Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at $\sqrt{s_{NN}} = 5.02$ TeV

A. M. Sirunyan et al.*
CMS Collaboration

(Received 25 February 2021; revised 2 September 2021; accepted 22 December 2021; published 19 January 2022)

The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV per nucleon pair, using the decay chain $X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \mu^+ \mu^- \pi^+ \pi^-$. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb$^{-1}$. The measurement is performed in the rapidity and transverse momentum ranges $|y| < 1.6$ and $15 < p_T < 50$ GeV/c. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to $\rho \gamma$ yield ratio is found to be $\rho^{\text{Pb-Pb}} = 1.08 \pm 0.49$ (stat) ± 0.52 (syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.

DOI: 10.1103/PhysRevLett.128.032001

The X(3872), also known as $\chi_{c1}(3872)$, is an exotic particle that was first observed by the Belle Collaboration [1], and then confirmed and studied by other experiments at electron-positron [2,3] and hadron colliders [4–8]. The quantum numbers of the X(3872) have been narrowed down by the CDF [9], and later determined to be $J^{PC} = 1^{++}$ by the LHCb [10] Collaborations. However, the nature of this particle is still not fully understood and interpretations in terms of conventional charmonium (a bound state of charm-anticharm quarks), $D^*(2010)^0 \bar{D}^0$ molecules [11], tetraquark states [12], and their admixture [13] have been proposed. The production and survival of the X(3872) in a quark-gluon plasma (QGP), a deconfined state of quarks and gluons [14,15], or after the QGP, in a hadronic phase, is expected to depend upon the X(3872)'s internal structure [16,17]. Thus, the recent large dataset of lead-lead (Pb-Pb) collisions at a center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV per nucleon pair, delivered by the Large Hadron Collider (LHC) at CERN at the end of 2018, opened new opportunities to probe the nature of this exotic state [18–20].

It is expected that in relativistic heavy ion collisions, the production of the QGP could enhance or suppress the production of the X(3872) particle. Coalescence mechanisms could enhance the X(3872) production yield [16,19]. These mechanisms can be modeled via the overlap of the density matrix of the constituents in an emission source with the Wigner function of the produced particle [21]. Therefore, the enhancement of the X(3872) production in the QGP would depend on the spatial configuration of the exotic state. Moreover, a longer distance between the quarks and antiquarks that constitute the state could also lead to a higher X(3872) dissociation rate, similar to that from the mechanism of quarkonium suppression in heavy ion collisions [22]. Therefore, the study of the X(3872) state in the QGP may be used as a tool to distinguish a compact tetraquark configuration with a radius ~ 0.3 fm from a molecular state with a radius greater than 1.5 fm [23]. Such a measurement would be complementary to the recent evidence for the radiative decay $X(3872) \rightarrow \psi 2\gamma$ in proton-proton (pp) collisions reported by LHCb Collaboration [24], which does not support a pure $D^*(2010)^0 \bar{D}$ molecular interpretation. In addition, measurements of prompt X(3872) production could provide an interesting test of the statistical hadronization model, which assumes that the produced matter is in thermodynamic equilibrium at the phase transition to hadrons [25,26].

In this Letter, the first evidence for X(3872) production in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV is reported. The Pb-Pb sample corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The X(3872) candidates are reconstructed through the decay chain $X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \mu^+ \mu^- \pi^+ \pi^-$, and are measured in the $15 < p_T < 50$ GeV/c and $|y| < 1.6$ kinematic region. At the LHC energies, the inclusive X(3872) yields in pp and Pb-Pb collisions contain a significant nonprompt contribution coming from b hadron decays [8]. The nonprompt X(3872) component is related to the medium-modified beauty hadron production in heavy ion collisions, which is
out of the scope of this Letter. Here, we focus on the prompt component, from charm quark fragmentation, for which the ratio \(\rho' \) (i.e., \(pp \) or \(Pb-Pb \)) between the corrected yields of \(X(3872) \) and \(\psi'2S \) mesons [where \(\psi'2S \) is reconstructed with the same final-state particles in order to reduce systematic uncertainties] is presented

\[
\rho' = \frac{\frac{N_i^{X(3872)\rightarrow J/\psi\pi\pi}}{N_i^{\psi'2S\rightarrow J/\psi\pi\pi}}}{N_i^{pp\rightarrow J/\psi\pi\pi}}.
\]

(1)

The ratios in \(pp \) and \(Pb-Pb \) collisions are connected to the nuclear modification factors \(R^{X(3872)}_{AA} \) and \(R^{\psi'2S}_{AA} \) (the meson yield ratio in nucleus-nucleus and \(pp \) interactions normalized by the number of inelastic nucleon-nucleon collisions) via the following relation:

\[
\rho^{Pb-Pb} = \rho^{pp} \frac{R^{X(3872)}_{AA}}{R^{\psi'2S}_{AA}}.
\]

(2)

The CMS apparatus [27] is a multipurpose, nearly hermetic detector, designed to trigger on [28,29] and identify electrons, muons, photons, and (charged and neutral) hadrons [30–33]. A global reconstruction algorithm [34] combines the information provided by the all-silicon inner tracker and by the crystal electromagnetic and brass-scintillator hadron calorimeters, operating inside a 3.8 T superconducting solenoid, with data from gas-ionization muon detectors interleaved with the solenoid return yoke. Information from the hadron forward (HF) calorimeter is used for performing off-line event selection and determining centrality (the degree of overlap between the two colliding nuclei). The results refer to the collisions with 0%–90% centrality, i.e., the top 90% events based on the total transverse energy deposition in both HF detectors [35], which corresponds to the 90% of collisions having the largest overlap of the two nuclei.

Events of interest were selected in real time using the CMS two-tiered trigger system: the first level (L1), composed of custom hardware processors [28], and the high-level trigger (HLT), consisting of a farm of processors running a version of the full event reconstruction software optimized for fast processing [29]. The selection required the presence of two muon candidates, with at least one muon reconstructed in the outer muon spectrometer, and one muon reconstructed using information from both the outer muon spectrometer and the inner tracker. The dimuon candidate invariant mass is required to be \(1 < m_{\mu\mu} < 5 \text{ GeV}/c^2 \). For the off-line analysis, events have to pass a set of selection criteria designed to reject events from background processes (beam-gas collisions, beam scraping events, and electromagnetic interactions) as described in Ref. [36]. Events are required to have at least one reconstructed primary interaction vertex formed by two or more tracks, with a distance from the center of the nominal interaction point of less than 15 cm along the beam axis. The shapes of the clusters in the pixel detector have to be compatible with those expected from particles produced by a Pb-Pb collision [37]. In order to select hadronic collisions, the Pb-Pb events are also required to have at least two towers (i.e., a geometrically defined group of calorimeter cells) in each of the HF detectors with total energy deposits of more than 4 GeV per tower. This analysis is restricted to events within centrality 0%–90%, for which the hadronic event selection is fully efficient. Multiple-collision events (pileup) have a negligible effect on the measurement, since the average number of additional collisions per bunch crossing is approximately 0.002.

Dedicated Pb-Pb \(X(3872) \) and \(\psi'2S \) Monte Carlo (MC) simulated samples were generated in order to estimate the acceptance and selection efficiencies, to study the background components, and to evaluate systematic uncertainties. The PYTHIA8 v212 [38] Tune CP5 [39] was used to generate the \(X(3872) \) and \(\psi'2S \) signals at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \). It was assumed that \(X(3872) \) and \(\psi'2S \) are unpolarized. Since the \(X(3872) \) cannot be generated by PYTHIA, the \(\chi_{c1}(1P) \) particle is used, with a modified mass of 3.8716 GeV/c\(^2\) [40]. The \(\chi_{c1}(1P) \) has the quantum numbers \(J^{PC} = 1^{++} \), identical to those of the \(X(3872) \). The \(X(3872) \) particle was forced to decay into \(J/\psi\pi^+\pi^- \) (assuming the \(\rho \) resonance dominates the pion pair spectrum [7,8]), followed by the \(J/\psi \) meson decaying into two muons. Final-state radiation was generated using PHOTOS2.0 [41]. The \(\chi_{c1}(1P) \rightarrow J/\psi\pi^+\pi^- \) decay is generated with EvtGen. The samples with prompt (fragmenting in charm quarks) and nonprompt (originating from \(b \) hadron decays) \(\psi'2S/X(3872) \) production are generated separately. Each \(\text{PYTHIA} \) event is embedded in a Pb-Pb collision event generated with HYDJET1.8 [42], which is tuned to reproduce global event properties such as the charged-hadron \(p_T \) spectrum and particle multiplicity. The \(X(3872) \) signal is extracted in the following steps. Each muon candidate must be matched to a triggered muon and have \(p_T^\mu > 3.5 \text{ GeV}/c \) in the interval \(|\eta| < 1.2, p_T^\mu > (5.47 - 1.89|\eta|^2) \text{ GeV}/c \) in the interval \(1.2 < |\eta| < 2.1 \), or \(p_T^\mu > 1.5 \text{ GeV}/c \) in the forward region \(2.1 < |\eta| < 2.4 \). Two muons of opposite sign, with an invariant mass within \(\pm150 \text{ MeV}/c^2 \) of the world-average \(J/\psi \) meson mass [40] are selected to reconstruct a \(J/\psi \) candidate. The opposite-sign muon pairs are fitted with a common vertex constraint and are kept if the \(\chi^2 \) probability of the fit is greater than 1%, thus reducing the background from charm and beauty hadron semileptonic decays. The \(X(3872) \) and \(\psi'2S \) candidates are built by combining the \(J/\psi \) candidates with two additional tracks, which have \(p_T > 0.9 \text{ GeV}/c, |\eta| < 2.4 \) and pass a high purity selection, assumed to be produced by two pions. Only candidates that have \(15 < p_T^\pi < 50 \text{ GeV}/c \) and \(|\eta| < 1.6 \) are considered. Then, a kinematic fit to the \(J/\psi\pi^+\pi^- \) system is performed, requiring that the four tracks originate from a common vertex and forcing the
The mass of the dimuon pair is required to be equal to the nominal J/ψ mass [40]. The selection is further optimized, using a boosted decision tree (BDT) algorithm [43]. The $X(3872)$ decay vertex probability, the radial distance between the pion and the J/ψ candidate momentum vectors $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where ϕ is the azimuthal angle, and the p_T of each pion are used in the BDT algorithm to distinguish signal and combinatorial background formed by random combinations of tracks for a BDT training sample. The BDT selection determined in this way is applied to entries in the whole invariant mass range from 3.62 to 4 GeV/c² in data. The raw inclusive yields of $X(3872)$ and $\psi 2S$ are extracted from an extended unbinned maximum-likelihood fit. A double-Gaussian function with a common mean but independent widths is used to model the signal component for each of the $X(3872)$ and $\psi 2S$ peaks. This was preferred to a single-Gaussian or a Breit-Wigner function since it described better (i.e., superior χ^2 of the fit) the signal shape in MC simulations. For describing the combinatorial background, mostly produced by the random combination of a J/ψ candidate with tracks that are not coming from $X(3872)$ or $\psi 2S$, decay, a 4th-order polynomial is used, which gives the best fit in terms of χ^2 per degrees of freedom and stability during all studies. For the signal, only the magnitude of the two peaks is left free in the fit, the rest [the mean and widths of the two Gaussian functions, as well as their relative contribution to the signal yield in either $X(3872)$ or $\psi 2S$ peaks] are set to the values derived from simulation. The five parameters of the combinatorial background are all allowed to float. The invariant mass range considered for the fit is 3.62 to 4 GeV/c². The invariant mass fits for both the inclusive and nonprompt samples, with BDT selection optimized for $X(3872)$, are shown in Fig. 1. The significance of the inclusive $X(3872)$ signal against background-only hypothesis is 4.2 standard deviations. The systematic uncertainty (described below) contributing to this significance is the one related to the $X(3872)$ invariant mass fit. After performing a likelihood scan for each alternative signal and background shape considered, the significance was calculated as the square root of the logarithm of the profile likelihood ratio where the signal is zero, with the smallest value obtained being chosen among all scans.

The contribution from b hadron decays is subtracted from the inclusive result using the “pseudoproper” decay length l_{xy}, defined as the distance in the transverse plane to the vertex formed by the 4-tracks and the primary vertex, corrected by the transverse Lorentz boost of the candidate: $l_{xy} = L_{xy} m_{J/\psi\pi\pi}/|\vec{p}_T|$. The prompt-component fraction (f_{prompt}) is estimated using a cutoff-based method in the following way. Since the l_{xy} of the prompt component was found in MC studies to be smaller than 0.1 mm, the prompt fraction, f_{prompt}, can be derived from (i) the raw inclusive yield, N_{incl}, obtained from the fit to the invariant mass distributions of all candidates, shown in Fig. 1, and (ii) $N_{b\text{-enr}}$, the “b-enriched” yield, obtained from a fit to the invariant mass distribution only containing candidates that passed the selection $l_{xy} > 0.1$ mm, also shown in Fig. 1. In addition, $N_{b\text{-enr}}$ has to be corrected to account for nonprompt candidates, with $l_{xy} < 0.1$ mm, that have been missed: $f_{\text{prompt}} = N_{b\text{-enr}}/N_{\text{nonprompt}}$, where $N_{\text{nonprompt}}$ is the correction that was obtained from simulation. The raw prompt fraction is then calculated as

$$f_{\text{prompt}} = 1 - \frac{N_{b\text{-enr}}}{N_{\text{nonprompt}}} f_{\text{prompt}}^b,$$ (3)
of the prompt component can then be derived as

$$N_{i \rightarrow J/\psi \pi}^i = N_{\text{raw}}^i f_{\text{prompt}}^i \alpha \epsilon_{\text{reco}} \epsilon_{\text{sel}}^i,$$ \hspace{1cm} (4)

where i is X(3872) or $\psi'2S$, α is the acceptance, ϵ_{reco} is the candidate reconstruction efficiency and ϵ_{sel} is the candidate selection efficiency. Since the two states are reconstructed in the same decay channel and are relatively close in mass, their corresponding $\alpha \epsilon_{\text{reco}}$ values are similar. The choice of the BDT optimization criteria results in ϵ_{sel} being higher for the X(3872) than for the $\psi'2S$.

The measurement of $\rho^{\text{Pb-Pb}}$ is affected by several sources of systematic uncertainty, arising from the candidate selection, invariant mass fit, and efficiency corrections. To estimate the systematic uncertainty associated with the BDT selection, the BDT cutoff values are varied within a range that allows a robust invariant mass fit procedure (i.e., signal statistical significance larger than 2), and for each variation all factors in Eq. (4) are recalculated, separately for X(3872) and $\psi'2S$. The maximum difference of the final $\rho^{\text{Pb-Pb}}$ value from the nominal result (40%) is quoted as the systematic uncertainty. The relatively large $\rho^{\text{Pb-Pb}}$ uncertainty associated with BDT cutoff values is the convolution of mainly two causes: the BDT variables distribution differences in data and MC samples for the X(3872) meson, and the statistical limitation of the signal in data. The largest differences (~ 2 standard deviations) between data and MC samples are in the distributions of the p_T of the pions, and the radial distance between the pion and the J/ψ candidate momentum vectors.

The uncertainty in the invariant mass fit (8.0%) is calculated by adding in quadrature the maximum deviations from the nominal result to that found using two alternative fitting functions for both signal and background. For the signal, one variation consists of using a triple-Gaussian function, while for the other the signal width of the nominal fit is allowed to float to account for the resolution difference between data and MC samples. Other choices for the signal shape (e.g., one-Gaussian function) were not considered because of their poor-quality fits. For the background, the fit function is changed once to a third-order polynomial (as an exponential function or lower-order polynomials could not describe the data), and the fit range is also changed from 3.62–4 GeV/c^2 to 3.62–3.9 GeV/c^2 to exclude the right-hand shoulder.

The efficiency corrections obtained from simulation are sensitive to how well the p_T spectrum of the X(3872) and $\psi'2S$ candidates is modeled. The uncertainty related to the simulated p_T shape is evaluated by comparing the reconstruction and selection efficiencies calculated using the default PYTHIA MC sample, with another MC sample in which the p_T distributions of X(3872) and $\psi'2S$ are tuned to reproduce the extracted X(3872) and $\psi'2S$ p_T and y spectra obtained in data, by performing mass fits in bins of X(3872) and $\psi'2S$ p_T and y. The p_T and y spectra of the alternative MC samples are allowed to vary within the statistical uncertainties in data. The mean of the differences between efficiencies from the alternative MC samples and the default PYTHIA MC due to the variation of p_T and y spectra, which is 13%, is quoted as the systematic uncertainty.

The uncertainties in the trigger efficiency in the muon reconstruction and identification are evaluated using single muons from J/ψ meson decays in both simulated and collision data, with the tag-and-probe method [44,45]. This combined uncertainty is found to be negligible, below 1%. Scale factors, calculated as the ratio of data to simulated efficiencies as a function of p_T^μ and y^μ, are applied to each dimuon pair on a muon-by-muon basis. The uncertainties of the scaling factors from tag-and-probe studies are quoted as systematic uncertainties.

To estimate the uncertainty in the prompt fraction arising from potential differences between the resolution in data and simulation, a template fit of the l_{xy} distribution in data is performed using prompt and nonprompt l_{xy} templates from simulation. Data are binned in l_{xy}, and an invariant mass fit is performed to extract the inclusive yield in each l_{xy} bin. This background-subtracted l_{xy} distribution is then fitted using a two component fit, which includes the prompt and nonprompt l_{xy} templates from simulation. The widths of the simulated DCA distributions are varied by a floating scale factor, and the best simulated smearing scale factor to match data is determined by minimizing the χ^2 of the two-component fit. The difference between the ratio of the
prompt fractions of X(3872) to ψ2S using the template fit method and the nominal result (8.1%) is quoted as a systematic uncertainty.

When calculating the uncertainties in the ratio of the acceptance-corrected yields of prompt X(3872) production over prompt ψ2S production, the uncertainties of X(3872) and ψ2S yields are assumed to be independent except for the systematic uncertainties from muon reconstruction, efficiencies, and prompt fractions.

The ratio $\rho_{\text{pp}}^{\text{Pb-Pb}}$ between the prompt X(3872) and ψ2S mesons is shown in Fig. 2, together with $\rho_{\text{pp}}^{\text{pp}}$ measured as a function of p_T. The pp data were measured at $\sqrt{s} = 7$ and 8 TeV, in the $|y| < 1.2$ and $|y| < 0.75$ intervals, respectively [7,8,10]. The 7 TeV result was derived using the CMS Collaboration published ratio of the inclusive yields [7] and prompt fractions [7,46]. From Fig. 2 it is clear that the prompt $\rho_{\text{pp}}^{\text{Pb-Pb}}$ does not depend significantly on collision energy or rapidity. In pp collisions at $\sqrt{s} = 8$ TeV, in the kinematic range of $16 < p_T < 22$ GeV/c, the $\rho_{\text{pp}}^{\text{pp}}$ measured by the ATLAS Collaboration is $0.106 \pm 0.008(\text{stat}) \pm 0.004(\text{syst})$ [8]. This is to be compared to the prompt $\rho_{\text{pp}}^{\text{Pb-Pb}}$ measured in this Letter, $\rho_{\text{pp}}^{\text{Pb-Pb}} = 1.08 \pm 0.49(\text{stat}) \pm 0.52(\text{syst})$.

In the interval $15 < p_T < 20$ GeV/c, the yield of the prompt ψ2S in Pb-Pb collisions was reported to be significantly suppressed with respect to pp collisions, $R_{\text{AA}}^{\psi_{2S}} = 0.142 \pm 0.061(\text{stat}) \pm 0.020(\text{syst})$ [47]. This leads, using Eq. (2), to an $R_{\text{AA}}^{X(3872)}$ central value larger than 1 [i.e., enhancement of the prompt X(3872) yield in Pb-Pb compared to pp collisions]. However, the uncertainties are such that $R_{\text{AA}}^{X(3872)}$ is compatible with 1 within ~ 1 standard deviation, and with $R_{\text{AA}}^{\psi_{2S}}$ within ~ 2 standard deviations. Thus, it is possible that in Pb-Pb collisions, the prompt X(3872) yield has either no suppression with respect to pp collisions, or as much suppression as the ψ2S state. The much larger data sample expected in Run 3 at the LHC will answer whether $R_{\text{AA}}^{X(3872)}$ is different from $R_{\text{AA}}^{\psi_{2S}}$ and significantly above unity. It may answer whether the ψ2S meson production (a bound state of a c and c quarks, with $r \sim 0.9$ fm) [48], is affected differently by the medium produced in Pb-Pb collisions than the X(3872) state (that could be made of c, c, u, and u quarks, with a radius of $r \sim 0.3$ or $r > 1.5$ fm), the difference in both size and quark content playing a role into their production mechanisms. It will also answer whether the X(3872) prompt state production is different in Pb-Pb collisions compared to pp collisions. The question whether X(3872) is a tetraquark or a molecule cannot yet be answered, because of the statistical limitation of the data, and the disagreement among models. For example, while the AMPT transport model [16] predicts $R_{\text{AA}}^{\text{molecule}} \gg R_{\text{AA}}^{\text{tetraquark}}$ with $R_{\text{AA}}^{\text{molecule}} > 1$, the TAMU transport model [17] predicts $R_{\text{AA}}^{\text{molecule}} \sim R_{\text{AA}}^{\text{tetraquark}}/2$ [albeit, considering only the X(3872) from regeneration processes].

In summary, the first evidence for X(3872) production in heavy ion collisions is presented using lead-lead collisions at a center-of-mass energy of $\sqrt{s_{\text{NN}}} = 5.02$ TeV per nucleon pair, recorded with the CMS detector. The X(3872) state is reconstructed using the decay chain $X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \mu^+ \mu^- \pi^+ \pi^-$. The measurement is performed for transverse momentum values of the X(3872) of 15 < p_T < 50 GeV/c and rapidity $|y| < 1.6$. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The ratio $\rho_{\text{Pb-Pb}}^{\text{Pb-Pb}}$ between the prompt X(3872) and ψ2S yields times their branching fractions into $J/\psi \pi^+ \pi^-$ is found to be $1.08 \pm 0.49(\text{stat}) \pm 0.52(\text{syst})$, to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, Contracts No. 675440, No. 724704, No. 752730, and No. 765710 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science
Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agence des Jeunes Pour l’Innovation door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science—EOS”—be.h Project No. 30820817; the Beijing Municipal Science and Technology Commission, No. Z1910007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—39083306, and under project number 400140256—GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Ministry of Science and Higher Education and the National Science Center, contracts and Industrial Research, India; the Ministry of Science and Excellence Program ÚNKP, the NKFIA research grants Hungarian Academy of Sciences, the New National Program and the János Bolyai Research Scholarship of the Policy Office; the Fonds pour la Formation Technologie (IWT-Belgium); the F. R. S.-FNRS and dans l’-

\[4 \] D. Acosta et al.

\[5 \] V. M. Abazov et al. (D0 Collaboration), Observation and Properties of the \(X(3872) \) Decaying to \(J/\psi\pi^+\pi^- \) in \(pp \) Collisions at \(\sqrt{s} = 1.96 \) TeV, Phys. Rev. Lett. 93, 162002 (2004).

\[7 \] CMS Collaboration, Measurement of the \(X(3872) \) production cross section via decays to \(J/\psi\pi^+\pi^- \) in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV, J. High Energy Phys. 04 (2013) 154.

\[8 \] ATLAS Collaboration, Measurements of \(\psi2S \) and \(X(3872) \to J/\psi\pi^+\pi^- \) production in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS detector, J. High Energy Phys. 01 (2017) 117.

\[9 \] A. Abulencia et al. (CDF Collaboration), Analysis of the Quantum Numbers \(J^{PC} \) of the \(X(3872) \), Phys. Rev. Lett. 98, 132002 (2007).

\[24 \] LHCb Collaboration, Evidence for the decay \(X(3872) \to \psi2S_{\gamma} \), Nucl. Phys. B886, 665 (2014).

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, São Paulo, Brazil

Universidade Federal do ABC, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

University of Sofia, Sofia, Bulgaria

Beihang University, Beijing, China

Department of Physics, Tsinghua University, Beijing, China

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Zhejiang University, Hangzhou, China

Universidad de Los Andes, Bogota, Colombia

Universidad de Antioquia, Medellin, Colombia

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

University of Split, Faculty of Science, Split, Croatia

Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic

Escuela Politecnica Nacional, Quito, Ecuador

Universidad San Francisco de Quito, Quito, Ecuador

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia

Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece

National Technical University of Athens, Athens, Greece

University of Ioannina, Ioannina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

Institute of Physics, University of Debrecen, Debrecen, Hungary

Exeter University, Karoly Robert Campus, Gyongyos, Hungary

Indian Institute of Science (IISc), Bangalore, India

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Università di Napoli ‘Federico II’, Napoli, Italy
Università della Basilicata, Potenza, Italy
Università G. Marconi, Roma, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento, Trento, Italy
INFN Sezione di Pavia, Pavia, Italy
Università di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
Università di Siena, Siena, Italy
INFN Sezione di Roma, Rome, Italy
Sapienza Università di Roma, Rome, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kyungpook National University, Daegu, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Hanyang University, Seoul, Korea
Kyung Hee University, Seoul, Republic of Korea
Sejong University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Riga Technical University, Riga, Latvia
Vilnius University, Vilnius, Lithuania
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Universidad de Sonora (UNISON), Hermosillo, Mexico
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
University of Montenegro, Podgorica, Montenegro
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan