performed D-NEMD simulations of the SH system with GRO-
MACS (Abraham et al., 2015) using a ApH=2.0 (from 7.0 to 5.0) as
the external perturbation. We ran 3 200-ns equilibrium MD simu-
lations of SH to generate 87 configurations (29 configurations per
replicate) that were used as the starting points for multiple short
(10 ns) D-NEMD trajectories under the effect of the external pertur-
bation (ApH=2.0). The effect of a ApH was modelled by changing
the protonation state of histidines 66, 69, 146, 245, 625, 655, 1064,
1083, 1088, and 1101 (we note that other residues may also become
protonated (Lobo and Warwicker, 2021); the D-NEMD approach
can also be applied to examine those). The structural response of
the S to the pH decrease was investigated by measuring the dif-
ference in the position for each Ca atom between the equilibrium
and corresponding D-NEMD simulation at equivalent points in
time (Oliveira et al., 2021a), namely after 0, 0.1, 1, 5 and 10 ns of
simulation. The D-NEMD simulations reveal that pH changes, of
the type expected in aerosols, affect the dynamics of functionally
important regions of the spike, with potential implications for viral
behavior (Fig. 7). As this approach involves multiple short inde-
pendent non-equilibrium trajectories, it is well suited for cloud
computing. All D-NEMD simulations were performed using Oracle
Cloud.

6 HOW PERFORMANCE WAS MEASURED

6.1 WESTPA

For the WE simulations of spike opening using WESTPA, we defined
the time to solution as the total simulation time required to generate
the first spike opening event. Spike opening is essentially impossible
to observe via conventional MD. WESTPA simulations were run
using the AMBER20 dynamics engine and 192 NVIDIA V100 GPUs
at a time on TACC’s Longhorn supercomputer.

6.2 NAMD

NAMD performance metrics were collected using hardware per-
formance counters for FLOPs/step measurements, and application-
internal timers for overall simulation rates achieved by production
runs including all I/O for simulation trajectory and checkpoint out-
put. NAMD FLOPs/step measurements were conducted on TACC
Frontera, by querying hardware performance counters with the
rdmsr utility from Intel msr-tools! and the “TACC stats” system
programs.? For each simulation, FLOP counts were measured for
NAMD simulation runs of two different step counts. The results
of the two simulation lengths were subtracted to eliminate NAMD
startup operations, yielding an accurate estimate of the marginal
FLOPs per step for a continuing simulation (Phillips et al., 2002).
Using the FLOPs/step values computed for each simulation, overall

'https://github.com/intel/msr-tools
Zhttps://github.com/TACC/tacc_stats
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DELTA RBD
super open

Figure 6: WE simulations reveal a dramatic opening of the
Delta S (cyan), compared to WT S (white). While further
investigation is needed, this super open state seen in the
Delta S may indicate increased capacity for binding to hu-
man host-cell receptors.

Ca deviations
(/] ——Y

Figure 7: D-NEMD simulations reveal changes in key func-
tional regions of the S protein, including the receptor bind-
ing domain, as the result of a pH decrease. Color scale
and ribbon thickness indicate the degree of deviation of Ca
atoms from their equilibrium position. Red spheres indicate
the location of positively charged histidines.
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Table 2: MD simulation floating point ops per timestep.

MD Simulation Code

Spike, head AMBER, GROMACS | 0.6M
Spike NAMD 1.7M
S+m1/my+ALB NAMD 2.1M 54.86 GFLOPs/step
Resp. Aero.+Vir. NAMD 1B 25.81 TFLOPs/step

“ FLOPs/step data were computed by direct FLOP measurements from hardware
performance counters for NAMD simulations, or by using the application-reported
FLOP rates and ns/day simulation performance in the case of GROMACS.

Atoms | “FLOPs/step

62.14 GFLOPs/step
43.05 GFLOPs/step

FLOP rates were computed by dividing the FLOPs/step value by
seconds/step performance data reported by NAMD internal appli-
cation timers during production runs.

6.3 GROMACS

GROMACS 2020.4 benchmarking was performed on Oracle Cloud
Infrastructure (OCI)> compute shape BM.GPU4.8 consisting of
8XNVIDIA A100 tensor core GPUs, and 64 AMD Rome CPU cores.
The simulation used for benchmarking contained 615,563 atoms and
was run for 500,000 steps with 2 fs time steps. The simulations were
run on increasing numbers of GPUs, from 1 to 8, using 8 CPU cores
per GPU, running for both the production (Nose-Hoover) and GPU-
accelerated (velocity rescaling) thermostats. Particle-mesh Ewald
(PME) calculations were pinned to a single GPU, with additional
GPUs for multi-GPU jobs used for particle—particle calculations.
Performance data (ns/day and average single-precision TFLOPS,
calculated as total number of TFLOPs divided by total job walltime)
were reported by GROMACS itself. Each simulation was repeated
four times and average performance figures reported.

7 PERFORMANCE RESULTS

7.1 NAMD performance

NAMD was used to perform all of the simulations listed in Table 1,
except for the closed spike “SH” simulations described further be-
low. With the exception of the aerosol and virion simulation, the
other NAMD simulations used conventional protocols and have
performance and parallel scaling characteristics that closely match
the results reported in our previous SARS-CoV-2 research (Casalino
et al., 2021). NAMD 2.14 scaling performance for the one billion-
atom respiratory aerosol and virion simulation run on ORNL Sum-
mit is summarized in Tables 3 and 4. A significant performance
challenge associated with the aerosol virion simulation relates to
the roughly 50% reduction in particle density as compared with a
more conventional simulation with a fully populated periodic cell.
The reduced particle density results in large regions of empty space
that nevertheless incur additional overheads associated with both
force calculations and integration, and creates problems for the
standard NAMD load balancing scheme that estimates the work
associated with the cubic “patches” used for parallel domain de-
composition. The PME electrostatics algorithm and associated 3-D
FFT and transpose operations encompass the entire simulation unit
cell and associated patches, requiring involvement in communica-
tion and reduction operations despite the inclusion of empty space.
Enabling NAMD diagnostic output on a 512-node 1B-atom aerosol

3https://www.oracle.com/cloud/


https://doi.org/10.1101/2021.11.12.468428
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.12.468428; this version posted November 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supercomputing ’21, November 14-19, 2021, Hybrid

Table 3: NAMD performance: Respiratory Aerosol + Virion,
1B atoms, 4 fs timestep w/ HMR, and PME every 3 steps.

Nodes Summit | Speedup | Efficiency
CPU + GPU

256 4.18 ns/day ~1.0Xx ~100%

512 7.68 ns/day 1.84% 92%

1024 13.64 ns/day 3.27X 81%

2048 23.10 ns/day 5.53% 69%

4096 34.21 ns/day 8.19% 51%

Table 4: Peak NAMD FLOP rates, ORNL Summit

NAMD Simulation | Atoms | Nodes Sim rate | Performance
Resp. Aero.+Vir. 1B 4096 | 34.21ns/day | 2.55 PFLOPS

and virion simulation revealed that ranks assigned empty regions
of the periodic cell had 66 times the number of fixed-size patches as
ranks assigned dense regions. The initial load estimate for an empty
patch was changed from a fixed 10 atoms to a runtime parameter
with a default of 40 atoms, which reduced the patch ratio from 66
to 19 and doubled performance on 512 nodes.

7.2 'WESTPA performance

Our time to solution for WE simulations of spike opening (to the
“up” state) (Fig. 5) using the WESTPA software and AMBER20 was
14 ps of total simulation time, which was completed in 4 days
using 192 NVIDIA V100 GPUs at a time on TACC’s Longhorn
supercomputer. For reference, conventional MD would require an
expected ~5 orders of magnitude more computing. The WESTPA
software is highly scalable, with nearly perfect scaling out to >1000
NVIDIA V100 GPUs and this scaling is expected to continue until
the filesystem is saturated. Thus, WESTPA makes optimal use of
large supercomputers and is limited by filesystem I/O due to the
periodic restarting of trajectories after short time intervals.

7.3 Al-enhanced WE simulations

DeepDriveMD is a framework to coordinate the concurrent execu-
tion of ensemble simulations and drive them using Al models (Brace
et al., 2021a, Lee et al., 2019). DeepDriveMD has been shown to im-
prove the scientific performance of diverse problems: from protein
folding to conformation of protein-ligand complexes. We coupled
WESTPA to DeepDriveMD, which is responsible for resource dy-
namism and concurrent heterogeneous task execution (ML and
AMBER). The coupled workflow was executed on 1024 nodes on
Summit (OLCF), and, in spite of the spatio-temporal heterogene-
ity of tasks involved, the resource utilization was in the high 90%.
Consistent with earlier studies, the coupling of WESTPA to Deep-
DriveMD results in a 100x improvement in the exploration of phase
space.

7.4 GROMACS performance

Figure 8 shows GROMACS parallelizes well across the 8 NVIDIA
A100 GPUs available on each BM.GPU4.8 instance used in the Clus-
ter in the Cloud* running on OCL. There is a performance drop for

4https://cluster-in-the-cloud.readthedocs.io/
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Figure 8: GROMACS performance across 1-8 A100 GPUs in
ns/day (thicker, blue lines) and the fraction of maximum
theoretical TFLOPS (thinner, green lines); production setup
shown with solid line, and runs with the GPU-accelerated
thermostat in dashed.

two GPUs due to inefficient division of the PME and particle-particle
tasks. Methods to address this exist for the two GPU case (Pall et al.,
2020), but were not adopted as we were targeting maximum raw per-
formance across all 8 GPUs. Production simulations achieved 27%
of the peak TFLOPS available from the GPUs. Multiple simulations
were run across 10 such compute nodes, enabling the ensemble to
run at an average combined speed of 425 TFLOPS and sampling
up to 1us/day. We note that the calculations will be able to run
20%-40% faster once the Nose-Hoover thermostat that is required
for the simulation is ported to run on the GPU. Benchmarking using
a velocity rescaling thermostat that has been ported to GPU shows
that this would enable the simulation to extract 34% of the peak
TFLOPS from the cards, enabling each node to achieve an average
speed of 53.4 TFLOPS, and 125 ns/day. A cluster of 10 nodes would
enable GROMACS to run at an average combined speed of over 0.5
PFLOPs, simulating over 1.2 us/day.

A significant innovation is that this power is available on de-
mand: Cluster in the Cloud with GPU-optimized GROMACS was
provisioned and benchmarked within one day of inception of the
project. This was handed to the researcher, who submitted the
simulations. Automatically, up to ten BM.GPU4.8 compute nodes
were provisioned on-demand based on requests from the Slurm
scheduler. These simulations were performed on OCI, using Cluster
in the Cloud (Williams, 2021) to manage automatic scaling.

Cluster in the Cloud was configured to dynamically provision
and terminate computing nodes based on the workload. Simulations
were conducted using GROMACS 2020.4 compiled with CUDA sup-
port. Multiple simultaneous simulations were conducted, with each
simulation utilizing a single BM.GPU4.8 node without multinode
parallelism.

This allowed all production simulations to be completed within
2 days. The actual compute cost of the project was less than $6125
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USD (on-demand OCI list price). The huge reduction in “time to sci-
ence” that low-cost cloud enables changes the way that researchers
can access and use HPC facilities. In our opinion, such a setup
enables “exclusive on-demand” HPC capabilities for the scientific
community for rapid advancement in science.

7.5 OrbNet performance

Prior benchmarking reveals that OrbNet provides over 1000-fold
speedup compared to DFT (Christensen et al., 2021). For the cal-
culations presented here, the cost of corresponding high quality
range-separated DFT calculations (wB97X-D/def2-TZVP) can be
estimated. In Fig. 4E, we consider system sizes which would require
14,000-47,000 atomic orbitals for wB97X-D/def2-TZVP, exceeding
the range of typical DFT evaluations. Estimation of the DFT compu-
tational cost of the 1811 configurations studied in Fig. 4E suggests
a total of 115M core-hours on NERSC Cori Haswell nodes; in con-
trast, the OrbNet calculations for the current study require only
100k core-hours on the same nodes. DFT cost estimates were based
on extrapolation from a dataset of over 1M ChEMBL molecules
ranging in size from 40 to 107 atom systems considering only the
cubic cost component of DFT (Christensen et al., 2021).

8 IMPLICATIONS

Our major scientific achievements are:

(1) We showcase an extensible Al-enabled multiscale computa-
tional framework that bridges time and length scales from
electronic structure through whole aerosol particle morphol-
ogy and dynamics.

(2) We develop all-atom simulations of respiratory mucins, and
use these to understand the structural basis of interaction
with the SARS-CoV-2 spike protein. This has implications for
viral binding in the deep lung, which is coated with mucins.
We expect the impact of our mucin simulations to be far
reaching, as malfunctions in mucin secretion and folding
have been implicated in progression of severe diseases such
as cancer and cystic fibrosis.

(3) We present a significantly enhanced all-atom model and
simulation of the SARS-CoV-2 Delta virion, which includes
the hundreds of tiled M-protein dimers and the E-protein ion
channels. This model can be used as a basis to understand
why the Delta virus is so much more infectious than the WT
or alpha variants.

(4) We develop an ultra-large (1 billion+) all-atom simulation
capturing massive chemical and biological complexity within
a respiratory aerosol. This simulation provides the first
atomic level views of virus-laden aerosols and is already
serving as a basis to develop an untold number of experimen-
tally testable hypotheses. An immediate example suggests
a mechanism through which mucins and other species, e.g.,
lipids, which are present in the aerosol, arrange to protect
the molecular structure of the virus, which otherwise would
be exposed to the air-water interface. This work also opens
the door for developing simulations of other aerosols, e.g.,
sea spray aerosols, that are involved in regulating climate.

(5) We evidence how changes in pH, which are expected in
the aerosol environment, may alter dynamics and allosteric
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communication pathways in key functional regions of the
Delta spike protein.

(6) We characterize atomically detailed pathways for the spike-
opening process of the Delta variant using WE simulations,
revealing a dramatically open state that may facilitate bind-
ing to human host cells.

(7) We demonstrate how parallelized haMSM analysis of WE
data can provide physical rate estimates of spike opening,
improving prior estimates by many orders of magnitude.
The pipeline can readily be applied to the any variant spike
protein or other complex systems of interest.

(8) We show how HPC and cloud resources can be used to sig-
nificantly drive down time-to-solution for major scientific
efforts as well as connect researchers and greatly enable
complex collaborative interactions.

(9) We demonstrate how Al coupled to HPC at multiple levels
can result in significantly improved effective performance,
e.g., with Al-driven WESTPA, and extend the reach and do-
main of applicability of tools ordinarily restricted to smaller,
less complex systems, e.g., with OrbNet.

(10) While our work provides a successful use case, it also exposes
weaknesses in the HPC ecosystem in terms of support for
key steps in large/complex computational science campaigns.
We find lack of widespread support for high performance
remote visualization and interactive graphical sessions for
system preparation, debugging, and analysis with diverse
science tools to be a limiting factor in such efforts.
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