Non-line-of-sight imaging via wavefront shaping

Ruizhi Cao

California Institute of Technology

Jan. 24th, 2022

Non-line-of-sight (NLOS) imaging

https://www.cs.princeton.edu/~fheide/steadystatenlos

Goal:

Want to image an object whose direct line-of-sight is blocked

State-of-the-art methods for NLOS imaging

Time of Flight (ToF)

O'Toole, M., Lindell, D. & Wetzstein, G. *Nature* **555**, 338–341 (2018).

Phasor field

Liu, X., Guillén, I., La Manna, M. et al. Nature 572, 620-623 (2019).

Two main problems:

- Lateral resolution (distance-to-resolution ratio) is still low compared with optical resolution
- Reconstruction artifacts overwhelm dark objects

Distance between the wall and object: ~ 1 m

Resolution: ~ 1 cm

Distance-to-resolution ratio ~100

NLOS imaging via wavefront shaping (uses priors)

Katz, O., Small, E. & Silberberg, Y. Nature Photonics 6, 549–553, (2012).

After performing the correction for a point source (pre-calibration), the reflecting medium is effectively transformed into a 'scattering mirror'

Wavefront shaping:

- achieves high resolution,
- focuses light onto the target and produces image directly without using reconstruction algorithm (thus less artifact)!

Can we use wavefront shaping in NLOS without using priors?

Speckle field and phasors

This random phasor sums generates speckle field

Random phasor sums

How to focus through a scattering medium?

Align phasors in a smaller phasor set Random phasor sums Align "macro" phasors Combine multiple "macro" phasors Phasor set "macro" phasors

Aligned phasor sums

Aligning the phasors (uses guidestar)

Two popular wavefront shaping methods

(Digital) Optical Phase Conjugation

Feedback

Horstmeyer, R., Ruan, H. & Yang, C. *Nature Photon* **9**, 563–571 (2015).

Popular Guidestars

Photodetector

Ultrasound

Horstmeyer, R., Ruan, H. & Yang, C. Nature Photon 9, 563-571 (2015).

Time-variant absorption, $\mu(\mathbf{r}, t_1)$

Ma, C., Xu, X., Liu, Y. et al. Nature Photon 8, 931-936 (2014).

The challenge in NLOS imaging

No access on the target's side: cannot modulate the target.

Can we use the target itself as the guidestar?

Idea: If the target is "small", then we can use the target as a guidestar.

- How small should the target be?
- What kind of resolution can you get using the target itself as the guidestar?

How small should the target be?

Intuition: the target should be smaller than the speckle size

Speckle size ≈ focus size ∝ resolution

Optical resolution (intensity)

$$Resolution = \frac{\lambda}{2n\sin\theta}$$

For fixed L, a larger r gives a larger θ , thus a better resolution

Limit the radius of the "relay lens" such that Speckle size > target

Then, we can use feedback-based wavefront shaping.

What kind of resolution can we achieve?

Speckle Size ≈ Focus Size

Speckle Size > Target

Resolution > Target

To image the object:

Resolution < Target (Focus < Target)

Use a bigger "relay lens"?

Combine small relay lenses -> Big relay lens

How do we combine small lenses?

/How do we combine the macro phasors corresponding to the small lenses?

"Combining" the macro phasors

Want to align "macro" phasors using the feedback signal

Idea: make the intermediate focus larger than the object in optimizing the phase offset of "macro" phasors at any instant

Strategy of using pairs:

Optimize the phase offset using pairs consisting of two "macro" phasors (Here, the *i*-th sub-aperture corresponds to the *i*-th "macro" phasors)

It can be proven that the center of the optimized focus is fixed (independent) with respect to the choice of "macro" phasors

Target

Our Method

Can be shown that n^2 sub-apertures -> n-fold isotropic resolution improvement

Optimize the phase for each sub-aperture sequentially

Synthesize all the sub-apertures using pairs

Caltech biophotonics laboratory

Small NA -> low resolution

large NA -> high resolution

System setup

PM fiber: polarization maintaining fiber, DMD: digital micro-mirror device, L: lenses, M: Mirrors, HWP: half-wave plate, ND: neural density filter, BS: beam splitter, L: lens, BB: beam block, Obj: object, PMT: photomultiplier tube, and DAQ: data acquisition device.

Aperture synthesis - the "combining" strategy

Updating i-th sub-aperture Ref: m-th sub-aperture

Experiment results - improved distance-to-resolution ratio

a1 Scanned Image, raw b Focus obtained, Exp: 2ms c W/o Optimization, Exp: 80ms

Wall proxy: reflective ground glass diffuser

Distance between the wall and the hidden object : 0.55 m

Scanned Image, color edited 196 (14²) sub-apertures

d Image of the target

Resolution (FWHM): 0.58 mm

Distance-to-resolution ratio ~900 (In ToF, the number is around 100)

"T" is 97% weaker than the square

Imaging a hollow object

196 sub-apertures (14×14) were used

A square of side length ≈ 0.61 mm is illuminated when using the full aperture.

The focus was initially formed at the white asterisk *

Acknowledgement

Labmates who helped with this work

Frederic de Goumoens, Baptiste Blochet, Jian Xu

PI:

Changhuei Yang

Funding support:

This research is supported by Caltech Sensing to Intelligence (S2I) (Award Number: 13520296).

Caltech biophotonics laboratory