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GEOMETRIC LANGLANDS FOR HYPERGEOMETRIC SHEAVES

MASOUD KAMGARPOUR AND LINGFEI YI

Abstract. Generalised hypergeometric sheaves are rigid local systems on the punctured projective
line with remarkable properties. Their study originated in the seminal work of Riemann on the
Euler–Gauss hypergeometric function and has blossomed into an active field with connections to
many areas of mathematics. In this paper, we construct the Hecke eigensheaves whose eigenvalues
are the irreducible hypergeometric local systems, thus confirming a central conjecture of the geomet-
ric Langlands program for hypergeometrics. The key new concept is the notion of hypergeometric
automorphic data. We prove that this automorphic data is generically rigid (in the sense of Zhiwei
Yun) and identify the resulting Hecke eigenvalue with hypergeometric sheaves. The definition of
hypergeometric automorphic data in the tame case involves the mirabolic subgroup, while in the
wild case, semistable (but not necessarily stable) vectors coming from principal gradings intervene.
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1. Introduction

1.1. Overview. Let k be a field, X a smooth projective curve over k, and G a reductive group over
k(X) with Langlands dual group Ǧ. The goal of the geometric Langlands program is to establish
a duality between moduli of Ǧ-local systems on X and moduli of G-bundles on X [Lau87,BD97,
Fre04,Gai17,BZN18]. The following is a core conjecture of the field:

Conjecture 1. Let S ⊂ X be a finite set. For every irreducible Ǧ-local system E on X − S,
there exists a (non-zero) perverse sheaf A = AE on the moduli of G-bundles on X, equipped with
appropriate level structure on S, such that A is a Hecke eigensheaf with eigenvalue E.
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By a local system, we mean either a lisse ℓ-adic sheaf in characteristic p 6= ℓ or a flat connection in
characteristic zero, in which case perverse sheaves should be replaced with holonomic D-modules.
For recollections on the notion of ramified Hecke eigensheaves, see §5. Our main result is the
following:

Theorem 2. Conjecture 1 is true for all irreducible (generalised) hypergeometric local systems.

We refer the reader to §7 for a precise formulation. We prove this theorem by first constructing
a moduli stack of bundles with appropriate level structures on P1, and then proving that each
connected component of this stack supports a unique irreducible perverse sheaf satisfying a suitable
equivariance condition. Thus, we obtain a “rigid automorphic data” in the sense of [Yun14]. The
main theorem of op. cit. then implies that this perverse sheaf is a Hecke eigensheaf. Finally, we use
an explicit realisation of the relevant part of the Hecke stack to show that the resulting eigenvalue
is isomorphic to a hypergeometric local system.

In the rest of the introduction, we briefly review the notion of hypergeometric local systems and
discuss previous progress on Conjecture 1. We then give an outline of the proof of Theorem 2 and
indicate potential applications.

1.2. Hypergeometric local systems. Hypergeometric functions have a long and celebrated his-
tory, going back to the works of Wallis, Euler, Gauss, Kummer, and Riemann. They have found
applications to numerous areas such as the theory of special functions [AAR99], Lie theory [Koo84],
number theory [Zag18,Zud19], conformal field theory [Var03], integrable systems [Opd00], and mir-
ror symmetry [Hor99,ZZ08,CG11,LT17].

1.2.1. Local systems. The geometry underpinning hypergeometric functions emerged from Rie-
mann’s study of the local system of solutions of the Euler–Gauss hypergeometric differential equa-
tion. Using the remarkable properties of this local system, Riemann was able to give a conceptual
explanation for hypergeometric identities of Gauss and Kummer. Riemann’s investigation was a
stunning success largely because the hypergeometric local system is rigid, i.e., determined up to
isomorphism as soon as one knows the local monodromies at the singular points.

1.2.2. Hypergeometric sheaves. In the modern era, the subject of hypergeometric (and more gen-
erally rigid) local systems was rejuvenated in works of Katz [Kat88,Kat90,Kat96]. In particular,
Katz defined the ℓ-adic realisation of hypergeometric local systems as lisse sheaves over finite fields.
For brevity, we call these hypergeometric sheaves. Their Frobenius trace functions, known as finite
hypergeometric functions, were discovered independently by J. Greene [Gre87], and have found
applications in describing motives of elliptic curves and other varieties [Ono98,BCM15,DPVZ19].

1.2.3. Tame vs. wild. (Generalised) hypergeometric local systems come in two variants:

(i) The tame hypergeometric local systems are local systems on P1 − {0, 1,∞}, with tame
singularities at {0, 1,∞}, and pseudo-reflection monodromy at 1.

(ii) The wild hypergeometric local systems are local systems on P1 − {0,∞}, with a tame sin-
gularity at 0 and a wild singularity at ∞.

While the above terminology is standard in positive characteristics, in characteristic zero one
usually uses “regular singular” and “irregular” instead of tame and wild, respectively. We note
that hypergeometric local systems in characteristic zero arise from differential equations governing
the generalised hypergeometric functions pFq, cf. [Sla66].

1.2.4. Important examples of hypergeometric local systems.

(i) The celebrated Riemann local system governing the Euler–Gauss hypergeometric function

2F1 is a regular singular hypergeometric local system of rank 2.
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(ii) The Bessel local system, defined using the Bessel differential equation, is an irregular hy-
pergeometric local system of rank n and smallest possible slope, namely, 1

n ; see [XZ19] for
a recent treatment.

(iii) Deligne’s Kloosterman sheaf is a wild ℓ-adic hypergeometric local system of rank n and
smallest possible Swan break 1

n [Del77, Kat88]. This is the ℓ-adic analogue of the Bessel
local system.

(iv) Quantum cohomology of (2n − 1)-dimensional quadrics gives rise to a rank 2n irregular
hypergeometric local system of slope 1

2n−1 , cf. [GS15, §3.3], [PRW16]. For instance, for the
3-dimensional quadric, one obtains the connection

d+




0 1 0 0
0 0 1 0
t 0 0 1
0 t 0 0



dt

t
.

The last example, which was explained to us by Thomas Lam, illustrates that hypergeometric local
systems not of Riemann or Bessel type are also important in applications. This was one of our main
motivations for studying geometric Langlands duality for general hypergeometric local systems.

1.3. Geometric Langlands. Geometric Langlands program has its origins in Deligne’s elegant
proof of unramified geometric class field theory; cf. [Gui19] where Deligne’s approach is generalised
to the ramified case. In a groundbreaking paper [Dri83], Drinfeld generalised Deligne’s approach to
construct unramified automorphic forms for GL2. Subsequently, Laumon gave a conjectural gen-
eralisation of Drinfeld’s construction to GLn and formulated the unramified version of Conjecture
1, thus shifting focus to automorphic sheaves. Conjecture 1 for rank one local systems amounts
to geometric class field they (cf. [Ser88,Gui19]). For unramified local systems of arbitrary rank,
this conjecture was proved by Frenkel, Gaitsgory, and Vilonen over a finite field [FGV02] and by
Gaitsgory over an arbitrary field [Gai04]. In contrast, as detailed below, there has been sporadic
progress on Conjecture 1 for ramified local systems of rank bigger than one.

1.3.1. Ramified eigensheaves in positive characteristic.

(i) If E is a rank 2 tame unipotent local system (i.e., a tamely ramified local system with
unipotent monodromy), the corresponding Hecke eigensheaf was essentially constructed by
Drinfeld [Dri87].

(ii) If E is a tame unipotent local system of rank 3, the corresponding Hecke eigensheaf was
constructed by Heinloth [Hei04], who also gave a conjectural construction in higher ranks.

(iii) If E is a tame unipotent local system on P1 minus two points, then Conjecture 1 follows
from [AB09, Bez16], cf. [BZN18, Theorem 4.16]. This approach works for general split
reductive groups.

(iv) If E is a tame unipotent local system of rank 2 on P1 minus four points, then the corre-
sponding Hecke eigensheaf is discussed in [Bos19].

(v) If E is a (wild) Kloosterman sheaf of arbitrary rank, the corresponding Hecke eigensheaf
was constructed by Heinloth–Ngo–Yun [HNY13]. This approach works for all quasi-split
reductive groups and was further generalised by [Yun16] to epipelagic local systems.

(vi) In [Yun14], Yun constructs Hecke eigensheaves on P1 − {0, 1,∞} whose Hecke eigenvalues
are tamely ramified at 0, 1, and ∞, and used these eigenvalues to give a positive answer to
a question of Serre regarding existence of motives with exceptional monodromy.

(vii) If E is a (tame or wild) hypergeometric local system of rank 2, the corresponding Hecke
eigensheaf was constructed by Yun [Yun14].
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As far as we know, this summarises what is known about Conjecture 1 in positive characteristic.
In particular, we see that aside from the Kloosterman case, Conjecture 1 for (tame and wild)
hypergeometric sheaves of rank bigger than 2 was not previously treated in the literature.

1.3.2. Progress in characteristic zero. The above results also hold in characteristic zero; however,
there has been more progress in this setting because D-modules are better understood than ℓ-adic
sheaves:

(i) In [BD97], Beilinson and Drinfeld constructed unramified Hecke eigensheaves for simple
groups as quantum fibres of the Hitchin map. This approach relates Conjecture 1 to rep-
resentations of affine Kac–Moody algebras at the critical level, cf. [FG06,Fre08,FFTL10].
More recently, Zhu has shown that, under favourable conditions, the Beilinson–Drinfeld
machinery can be adapted to the ramified setting [Zhu17]. In practice, there are two major
obstacles for such adaptation:
(a) It is is not known if the quantum fibres of ramified Hitchin maps are non-zero, the

essential difficulty being our inability to determine the dimension of the ramified global
nilpotent cone. (This is, however, resolved in the tame unipotent case, cf. [Fal93,
BKV19].)

(b) Their machinery works with opers, which is a local system equipped with additional
data. While it is known that every local system has an oper structure [Ari16], it is
difficult to control the resulting singularities (this is the problem of “apparent singu-
larities”, cf. the introduction of [Kat96])

(ii) Beilinson and Drinfeld have a different conjectural construction of unramified Hecke eigen-
sheaves using chiral Hecke algebra. As far as we understand, this is still conjectural because
one does not know how to show that the resulting Hecke eigen D-modules are non-zero, cf.
[FBZ04, §20.5].

(iii) Beilinson and Drinfeld also proposed a categorical version of Conjecture 1 as, roughly
speaking, an equivalence between the category of Ǧ local systems on X and the category
of D-modules on BunG. For progress on the categorical correspondence, see [Ari01,AF12]
for G = GL2 on P1 minus 4 points, [AG15,Gai17] for arbitrary G and X in the unramified
setting, and [NY19] for G = GL2 on P1 minus 3 points, in the tame unipotent setting.

(iv) Donagi and Pontev [DP19] have constructed Hecke eigensheaves for tame unipotent rank 2
local systems on P1 minus five points using Langlands duality for the Hitchin system and
non-abelian Hodge theory [DP09,DP12].

(v) Kapustin and Witten interpreted the unramified geometric Langlands duality in the con-
text of four dimensional super Yang–Mills theories, relating Langlands duality to S-duality
[KW07]. This was generalised to the regular singular setting in [GW08] and the irregular
setting in [Wit08].

As far as we understand, Conjecture of 1 for general hypergeometric connections cannot be
proved using the aforementioned results.

1.4. Outline of our approach. Henceforth, we let G = GLn and X = P1 over a finite field k.
(We emphasise that no restrictions on the characteristic of k is necessary.) The proof of Theorem
2 proceeds as follows:

(a) To every rank n hypergeometric local system H , we associate a group scheme G over X that
is generically isomorphic to G. Following Thomas Lam, we think of G as the group scheme
“controlling” H . Let BunG denote the moduli stack of G-bundles on X. One can think of
BunG as a moduli of rank n vector bundles on X, equipped with certain level structures
at the ramification points. The technical part of the paper concerns giving a combinatorial
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description of BunG. This leads to an explicit description of the generic locus, i.e. the locus
where bundles have minimal automorphisms.

(c) The stack BunG will carry an action of a certain group scheme H, which is equipped with
a one-dimensional character sheaf C. Thus, we may speak of (H,C)-equivariant perverse
sheaves on BunG. The correct definition of G and (H,C) is one of the main contributions
of this paper and is explained further below. The most subtle part is how to define G and
(H,C) at x = 1 in the tame setting and at x = ∞ in the wild setting. Our choices are
motivated by the local Langlands correspondence and the local–global compatibility; see §7
for details. In particular, in the wild setting, the construction depends on the choice of a
functional coming from a principal grading of gln. This further solidifies the link between
the Vinberg theory and the Langlands program [GR10,HNY13, RY14, Yun16], though as
far as we understand, it is the first time that semistable functionals which are not stable
play a central role.1

(d) The main “rigidity result” of the paper states that (up to local systems coming from the
base field k) there exists a unique (H,C)-equivariant irreducible perverse sheaf A on each
connected component of BunG. This is proved by showing that the only orbits that are
“relevant”, i.e. support (H,C)-equivariant sheaves, are the generic orbits (i.e., the orbits
with minimal automorphisms). The proof of this fact in the tame setting is modelled on
[Yun14, Theorem 2.4.2]. The proof in the wild setting is significantly more complicated
than [HNY13, Lemma 2.3] (which treats the Kloosterman case), because the level struc-
ture at ∞ in our case is more intricate and the relevant orbit is not the trivial bundle.2

One of the ingredients of the proof (which may be new and of independent interest) is a
representation-theoretic characterisation of barycentres of facets in the standard apartment;
see the appendix for details.

(e) A key result of [Yun14] implies that A is a “weak Hecke eigensheaf”. Roughly speaking,
this means that A is a Hecke eigensheaf on each connected component of BunG. We use an
argument of [HNY13] to show that connected components are isomorphic; thus, we actually
have a genuine Hecke eigensheaf.

(f) Finally, following the example of [HNY13, §3], we compute the relevant part of the Hecke
correspondence explicitly to obtain an expression for the Hecke eigenvalue E . By comparing
the Frobenius trace functions of E and H , we conclude that E is geometrically (i.e. over
k) isomorphic to H , thus establishing Theorem 2.

1.4.1. Rigid automorphic data. In the main body of the text, we use the language of rigid auto-
morphic data. The notion of rigidity for automorphic representations was developed by Z. Yun,
building on earlier works of Heinloth, Ngo, and Yun [HNY13,Yun14,Yun14,Yun16]. One of Yun’s
main results is that whenever one has a rigid automorphic data satisfying appropriate properties,
one obtains a Hecke eigensheaf. Furthermore, the resulting Hecke eigenvalue is expected to be rigid.
Conversely, it is expected that whenever one has a rigid local system E, there exists a rigid auto-
morphic data giving rise to a Hecke eigensheaf A with eigenvalue E. We confirm this expectation
for irreducible hypergeometric local systems of arbitrary rank.

1.5. The group schemes G and H. We now give a description of the group schemes G and H,
referring the reader to §7 for more details.

1Konstantin Jakob informs us that he and Yun have also encountered this phenomena [JY20].
2This is because the bundle in Bun0

G whose automorphism has minimal dimension is not trivial; see §10.2.
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1.5.1. Tame setting. Let H be a tame rank n hypergeometric local system on P1 − {0, 1,∞} with
pseudo-reflection monodromy at x = 1. We define the group scheme G controlling H by

(1) G(Ox) =





Iopp(1) x = 0;

Q x = 1;

I(1) x = ∞;

G(Ox) otherwise.

Here I is the Iwahori and I(1) is its first Moy–Prasad subgroup (equivalently, the pro-unipotent
radical). The group Q is defined to be the preimage of Q under reduction map G(O1) → G(k),
where Q ⊂ G is the mirabolic subgroup, i.e.,

Q :=

(
GLn−1 ∗

0 1

)
.

The group H is defined by

H := Iopp/Iopp(1) × I/I(1) ≃ T × T ≃ Gn
m ×Gn

m

If n = 2, the group schemes G and H coincide with the ones constructed in [Yun14, §2.8.5].

1.5.2. Wild setting. Let H be a rank n hypergeometric local system on P1 − {0,∞} with a wild
singularity at ∞ of highest break 1

d where 1 ≤ d ≤ n. Let P be the parahoric group associated to
ρ̌/d, where ρ̌ is the half-sum of positive coroots. Let P (j) be the jth Moy–Prasad subgroup of P .
We define the group scheme G controlling H by

(2) G(Ox) ≃





Iopp(1) x = 0;

P (2) x = ∞;

G(Ox) otherwise.

The construction of the group H depends on the choice of an appropriate semistable linear func-
tional φ on P (1)/P (2); see (17) for the definition of this functional. Recall that the reductive
quotient P/P (1) acts on the vector space P (1)/P (2) and therefore also on the dual space. Let Bφ
be a Borel subgroup of the stabiliser of φ in P/P (1). Then

H := (Iopp/Iopp(1)) × (Bφ ⋉ P (1)/P (2)).

See §7.2 for more details. Note that if d = n (so that H is the Kloosterman sheaf), P is the
Iwahori, and the functional φ can be any “generic functional” in the sense of [HNY13, §1.3]. In
this case, the stabiliser of φ is the centre; thus, H = Iopp/Iopp(1) × I(1)/I(2), in agreement with
op. cit.. We note that this is the only case when φ is stable. (Indeed, n is the only elliptic number
of gln).

1.6. Hecke realisations of hypergeometrics. Our main results can be interpreted as giving a
new realisation of hypergeometric local systems, namely, a realisation via Hecke correspondences.
We explain what this means in the tame and wild setting.

1.6.1. Tame setting. The “relevant part” of the Hecke correspondence (see (12)) is given by restric-
tion to P1 − {0, 1,∞} of the diagram

(3)

(Gm − {1})n

G2n
m P1 − {0,∞},

π1 π2

6



where

π2(y1, ..., yn) =

n∏

i=1

(yi − 1)/yi,

and

π1(y1, ..., yn) = ((1 − y1)
−1, ..., (1 − yn)

−1,−y−1
1 , y−1

2 , ..., y−1
n−1,−y

−1
n ).

The Hecke eigenvalue is then given by

(4) E = π2,!π
∗
1L[n− 1],

where L is a character sheaf defined using the hypergeometric data. As we shall see, E is actually
a tame hypergeometric local system.

1.6.2. Wild setting. In the wild case, the relevant part of the Hecke correspondence (see (12) and
Proposition 25) is given by the following diagram

Gd
m × (Gm − {1})n−d

Gn
m ×Gn−d

m ×Ga P1 − {0,∞}.

The description of the maps here are more complicated and involve the combinatorics of the nor-
malised Kac coordinate of ρ̌/d; see §11 for details. If n = d and the map Gn

m → Gn
m is the identity,

we recover the Deligne correspondence defining the Kloosterman sheaf [Del77].

1.7. Potential applications.

1.7.1. Mirror symmetry. Our motivation for studying Langlands duality for hypergeometric local
systems comes from mirror symmetry. Building on [PRW16], Lam and Templier [LT17] noted
that Bessel local systems are closely related to quantum connections of minuscule flag varieties
and used geometric Langlands duality to settle mirror symmetry for these varieties. Subsequently,
Thomas Lam noted that the quantum connection of smooth odd quadrics are closely related to
certain hypergeometric local systems not of Bessel type. He asked what Langlands duality for these
connections look like. The present paper is an attempt to answer his question. We hope that our
solution has applications to mirror symmetry for smooth quadrics.

1.7.2. Hypergeometric automorphic representations. While our focus has been the geometric Lang-
lands program, this work also has implications for the classical Langlands correspondence. Namely,
recall that the global Langlands correspondence for functions fields, proved by L. Lafforgue [Laf02],
establishes a bijection between irreducible rank n local systems on X − S and irreducible cuspidal
automorphic representations of GLn. We call a cuspidal automorphic representation hypergeometric
if it is mapped to a hypergeometric local system under the Langlands correspondence. Lafforgue’s
bijection is not explicit; thus, a priori, it is not known what hypergeometric automorphic represen-
tations look like. Our work make these representation more explicit. Indeed, taking the Frobenius
trace function of hypergeometric Hecke eigensheaves (which are explicitly constructed in this paper),
one obtain the Hecke eigenform of hypergeometric automorphic representations. In [Gro11], Gross
gave a characterisation of the Kloosterman automorphic representation as the unique automorphic
representation which is unramified on P1 −{0,∞}, Steinberg at 0, and simple supercuspidal at ∞.
(A simple proof of Gross’s result is given [HNY13, Lemma 2.1].) The analogous characterisation
of hypergeometric automorphic representations is discussed in §7.
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1.7.3. Hypergeometric motives. Using the notion of convolution, Katz constructed hypergeometric
motives over the ring of integers R of appropriate number fields [Kat90, §8.17]. These motives are
lisse ℓ-adic sheaves appearing in the cohomology of certain schemes over R. Specialising to a finite
field (resp. complex numbers), one obtains the tame ℓ-adic (resp. complex) hypergeometric local
systems.3 It is tempting to conjecture that the expression (4) gives an alternative realisation of
hypergeometric motives. We are currently unable to prove this conjecture because the key notion
used in [Kat90], namely Deligne’s theorem on semi-continuity of the Swan conductor, applies only
to schemes of relative dimension one (the map p has relative dimension n−1). In another direction,
Yun has used Langlands duality for Kloosterman sheaves to prove conjectures of Evans regarding
moments of Kloosterman sums [Yun15]. We hope that our work has implications for understanding
moments of general hypergeometric sums.

1.7.4. Hypergeometric sheaves for reductive groups. One of the main achievements of [HNY13,
Yun14, Yun14, Yun16] is that they constructed rigid automorphic data for general (quasi-split)
reductive groups and used this to define local systems with remarkable properties, e.g. having
exceptional monodromy. Preliminary computations show that there is also a reductive analogue of
general hypergeometric local systems. This is the subject of our work in progress.

1.7.5. Beyond the ℓ-adic setting. We state and prove our main results for ℓ-adic hypergeometric
local systems in positive characteristic. However, after appropriate modifications, our results also
apply to hypergeometric local systems in characteristic zero. The p-adic companion (cf.[Abe18,
Ked18]) of the hypergeometric sheaves are known as hypergeometric (overconvergent) F-isocrystals
and have been studied by, e.g., Miyatani [Miy16]. Thanks to the recent work of Xu and Zhu on the
p-adic geometric Langlands program [XZ19], our results can also be adapted to construct Hecke
eigensheaves for hypergeometric F -isocrystals.

1.8. Structure of the text.

1.8.1. Sections 2–5 are preliminaries and we recommend the reader skips them on the first go. In
§2, we set the notation (which is mostly standard). In §3, we review Katz’s theory of ℓ-adic hyper-
geometric local systems. In §4, we discuss the notion of an integral model, which is a convenient
tool for discussing ramifications in the geometric Langlands program. In §5, we explain what one
means by a ramified Hecke eigensheaf. In §6, we give a simplified account of Yun’s notion of rigid
automorphic data.

1.8.2. Sections 7–11 contain the main results and their proofs. The main definitions and theorems
appear in §7. Rigidity of hypergeometric automorphic data is proved in §8 (resp. §10) for the tame
(resp. wild) case. Determination of Hecke eigenvalue is achieved in §9 (resp. §11) for the tame
(resp. wild) case. Finally, we gather some results about inner principal gradings in the appendix.

1.9. Acknowledgement. This paper fulfils a part of the vision of Zhiwei Yun for the role of rigidity
in the geometric Langlands program. Our intellectual debt to the work of Yun and collaborators is
obvious [HNY13,Yun14,Yun14,Yun16]. As noted above, this project was initiated in response to
a question by Thomas Lam. We would like to thank him for raising this penetrating question and
for many subsequent illuminating discussions. We would also like to thank Dima Arinkin, David
Ben-Zvi, Jochen Heinloth, Konstantin Jakob, Paul Levy, Will Sawin, Ole Warnaar, Daxin Xu,
Zhiwei Yun, Xinwen Zhu, and Wadim Zudilin for helpful discussions. MK would like to especially
thank Dan Sage for collaborations on rigid connections ([KS19a, KS19b]) and for teaching him
about parahorics and Moy–Prasad subgroups. MK has been supported by two Australian Research
Council Discovery Projects. LY has been supported by a CalTech Graduate Student Fellowship.

3Wild hypergeometrics should also be motivic in the sense of [FJ20].
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2. Notation

In this section, we define the notation used in the rest of the article. Our notation is mostly
standard, so the reader is encouraged to skip this section, referring to it when necessary.

2.1. Geometric data. Let k be a finite field and k an algebraic closure of k. Let ℓ be a prime
different from the characteristic of k. We frequently abuse notation and use the same letter to refer
to a (ind-)scheme and its k-points. If Y is an object over k, we sometimes write Y for Y ⊗k k. If
Y is an Artin stack over k, we let Db(Y ) denote the derived category of Qℓ-adic sheaves on Y and
Perv(Y ) the subcategory of perverse sheaves.

2.1.1. Let X = P1 be the projective line over k, t a local coordinate at 0, and s = t−1 a local
coordinate at ∞. Let F = k(t) = k(s) denote the function field of X. For each x ∈ X, let Ox be the
completed local ring at x , Fx its field of fractions, and tx a uniformiser. Let A := AF = ⊗′

x∈XFx
denote the ring of adeles and OA := ⊗x∈XOx its ring of integers. The set of closed points of X is
usually denoted by |X|; however, we abuse notation and denote this set by X as well.

2.2. Group-theoretic data. We note that many of our constructions work for general reductive
groups; however, for simplicity, we assume throughout that G = GLn. Thus, the Langlands dual Ǧ
is also GLn. We prefer to use the notation G and Ǧ because this reminds us which side of Langlands
duality we are referring to. Let Z(G) and Z(Ǧ) denote the centre of G and Ǧ, respectively. Denote
the Lie algebra of G by g = gln.

2.2.1. Let T and B be the subgroups of diagonal and upper triangular matrices, respectively. Let
W ≃ Sn denote the Weyl group. Let X∗(T ) := Hom(Gm, T ) and X∗(T ) := Hom(T,Gm) denote
the set of cocharacters and characters, respectively. Let A := X∗(T ) ⊗ R denote the standard
apartment and AQ := X∗(T )⊗Q the rational apartment. We write t = diag(t1, ..., tn) for elements
of T ≃ (k×)n and define subgroups Tj ⊆ T by

(5) Tj := {t = diag(1, ..., 1, tj , 1, ..., 1) | tj ∈ k×}.

2.2.2. Let Φ = Φ(G) denote the root system of G. Then Φ = {αij} where i and j run over all
pairs of non-equal integers in {1, 2, ..., n} and αij is the root whose root subspace is generated by
Eij . If α = αij, we sometimes write Eα for Eij . Let E∗

ij denote the functional on g defined by

E∗
ij(A) := aij for A = (aij) ∈ g.

2.2.3. Let ρ̌ denote the half sum of positive coroots. Thus,

ρ̌ =
1

2
diag(n − 1, n − 3, ...,−(n − 3),−(n − 1)).

Let αi := αi,i+1. Then ∆ = ∆(G) = {α1, ..., αn−1} is the set of standard simple roots for G. We

write ht(α) = 〈α, ρ̌〉 for the height of a root α. The highest root is then θ :=
∑n−1

i=1 αi. For each
α ∈ Φ, we let Uα ⊂ G denote the corresponding one parameter unipotent subgroup. For a subgroup
H ⊆ G, we write Φ(H) for the subset of roots α ∈ Φ(G) satisfying Uα ⊆ H.

2.2.4. At various places in §8 and §10, we use exponentials of nilpotent matrices. In fact, all
exponentials that appear are of the form exp(X) = I+X. Thus, no restriction on the characteristic
of the base field k is required.

2.3. Loop group. For each x ∈ X, let G(Fx) (res. G(Ox)) be the loop group (resp. the positive
loop group). Let g(Fx) and g(Ox) denote the corresponding loop algebras. Let Φaff denote the
set of affine roots. Each affine root α̃ can be written as a sum α +m where α ∈ Φ and m ∈ Z.
The corresponding one-parameter subgroup is Uα̃ = Uα(t

m
x ). Let ∆aff = ∆aff(G) = {α0 = 1 −

θ, α1, ..., αn−1} denote the set of standard simple affine roots.
9



2.3.1. Let W̃ denote the Iwahori-Weyl group defined by

W̃ := NG(Fx)(T (Fx))/T (Ox).

We have an inclusion X∗(T ) →֒ G(Fx), given by the map λ = (λ1, ..., λn) 7→ diag(tλ1x , ..., t
λn
x ). This

gives rise to an exact sequence

1 → X∗(T ) → W̃ →W → 1.

Permutation matrices give a section of the above short exact sequence, resulting in an isomorphism

W̃ ≃W ⋉X∗(T ), cf. [HR08, Proposition 13].

2.3.2. Let Ω denote the stabiliser in W̃ of an alcove. As explained in Lemma 14 of op. cit, we
have a short exact sequence

1 →W aff → W̃ → X∗(Z(Ǧ)) → 1,

whereW aff is the affine Weyl group. The group Ω ⊂ W̃ maps isomorphically to X∗(Z(Ǧ)), leading
to the semi-direct product decomposition

W̃ ≃W aff ⋊ Ω.

For GLn, we have a natural inclusion Ω →֒ G(Fx); moreover, the composition

(6) Ω →֒ G(Fx)
det
−→ F×

x
ord
−→ Z

is an isomorphism. Let w̃1 ∈ Ω denote the preimage of 1 under this isomorphism.

3. Hypergeometrics sheaves

In this section, we recall the definition and some properties of ℓ-adic hypergeometric local systems,
which for brevity, are called hypergeometric sheaves. We do not discuss the monodromy group of
hypergeometric sheaves, as they are not used in the text. For further details, see [Kat90].

3.1. The definition of hypergeometric sheaves.

3.1.1. Convolution. Let Gm denote the multiplicative group Spec(k[t, t−1]), µ : Gm × Gm → Gm

the multiplication, and ι : Gm → Gm the inversion map. The convolution (with compact support)
is the functor

⋆ : Db(Gm)×Db(Gm) → Db(Gm), F ⋆ G := µ!(F ⊠ G).

3.1.2. Initial data. To talk about hypergeometrics, we need an initial data consisting of

• a pair of non-negative integers (n,m) 6= (0, 0);

• a nontrivial additive character ψ : k → Q
×
ℓ ;

• multiplicative characters k× → Q
×
ℓ denoted by χ1, ...χn and ρ1, ..., ρm.

Let ψ, χi, ρj denote the inverse characters. Let Lψ, Lχi
, and Lρj denote the ℓ-adic local systems

on Gm whose Frobenius trace functions are ψ, χi, and ρj , respectively

3.1.3. To the above initial data, Katz [Kat90, §8.2] associated the (generalised) hypergeometric
sheaf H = H (ψ,χ1, ..., χn, ρ1, ..., ρm) as follows:

H := H (ψ,χ1,∅) ⋆ · · · ⋆H (ψ,χn,∅) ⋆H (ψ,∅, ρ1) ⋆ · · · ⋆H (ψ,∅, ρm)[n+m− 1],

where
H (ψ,χi,∅) := Lψ ⊗ Lχi

, and H (ψ,∅, ρj) := ι∗(Lψ ⊗ Lρj).

As noted in [Kat90, §8.2], ι∗H (ψ,χ1, ..., χn; ρ1, ..., ρm) ≃ H (ψ, ρ1, ..., ρm, χ1, ..., χn). Thus, with-
out the loss of generality, we may (and do) assume that m ≤ n.
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3.1.4. Kloosterman sheaves. For m = 0, the hypergeometric sheaf H (ψ,χ1, ..., χn;∅) is nothing
but the generalised Kloosterman sheaf [Kat88]. When χi = 1 for all i, we recover Deligne’s
Kloosterman sheaf [Del77].

3.1.5. Finite hypergeometric functions. Let H = H (ψ,χ1, ..., χn, ρ1, ..., ρm) be a hypergeometric
sheaf. Let trH : k× → Qℓ denote its Frobenius trace function. As noted in [Kat90, §8.2.7], for
every a ∈ k×, we have

trH (a) = (−1)n+m−1
∑

x1···xn=ay1···ym

ψ(

n∑

i=1

xi −
m∑

i=1

yi)

n∏

i=1

χi(xi)

m∏

i=1

ρi(y
−1
i ).

The function trH : k → Qℓ is known as a finite hypergeometric function.

3.1.6. Alternative realisation. The above explicit expression for the trace function allows one to
give an alternative realisation of hypergeometric sheaves. Namely, consider the correspondence

Gn
m ×Gm

m

Ga ×Gn
m ×Gm

m Gm,

p q

where

q(x1, ..., xn, y1, ..., ym) := (x1...xn)(y1...ym)
−1,

and

p(x1, ..., xn, y1, ..., ym) := (

n∑

i=1

xi −
m∑

j=1

yj, x1, ..., xn, y
−1
1 , ..., y−1

m ).

Let

F := q!p
∗(Lψ ⊠ Lχ1

⊠ · · ·⊠ Lχn ⊠ Lρ1 ⊠ · · ·⊠ Lρm)[n+m− 1].

Using induction on m and n, one can show that H ≃ F . Alternatively, we can establish this
isomorphism as follows. The ℓ-adic complexes H and F have the same Frobenius trace function;
thus, their classes in the Grothendieck group coincide. We will see below that if χi 6= ρj, then H

is actually a simple local system. This gives another proof that H ≃ F , under the assumption
that χi 6= ρj .

3.1.7. Algebraically closed base field. Instead of working over a finite field, we can work over an
algebraically closed field K of positive characteristic [Kat90, §8.3]. Namely, for a finite subfield
k ⊂ K, we can speak of the Artin–Schrier sheaf Lψ on A1 ⊗kK. Moreover, for any tame character
χ of π1(Gm ⊗k K), we can speak of the Kummer sheaf Lχ on Gm ⊗k K. We then define the
hypergeometric sheaf H (ψ,χ1, ..., χn, ρ1, ..., ρm) exactly as above. If χ’s and ρ’s are all of finite
order, say defined over k, then these objects are just the base change to K of the earlier defined
objects on k. If m = n, then one can show that the resulting sheaf on K is independent of ψ. This
leads to a motivic description of tame hypergeometric sheaves [Kat90, §8.17].

3.2. Basic properties. To avoid repeated mention of local systems coming from the base field, in
this subsection we assume that we are working over an algebraically closed field. We say that χi’s
and ρj’s are disjoint if χi 6= ρj for all i and j. It follows from [Kat90, Theorem 8.4.5 and Corollary
8.4.10.1] that the complex H [1] is perverse. Moreover, it is irreducible if and only if χi’s and ρj ’s
are disjoint.
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3.2.1. Tame case. Suppose m = n and χi 6= ρj for all i, j. According to [Kat90, Theorem 8.4.2],
the sheaf H is lisse on Gm − {1} with tame ramification at 0, 1, and ∞. As a representation of
the inertia group I(0), it is isomorphic to

⊕

distinct χ’s

Lχ ⊗Unip(mult(χ)),

where Unip(mult(χ)) denotes the Jordan block of size multiplicity of χ. As an I(∞)-representation,
it is isomorphic to ⊕

distinct ρ’s

Lρ ⊗Unip(mult(ρ)).

Finally, I(1) acts as a pseudo-reflection with determinant [x 7→ x−1]∗LΛ, where Λ :=
∏
j ρj/

∏
i χi.

3.2.2. Wild case. Suppose m < n and χi 6= ρj for all i, j. According to [Kat90, Theorem 8.4.2], H

is lisse on Gm with tame ramification at 0 and wild ramification at ∞. As an I(0)-representation
its description is exactly as in the tame case. As an I(∞)-representation it has Swan conductor 1
and is isomorphic to the direct sum

W ⊕
⊕

distinct ρ’s

Lρ ⊗Unip(mult(ρ)),

where W is an (n − m)-dimensional wild local system with a single break 1/(n −m). The local
rigidity theorem [Kat90, Theorems 8.6.3 and 8.6.4], implies that W is isomorphic to a generalised
Kloosterman sheaf. (For the de Rham version of the local rigidity theorem, cf. [KS19a, Theorem
5].)

3.2.3. Rigidity. Let S be a finite subset of P1 over an algebraically closed field. A local system
E on P1 − S is said to be rigid if E is completely determined by the collection of representations
of the inertia groups I(x), x ∈ S. According to [Kat90, §8.5], if χi 6= ρj for all i and j, then
the hypergeometric sheaf H (ψ;χ1, ..., χn; ρ1, ..., ρm) is rigid. This result is the key conceptual
motivation for our approach to constructing hypergeometric Hecke eigensheaves.

4. Integral Models

The notion of integral model is a convenient tool for studying ramifications in the geometric
Langlands program. In this section, we review some basic facts about them. For notational
convenience, we continue to assume that G = GLn and X = P1. For the case of arbitrary reductive
groups over general smooth projective curves, see, e.g., [Yun14,Yu15].

4.1. Definition of integral models. An integral model for G over X is a smooth affine group
scheme G over X together with an isomorphism G|Spec(F ) ≃ G. A point x ∈ X is called unramified
if G(Ox) ≃ G(Ox); otherwise, x is ramified. Ramified points form a finite set S ⊂ |X|. We assume
throughout that for each x ∈ S, G(Ox) is a pro-algebraic subgroup of finite codimension in a
parahoric Px ⊂ G(Fx).

4.1.1. Construction from local data. If one is given a finite set S ⊂ |X| and for each x ∈ S, a
pro-algebraic group Kx of finite codimension in some parahoric, then one can construct an integral
model G satisfying

G(Ox) ≃

{
G(Ox) x ∈ X − S;

Kx x ∈ S.

We refer the reader to [Yu15] for a construction of such integral models in the framework of the
Bruhat–Tits theory. Note that Yu constructs the integral models in the local setting. The fact
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that they can be glued to define a group scheme over X follows from the lemma of Beauville and
Laszlo [BL95]; see also [CGP12, Lemma 3.18].

4.2. Moduli of G-bundles. Let G be an integral model as above. Let BunG be the moduli stack
of G-bundles. If G(Ox) ⊆ G(Ox) for all x ∈ S, then we can think of a G-bundle as a rank n-vector
bundle equipped with extra data (such as flags, framings, etc.) at S. Note that as we have assumed
G = GLn, all parahorics are conjugate to a subgroup of G(Ox). Thus, we may (and do) assume
that G(Ox) ⊆ G(Ox) for all x. (We shall see in the example of wild hypergeometrics, however, that
it is convenient to allow parahorics not a priori in G(Ox).)

4.2.1. Dimension. Let Bunn := BunGLn
denote the moduli stack of rank n vector bundles on X.

We have a forgetful map BunG → Bunn which is a locally trivial
∏
x∈S G(Ox)/G(Ox)-fibration.

Thus, BunG is smooth and

(7) dim(BunG) = dim(Bunn) +
∑

x∈S

dim(G(Ox)/G(Ox)) = − dim(G) +
∑

x∈S

dim(G(Ox)/G(Ox)).

4.2.2. Generic locus. For every E ∈ BunG, AutG(E) is an algebraic group. The map BunG → Z≥0

defined by E 7→ dim(AutG(E)) is upper semi-continuous; therefore, the substack of BunG consisting
of bundles of minimal dimension is open. We call this the generic locus of BunG.

4.2.3. Uniformisation. Weil’s adelic uniformisation (cf. [Yun14, §2.4]) states that we have a canon-
ical bijection

BunG(k) ≃ G(F )\G(AF )/G(OA).

In favourable situations, we also have “one-point uniformisation”. For instance, it is proved in
[Hei10] that we have one-point uniformisation whenever G is an integral model for a semisimple
group over an arbitrary curve. A more relevant case for us is when G = GLn, X = P1, S = {0,∞},
G(O0) = P opp and G(O∞) = P , where P is a parahoric and P opp is its opposite. Then, one can
show that every G-bundle on P1 −∞ is trivial; thus,

BunG(k) = P−\G(F∞)/P,

where P− = P opp ∩G(k[s, s−1]), cf. [HNY13, Proposition 1.1] or [Yun16, §2.12].

4.3. Connected components of BunG.

4.3.1. Kottwitz homomorphism. Let κ : BunG → X∗(Z(Ǧ)) ≃ Z denote the Kottwitz homomor-
phism, cf. [Yun14, §2]. Using adelic uniformisation, we can identify κ (on the level of k-points)
with the composition

(8) G(AF )
det
−→ A×

F

deg
−→ Z.

If we view G-bundles as vector bundles equipped with additional data, then κ coincides with taking
the degree of the underlying vector bundles.

4.3.2. Connected components. The map κ factors through BunG → Bunn, which, as noted above,
is a fibration with connected fibres. Thus, κ induces an isomorphism π0(BunG) ≃ π0(Bunn) ≃ Z.

For each α ∈ Z, we let BunαG denote the corresponding connected component and ˚BunαG its generic
locus.

Remark 3. In §2.3.2, we fixed an isomorphism Ω ≃ Z and a generator w̃1 ∈ Ω which maps to 1
under this isomorphism. Thus, we can also use Ω to parameterise connected components of BunG.
In this language, BunαG is the component corresponding to w̃α1 .
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4.3.3. Identification of components. The integral models of interest to us satisfy the property that
for some x ∈ X, we have G(Ox) = I(j), where the latter is the jth Moy–Prasad subgroup of the
standard Iwahori. This allows us to identify the components of BunG (cf. [HNY13, Corollary 1.2]).
Indeed, Ω = N

W̃
(I) acts on I(j); thus, it also acts on BunG by changing the level structure at x.

With respect to the Kottwitz homomorphism, this action satisfies

κ(w̃1 · E) = κ(E) + 1,

It follows that for each α ∈ Z, the map E 7→ w̃α1 · E defines an isomorphism

(9) Hkα : Bun0G ≃ BunαG .

These isomorphisms will play an important role in the construction of hypergeometric Hecke eigen-
sheaves.

4.3.4. Integral model for the centre. The integral model G defines an integral model Z for the centre
Z = Z(G) ≃ Gm; namely,

Z(Ox) := G(Ox) ∩ Z(Fx).

In the examples of interest to us, Z is unramified everywhere except possibly at one point x ∈ X;
moreover, at this point, Z(Ox) is either O

×
x or 1 + Px. In both cases, the identification

Bun0Z(k) = k
×
\(Ox ⊗k k)

×/Z(Ox ⊗k k)

implies that (the set of isomorphism classes of) Bun0Z(k) is a point. Thus, the coarse moduli space
of Bun0Z is also a point. When constructing hypergeometric Hecke eigensheaf, this fact allows us to
bypass some of the technical aspects of [Yun14].

5. Ramified Hecke eigensheaves

In this section, we explain what one means by a Hecke eigensheaf on BunG, where G is an
integral model for G over X, cf. [HNY13, Yun14]. We continue to assume that G = GLn and
X = P1, though except for §5.3, the discussions apply verbatim to split reductive groups over
smooth projective curves.

5.1. Geometric Hecke operators.

5.1.1. Hecke stack. The stack of Hecke modifications is defined as

Hecke = HeckeG := {(E1,E2, x, φ) | E1, E2 ∈ BunG, x ∈ (X − S), φ : E1|X−x ≃ E2|X−x}.

We have forgetful functors pr1 and pr2 mapping (E1,E2, x, φ) to E1 and (E2, x), respectively. Thus,
we obtain the Hecke correspondence

(10)

Hecke

BunG BunG × (X − S)

pr1 pr2

The morphism pr2 is a locally trivial fibration whose fibres are isomorphic to the affine Grass-
mannian Gr = GrG. The morphism pr1 is a locally trivial fibration whose fibres are isomorphic to
the Beilinson–Drinfeld Grassmanian GR = GRG.

5.1.2. Let Ǧ denote the Langlands dual group. The geometric Satake isomorphism [Gin95,BD97,
MV07] associates to every representation V of Ǧ a perverse sheaf ICV on Gr, and therefore also on
GR and Hecke. For each V ∈ Rep(Ǧ), we let GrV ⊆ Gr, GRV ⊆ GR, and HeckeV ⊆ Hecke denote
the support of these perverse sheaves.
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5.1.3. The geometric Hecke operators are defined by

Hk : Rep(Ǧ)×Db(BunG) → Db(BunG × (X − S))

(V,E) 7→ HkV (E) := pr2,!(pr
∗
1E⊗ ICV ).

Alternatively, we can first restrict the above correspondence to HeckeV and then define HkV by the
same formula (where now pri are morphisms from HeckeV ).

5.2. Eigensheaves.

5.2.1. Definition of Hecke eigensheaves. A non-zero perverse sheaf A on BunG is called an eigen-
sheaf if there exists a Ǧ-local system E on X − S, viewed as a tensor functor

Rep(Ǧ) → LocSys(X − S), V 7→ EV ,

and coherent isomorphisms HkV (A ) ≃ A ⊠ EV . Here, “coherent” means compatible with the
tensor structure of Rep(Ǧ) and the composition of Hecke operators, cf. [Gai07, §2] for details. The
local system E is known as the Hecke eigenvalue of A .

5.2.2. Reformulation of the core conjecture. In the present framework, Conjecture 1 can be phrased
as follows: for every irreducible Ǧ-local system E on X − S, there exists an integral model G for
G on X, with ramification points S, and a Hecke eigensheaf A on BunG whose eigenvalue is E.
In the cases of interest to us (i.e. the rigid situation), the perverse sheaf A satisfies a cleanness
property. We now recall what one means by a clean perverse sheaf.

5.2.3. Cleanness. Let Y be an Artin stack of dimension d and j : U →֒ Y the inclusion of a non-
empty open smooth substack. Let L be a local system on U and P := L[d] ∈ Perv(U). Then, we
have a canonical morphism

(11) j!P → j∗P

in Db(Y ), which induces a morphism pH0(j!P) →
pH0(j∗P) in Perv(Y ) whose image is denoted by

j!∗P. One says that j!∗P is clean if the morphism (11) is an isomorphism. In this case, we obtain
isomorphisms j!P ≃ j!∗P ≃ j∗P. In particular, the stalks and costalks of j!∗P on Y − U vanish.

5.3. Hecke eigenvalue. Let A be a Hecke eigensheaf on BunG with Hecke eigenvalue E. For

every α ∈ Z = π0(BunG), let jα : ˚BunαG →֒ BunαG denote the open inclusion of the generic locus. Let
Aα denote the restriction of A to the component BunαG . In this subsection, we give a convenient
expression for E under the assumption that Aα is a clean extension of a rank one local system
Lα on the generic locus, i.e. we assume Aα ≃ jα,!Lα[dim(BunαG)] ≃ jα,∗Lα[dim(BunαG)]. For
convenience, we also assume all the components BunαG have the same dimension. As we shall see,
these assumptions are satisfied in the hypergeometric (and, more generally, rigid) case.

5.3.1. Restricting to the fundamental coweight. As we are dealing with Ǧ = GLn, to specify E,
it is sufficient to consider the standard representation and describe EStd. Let ω1 = (1, 0, ..., 0) be
the first fundamental coweight. Restricting the Hecke correspondence to the substack Heckeω1

, we
obtain the diagram

Heckeω1

Bun0G Bun1G × (X − S).

pr1 pr2

The morphism pr2 is a locally trivial fibration whose fibres are isomorphic to

Grω1
= G/Pω1

≃ Pn−1,
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where Pω1
is the maximal parabolic associated to ω1. Thus, up to a Tate twist, ICω1

= Qℓ[n − 1]
and the Hecke eigen property gives us an isomorphism

A1 ⊠ EStd ≃ pr2,!(pr
∗
1A0 ⊗ ICω1

) = pr2,!pr
∗
1A0[n− 1].

5.3.2. Restricting to the generic locus of Bun1G. Let ⋆ be a point in the generic locus ˚Bun1G. Re-
stricting the above isomorphism to ⋆× (X − S), we obtain an isomorphism

EStd[dim(BunG)] ≃ (pr2,!pr
∗
1A0[n− 1])|⋆×(X−S).

Alternatively, we can express EStd as follows. If we restrict the above correspondence to ⋆×(X−S),
we obtain the diagram

GRω1

Bun0G X − S.

p1 p2

where p1, p2 are the restrictions of pr1,pr2. Applying proper base change, we get

EStd ≃ p2,!p
∗
1A0[n− 1− dim(BunG)].

5.3.3. Restricting to the generic locus of Bun0G. Recall that the cleanness assumption means that

A0 is the extension by zero from a local system L0 on the generic locus ˚Bun0G, shifted by degree

dim(BunG). Now restricting the above correspondence to ˚Bun0G, we obtain

(12)

G̊Rω1

˚Bun0G X − S.

π1 π2

where π1, π2 are the restrictions of p1, p2. Applying proper base change again, we conclude

(13) EStd ≃ π2!π
∗
1L0[n− 1].

5.3.4. When A is a Hecke eigensheaf arising from a rigid hypergeometric automorphic data, we
give a realisation of the above correspondence using an explicit description of BunG in terms of
lattices. This leads to an explicit formula for EStd, which in turn, allows us to prove that it is
isomorphic to a hypergeometric local system.

6. Rigid automorphic data

6.1. Overview.

6.1.1. The notion of rigid automorphic data is due to Zhiwei Yun [Yun14]. In what follows, we
discuss this notion in the presence of three simplifying assumptions; namely, we take G = GLn,
X = P1, and ignore central characters. The restriction on G is not very serious; indeed, with a bit
more notation, one can write the story for arbitrary split reductive G. The restriction on X is also
not serious for one knows that (under mild assumptions) rigid automorphic data exists only for
curves of genus 0 and 1, cf. [Yun14, Lemma 2.7.12.(2)]. This is the automorphic analogue of the
fact that there are no interesting rigid local systems on curves of genus greater than 1 [Kat96, §1].
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6.1.2. The omission of central characters is, however, serious and allows us to bypass a large
amount of technical details of [Yun14]. The version of automorphic data without central char-
acters is sufficient for our purposes because we are primarily interested in Hecke eigensheaves.
To understand rigid automorphic representations, however, one needs the full theory of op. cit.
For instance, our “stripped down” notion of automorphic data prevents us from making a precise
statement regarding hypergeometric automorphic representations, cf. §7.4. We believe, however,
that this omission is worth the price, for otherwise, we would need to introduce a large amount of
distracting notation and technical details.

6.1.3. After giving our version of rigid automorphic data, we explain how they give rise to Hecke
eigensheaves. The construction of eigensheaves given below is essentially that of [Yun14], however,
at one crucial step (roughly, going from weak to strong Hecke eigensheaves), we need to use an
argument from [HNY13] in order to avoid one of the assumptions of [Yun14] (namely, Assumption
4.7.1) which is not satisfied for general hypergeometric automorphic data.

6.2. Automorphic data.

Definition 4. An automorphic data for G on X is a finite subset S ⊂ X together with a pair
(KS , γS), where

• KS = {Kx}x∈S is a collection of pro-algebraic groups Kx with finite codimension in some
parahoric subgroup in G(Fx). By an abuse of notation, we also denote KS =

∏
x∈SKx.

• γS is a collection {γx}x∈S of rank one character sheaves γx on Kx, which is the pullback
of a rank one character sheaf from some finite dimensional quotient Kx ։ Kx/K

+
x . Here,

K+
x ⊆ Kx is a pro-algebraic normal subgroup. We let

Lx := Kx/K
+
x , LS :=

∏

x∈S

Lx, and γS := ⊠x∈Sγx.

For a review of rank one character sheaves, cf. [Kam09] or the appendix of [Yun14].

6.2.1. Integral models associated to automorphic data. To every automorphic data (KS , γS), one
associates integral models G and G′ satisfying

G|X−S = G× (X − S); G|Ox
= K+

x , ∀x ∈ S;

G′|X−S = G× (X − S); G′|Ox
= Kx, ∀x ∈ S.

In what follows, we use the properties of BunG and BunG′ discussed in the previous section.

6.2.2. Stabilisers of bundles. Let F ∈ BunG and let StabLS
(F) denote its stabiliser in the stacky

sense; i.e.,

StabLS
(F) := {(l, η) | l ∈ LS , η ∈ Isom(F, l · F)}.

We have a canonical morphism

StabLS
(F) → LS, (l, η) 7→ l,

which allows us to define the pullback of γS to StabLS
(F).

6.2.3. Relating stabilisers to LS. There is a canonical forgetful map

p : BunG → BunG′ ,

which is an LS-torsor. If E := p(F) ∈ BunG′ , then AutG′(E) ≃ StabLS
(F), and the resulting map

AutG′(E) → LS coincides with the composition

(14) Res : AutG′(E) →
∏

x∈S

Aut(E|Ox
) ≃ KS → LS.
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6.3. Rigidity. Suppose we have an automorphic data (KS , γS) with associated integral models G′

and G.

6.3.1. Relevant G-bundles. A bundle F ∈ BunG(k) is called relevant if the pullback of γS to
(StabLS

(F))◦ is the constant sheaf; otherwise F is irrelevant. Note that F is relevant if and only if
all the elements in its LS-orbit are relevant; thus, we can talk about relevant orbits on BunG.

6.3.2. Relevant G′-bundles. We also have a notion of relevant G′-bundles. Namely, we say that
E ∈ BunG′(k) is relevant if one (and therefore all) G-bundles in the fibre p−1(E) is relevant. Thus,
E ∈ BunG′ is relevant if and only if the pullback of γS to (AutG′(E))◦ is constant. In particular, if
AutG′(E) is trivial, then E is automatically relevant.

6.3.3. Definition of (strict) rigidity. Let Z ⊆ G′ be the integral model for the centre Z ⊆ G
associated to G′ (§4.3.4); i.e., Z(Ox) := G′(Ox) ∩ Z(Fx).

Definition 5.

(1) An automorphic data is called rigid if for all α ∈ Z = π0(BunG′), there exist a unique
relevant element Eα on the component BunαG′ (equivalently, there is a unique relevant orbit
Oα on BunαG).

(2) An automorphic data is called strictly rigid if it is rigid and the following properties hold:
(a) the stabilisers of relevant elements are trivial, i.e., AutG′(Eα) = {1} for all α ∈ Z;
(b) the coarse moduli space of Bun0Z is a point.

6.3.4. How to establish rigidity? In the cases of interest to us, we prove rigidity by first showing that
the generic locus of BunαG′ consists of a unique bundle and this bundle has trivial automorphisms.
This bundle is, therefore, automatically relevant. We then show that all other bundles in BunαG′ are
irrelevant, by exhibiting a one-dimensional subscheme in their stabiliser such that the restriction
of γS to this subscheme is non-constant.

6.3.5. Numerical requirement for rigidity. Suppose we have a strictly rigid automorphic data. Then
{Eα} is an open substack of BunαG′ with trivial stabiliser. It follows that dim(BunG′) = 0. In view
of (7), we obtain:

(15)
∑

x∈S

dim(G(Ox)/G
′(Ox)) = dim(G).4

This numerical requirement should be compared with the numerical criteria for (cohomological)
rigidity of local systems, cf. [Yun14, Proposition 3.2.7] in positive characteristic and [FG09, Propo-
sition 11] or [KS19b, §4.2] in characteristic zero.

6.4. Eigensheaves from rigid automorphic data. Let (KS , γS) be a strictly rigid automorphic
data with integral models G′ and G. Let us assume further that the level structure for some s ∈ S
is I(j), where the latter is the jth Moy–Prasad subgroup of the Iwahori I. We now explain how to
construct a Hecke eigensheaf on BunG from this data.

6.4.1. Transporting γS to O0. Let O0 be the unique relevant orbit on Bun0G and let

j0 : O0 →֒ Bun0G

denote the corresponding open inclusion. Note that O0 is a torsor for LS. We choose, once and for
all, a trivialisation of this torsor, i.e., an isomorphism ι : LS ≃ O0. The character sheaf γS then
defines a local system γ0 on O0.

4For groups other than GLn, one encounters parahorics that are not in G(Ox). In this case, one should replace the
dimension by relative dimension.
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6.4.2. Extending γ0 to a perverse sheaf A0. It follows readily from the uniqueness of relevant orbits
that the local system γ0 extends to a clean perverse sheaf on Bun0G. Moreover, uniqueness of
relevant orbits also implies that, up to local systems coming from the base field k, A0 is the unique
(LS , γS)-equivariant irreducible perverse sheaf on Bun0G, cf. [Yun14], Lemma 4.4.4.

6.4.3. Transporting A0 to other components. Recall we assumed that one of the level structure of
G is I(j). As discussed in §4.3.3, this assumption implies that for every α ∈ Z = π0(BunG), we have
an isomorphism

Hkα : Bun0G ≃ BunαG , E 7→ w̃α1 · E.

Under this isomorphism, O0 maps to the unique relevant orbit Oα ⊂ BunαG . Let Aα := (Hk−1
α )∗A0.

Then Aα is a perverse sheaf on BunαG which is a clean extension from a local system on Oα.

6.4.4. Correct equivariance property. There is a subtlety involved in specifying the equivariance
property of Aα as it is not, in general, (LS , γS)-equivariant, cf. [XZ19, §4.1.11]. Instead, let
γαS := w̃α1 ·γS be the twist of γS by w̃α1 . Then γ

α
S is also a character sheaf on LS and Aα is (LS , γ

α
S )-

equivariant. As above, up to local systems coming from k, Aα is the unique (LS , γ
α
S )-equivariant

irreducible perverse sheaf on BunαG .

6.4.5. A key theorem of Yun. Let A denote the perverse sheaf on BunG whose restriction to BunαG
equals Aα.

Theorem 6 (Yun). The perverse sheaf A is a Hecke eigensheaf.

Proof. We explain how this theorem follows from considerations in [Yun14] together with an ar-
gument of [HNY13]. The Hecke correspondence (10) is equivariant with respect to the action of
LS . As Aα is (LS , γ

α
S )-equivariant, it follows that HkV (A )|Bunα

G
×(X−S) is also (LS , γ

α
S )-equivariant.

Lemma 4.4.4.(2) of [Yun14] then implies that

HkV (A )|Bunα
G
×(X−S) ≃ Aα ⊠ EαV ,

for some ℓ-adic complex EαV on X − S. The fact that we have a strictly rigid automorphic data
implies that Assumptions 4.4.1 of [Yun14] are satisfied. Thus, we are in a position to apply Theorem
4.4.2 of op. cit. to conclude that EαV is a semisimple local system.

It remains to show that EαV is independent of α. Here, we use the argument of [HNY13, §4.2].
Namely, we may assume that ICV is supported on BunαG for some α. Note that Hkα commutes

with HkV because they are Hecke operators supported at different points of X = P1 (the former is
supported at a point in S, the latter is supported on X − S). We therefore obtain

A0 ⊠ E0
V = HkV (A−α) = HkV (Hk−α(A0)) = Hk−α(HkV (A0)) = Hk−α(Aα ⊠ EαV ) = A0 ⊠ EαV .

It follows that E0
V = EαV for all α. Let us denote this local system on X − S by EV . Then the

assignment V 7→ EV defines a tensor functor Rep(GLn) → LocSys(X−S), i.e. a GLn-local system.
This is the Hecke eigenvalue of A ; thus, A is a Hecke eigensheaf, as required. �

6.4.6. Comparison to Yun’s construction. The construction of the Hecke eigensheaf in [Yun14]
follows a slightly different path. Namely, one first chooses (non-canonical) isomorphisms LS ≃ Oα
to transport the local system γS to each Oα. The collection of the corresponding perverse extensions
defines a perverse sheaf on BunG, which Yun proves is a “weak Hecke eigensheaf” (this is Theorem
4.4.2 [Yun14] invoked above). Roughly speaking, this means that the resulting eigenvalue is a
local system on each component. Yun then proves that under additional assumptions (namely
Assumptions 4.7.1 of op. cit.), the weak Hecke eigensheaf is actually a genuine Hecke eigensheaf.
In the hypergeometric setting, however, these assumptions are satisfied only when the characters
at 0 are trivial, i.e. χi = 1 for all i. Thus, to treat general hypergeometric sheaves, we need the
above variant of Yun’s theorem.
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7. Main definitions and theorems

In this section, we associate to every hypergeometric initial data (ψ,χ1, ..., χn, ρ1, ..., ρm) (§3.1.2),
an automorphic data (Definition 4), and state our main results. As hypergeometric sheaves have
different ramification profiles in the tame and wild setting, we need to treat these cases separately.

7.1. Tame hypergeometric automorphic data. Recall that k is a finite field. Let n be a

positive integer, and χ1, ..., χn and ρ1, ..., ρn multiplicative characters k× → Q
×
ℓ .

Definition 7. The tame hypergeometric automorphic data is defined by S := {0, 1,∞} ⊂ P1 and

(Kx, γx) :=





(Iopp,Lχ) x = 0;

(Q,Qℓ) x = 1;

(I,Lρ) x = ∞.

Here, I ⊂ G(O∞) is the standard Iwahori subgroup of G, and I(1) is its first Moy–Prasad

subgroup. The character ρ = (ρ1, ..., ρn) : I → Q
×
ℓ is defined via the composition

I → I/I(1) ≃ T ≃ (k×)n → Q
×
ℓ .

Let Lρ denote the character sheaf on I whose Frobenius trace is ρ. The group Iopp ⊂ G(O0) is the
Iwahori opposite to I. As above, χ = (χ1, ..., χn) defines a character of Iopp. We let Lχ denote
the character sheaf on Iopp whose trace function is χ = χ−1. The group Q was defined in §1.5.1 as
the preimage of the mirabolic of G. Note that ZQ is a parahoric subgroup of G.5 It is technically
convenient for us to remove the centre because we want our automorphic data to be strictly rigid.

7.1.1. Integral models. To the above automorphic data, one associates the integral models G and
G′. The former group scheme was defined (1). The latter is defined by

G′(Ox) =





Iopp x = 0;

Q x = 1;

I x = ∞;

G(Ox) otherwise.

One readily verifies
∑

x∈S dim(G(Ox)/G
′(Ox)) = dim(G); thus, the numerical requirement for strict

rigidity (15) is satisfied.

7.1.2. Why the mirabolic shows up? The following discussion is informal and not used elsewhere in
the text. Let H be a tame hypergeometric sheaf. Let F1 denote the local field at x = 1 and

ρ : Gal(F1/F1) → GLn(Qℓ),

the Galois representation defined by the restriction of H to x = 1. Recall that ρ is tamely ramified
with pseudo-reflection monodromy. This implies that ρ is a direct sum of n-characters, all but one of
which are unramified. Under the local Langlands bijection [LRS93], ρ is mapped to the irreducible
quotient π1 of the principal series representation associated to a character α = (α1, ..., αn) of
T (F ) = (F×)n, where αi is unramified for all i 6= n. Using properties of smooth representations
of G(F1) discussed in [KS13], one can show that π1 has a vector fixed under ZQ. Moreover, if the
monodromy of H at 1 is nontrivial, then ZQ is the largest compact open subgroup of G(F1) with
a fixed vector in π1. Thus, it is natural to take Q as the level structure at 1. The fact that the
resulting automorphic data satisfies the numerical requirement for rigidity is further evidence that
this is the correct choice. (Of course, the ultimate vindication is that this automorphic data is rigid
and its Hecke eigenvalue is H .)

5The barycentre x of the facet corresponding to ZQ is determined by α0(x) = αn−1(x) = 1/2 and α1(x) = · · · =
αn−2(x) = 0.
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7.2. Wild hypergeometric automorphic data. Letm and n be non-negative integers satisfying

0 ≤ m < n. Let χ1, ..., χn and ρ1, ..., ρm be multiplicative characters k× → Q
×
ℓ .

Definition 8. The wild hypergeometric automorphic data is S := {0,∞} ⊂ P1 and

(Kx, γx) :=

{
(Iopp,Lχ) x = 0;

(J,Lµ) x = ∞.

The pair (Iopp,Lχ) is the same as in the tame case. The definition of (J,Lµ), given below, is
more subtle and involves salient features of principal gradings of g. This definition is motivated by
the fact that on the punctured neighbourhood of ∞, we have a decomposition

H∞ ≃ (Kld)∞ ⊕ Tm,

where Kld denotes a wild d := (n −m)-dimensional (generalised) Kloosterman sheaf and Tm is a
tame rank m local system with monodromy given by the ρj’s (see §3 for details). To construct
(J,Lµ), we first construct the automorphic data corresponding to the wild part and then add the
tame data.

7.2.1. Principal gradings. The torsion element ρ̌G/d ∈ AQ defines a principal grading

(16) g =
⊕

i∈Z/dZ

gi.

Let G0 denote the connected subgroup of G with Lie algebra g0. Then G0 acts on g1 by conjugation.
This is the Vinberg representation. We refer the reader to Appendix A for recollections on principal
gradings and the corresponding Vinberg representations.

7.2.2. The functional. The definition of the automorphic data at ∞ depends on the choice of an
appropriate functional on g1. Characterising all functionals which give rise to the correct rigid
automorphic data is subtle (see below). For our purposes, it will be sufficient to work with

(17) φ = φsp :=

{
E∗

11 d = 1;

E∗
12 + E∗

23 + ...+ E∗
d−1,d + E∗

d,1 d ∈ {2, ..., n}.

If d = n, we obtain an affine generic functional in the sense of [HNY13, §1.3]. In general, the
G0-orbit of φ is closed. In fact, if d > n/2, then φ is the unique, up to G0-conjugacy and scalar
multiplication, element of g∗1 with a closed orbit (this fails for d ≤ n/2). Note, however, that if
d < n, then φ is not stable because the stabiliser of φ is not finite. This is a key difference between
our work and much of the related literature [HNY13,RY14,Yun16,Che17]. In fact, to define the
automorphic data at ∞, we need to bring the stabiliser of φ into play.

7.2.3. Parahoric and Moy–Prasad subgroups. The functional φ takes care of the wild part of the
data at ∞. To add the tame data (i.e., the characters ρj), we need to extend φ in an appropriate
manner. Let P ⊂ G(F∞) denote the parahoric subgroup associated to ρ̌/d, and let P ⊃ P (1) ⊃
P (2) ⊃ · · · denote its Moy–Prasad filtration. Let p ⊃ p(1) ⊃ p(2) ⊃ · · · denote the corresponding
Lie algebras. Let

(18) L := P/P (1) and V := P (1)/P (2).

We have canonical isomorphisms L ≃ G0 and V ≃ p(1)/p(2) ≃ g1. Thus, we can view φ as a
functional on V or as a homomorphism P (1)/P (2) → Ga.
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7.2.4. The subgroup J . To define J , we need to study the stabiliser of φ ∈ V ∗ under the action of L
on V ∗. As in the tame case, it will be convenient to remove the centre. For φ specified in (17), we
consider subgroups Lφ and Bφ of the stabiliser of φ in L whose image under L ≃ G0 are as follows:

(19) Lφ ≃

[
Idd 0
0 GLm

]
∩G0, and Bφ ≃

[
Idd 0
0 Bm

]
∩G0.

Here Bm ⊂ GLm is the subgroup of upper triangular matrices. Thus, StabL(φ) = ZLφ, and Bφ is
a Borel subgroup of Lφ. Now define

(20) J := BφP (1) ⊆ LP (1) = P.

Example 9. (i) If m = 0, then Lφ and Bφ are trivial and P is the Iwahori; thus, J = I(1) and
we recover the Kloosterman automorphic data defined in [HNY13].

(ii) Supposem = 1 and let P denote the maximal ideal of O = O∞. ThenBφ = diag(1, 1, ..., 1, ∗),
and P and J are as follows:

P =




O× O ... O P−1

P O× ... O O

... ... ... ... ...
P P ... O× O

P P ... P O×



, J =




1 + P O ... O O

P 1 + P ... O O

... ... ... ... ...
P P ... 1 + P O

P2 P ... P O×



.

7.2.5. The character µ. We are finally ready to define the character µ : J → Q
×
ℓ . First, note that

ρ = (ρ1, · · · , ρm) defines a character of Bφ via the composition

Bφ → Bφ/[Bφ, Bφ] ≃ (k×)m
ρ

−→ Q
×
ℓ .

On the other hand, we have the character ψφ : P (1) → Q
×
ℓ . Now define

(21) µ = µ(ψ, φ, ρ) : J = BφP (1) → Q
×
ℓ , µ(bp) := ρ(b)ψφ(p), b ∈ Bφ, p ∈ P (1).

One readily verifies that µ is indeed a character of J . Let Lµ be the character sheaf whose Frobenius
trace is µ. This concludes the definition of the wild hypergeometric automorphic data.

7.2.6. The associated integral models. To the above automorphic data, one associates the integral
models G and G′. The former group scheme was defined in (2). The latter is defined by

G′(Ox) =





Iopp x = 0;

J x = ∞;

G(Ox) otherwise.

Let J ′ ⊂ G(O∞) be a conjugate of J . As shown in Lemma 35 dim(G(O∞)/J ′) = dim(B). Thus,
the numerical requirement for strict rigidity (15) is satisfied.

7.3. Main results. As noted in §3, to every hypergeometric initial data (ψ,χ1, ..., χn, ρ1, ..., ρm),
Katz associated the hypergeometric sheaf H = H (ψ,χ1, ..., χn, ρ1, ..., ρm). Moreover, he proved
that H is irreducible if and only if χi’s and ρj ’s are disjoint; i.e., χi 6= ρj for all i, j. In this case,
he also proved that H is rigid.

In the previous two subsections, we have associated to the initial data, the corresponding hyper-
geometric automorphic data (Definitions (7) and (8)).

Theorem 10. If χi’s and ρj ’s are disjoint, then the hypergeometric automorphic data is strictly
rigid (Definition 5)

This theorem is proved in §8 (resp. §10) for the tame (resp. wild) case.
22



7.3.1. It follows from Theorems 6 and 10 that whenever χi’s and ρj ’s are disjoint, we have a Hecke
eigensheaf A = A (ψ,χ1, ..., χn, ρ1, ..., ρm) on BunG. It remains to identify its Hecke eigenvalue:

Theorem 11. The Hecke eigenvalue of A is, after base change to k, isomorphic to H ⊗k k.

This theorem is proved in §9 (resp. §11) for the tame (resp. wild) case.

7.4. Aside: Hypergeometric automorphic representations. In this subsection, we explain
what the above considerations tell us about hypergeometric automorphic representations (§1.7.2).
We do not formulate precise results here since we have chosen (for convenience and brevity) not to
deal with the full package of Yun’s rigid automorphic data (cf. the beginning of §6). The discussion
in this subsection is informal and not used elsewhere in the text.

7.4.1. Tame case. Our results on tame hypergeometric Hecke eigensheaves indicate that, up to
unramified twists and central characters, there is a unique automorphic representation π = ⊗′

x∈Xπx
of G(A) satisfying:

(i) πx is unramified for all x ∈ P1 − {0, 1,∞};
(ii) π0 has a (Iopp, χ)-fixed vector;
(iii) π1 has a Q-fixed vector;
(iv) π∞ has a (I, ρ)-fixed vector.

7.4.2. Wild case. Similarly, up to unramified twists and central characters, there should be a unique
automorphic representation π = ⊗′

x∈Xπx satisfying:

(i) πx is unramified for all x ∈ P1 − {0,∞};
(ii) π0 has a (Iopp, χ)-fixed vector;
(iii) π∞ has a (J, µ)-fixed vector.

Note that the representation π∞ is supercuspidal if and only if d = n; i.e., if and only if we are in
the Kloosterman setting, for otherwise, the local Langlands parameter is reducible (§3.2.2).6

8. Rigidity in the tame case

The goal of this section is to prove Theorem 10 in the tame case. We start by parameterising
the objects of BunG′ and describing their automorphisms.

8.1. Parameterisation of G′-bundles.

8.1.1. An auxiliary moduli stack. Let Bun(Iopp, I) denote moduli stack of rank n vector bundles
on P1 with Iopp-level structure at 0 and I-level structure at ∞. Let I− := Iopp ∩ G(k[s, s−1]).
According to [HNY13, Proposition 1.1], we have

Bun(Iopp, I)(k) = I−\G(k((s))/I =
⊔

w̃∈W̃

I−\I−w̃I/I.

Here, the first equality follows from one-point uniformisation, which states that every bundle in
Bun(Iopp, I) is trivialisable on P1 − {∞}. The second equality is the Birkhoff decomposition.

8.1.2. We conclude that (the isomorphism classes of) bundles in Bun(Iopp, I) are labelled by

elements of W̃ . For each w̃ ∈ W̃ , the automorphism group of the corresponding bundle is given by

S(w̃) := StabI−(w̃I) = I− ∩ w̃Iw̃−1.

Note that S(w̃) ⊇ T with equality if and only if w̃ ∈ Ω. Thus, the generic locus of Bun(Iopp, I)
consists of bundles labelled by w̃ ∈ Ω.

6In particular, aside from the Kloosterman case, hypergeometric automorphic representations are not of the type
studied in [ST18].

23



8.1.3. Recall that BunG′ is the moduli stack of rank n vector bundles on P1 with Iopp, Q and I level
structure at 0, 1, and ∞, respectively. The canonical map π : BunG′ → Bun(Iopp, I) which forgets
the level structure at 1 is a G/Q-fibration. Thus, to each bundle E ∈ BunG′ , we can associate a

pair (w̃, g) ∈ W̃ ×G/Q. Let ev1 : G(k[s, s−1]) → G(k) denote the evaluation map sending s to 1.
Let

(22) G(w̃) := ev1(S(w̃)).

If F ∈ Bun(Iopp, I) is a bundle labelled by w̃, then S(w̃) acts on the fibre π−1(F) ≃ G/Q via G(w̃).
Thus, we obtain:

Lemma 12. The isomorphism classes of G′-bundles are in bijection with pairs (w̃,G(w̃)g), where

w̃ ∈ W̃ and G(w̃)g ⊂ G/Q is a G(w̃)-orbit in G/Q.

8.2. Mirabolic flag variety. To understand automorphisms of G′-bundles, we need explicit de-
scriptions of G/Q and G(w̃). Note that ZQ is a (maximal) parabolic subgroup of G; thus, the
Bruhat decomposition implies

G/Q =

n⊔

i=1

BwiQ/Q,

where wi ∈ W is the transposition (in) ∈ Sn. Note that the transpositions (in), i ∈ {1, 2, ..., n},
are representatives for W (G)/W (ZQ) = Sn/Sn−1.

8.2.1. Bruhat cells. Let Xi := BwiQ/Q denote the Bruhat cell associated to wi. The torus T acts
on G/Q by left multiplication, preserving each Bruhat cell. The action of T on the cell X1 has a

unique open dense orbit X̊1, which can be explicitly described as follows. First, observe that

X1 = T (
n∏

j=2

Uα1j
)w1Q/Q.

Note that Uα1j
’s are root subgroups in the quotient U/(U ∩ w1Qw

−1
1 ). For each j ∈ {2, ..., n},

let X1j denote the closed subscheme of X1 consisting of those elements whose Uα1j
component is

trivial. Let X̊1 := X1 −
⋃n
j=2X1j . Then X̊ is an open dense subvariety of X and X̊1 = T g̊, where

(23) g̊ := exp
( n∑

j=2

E1j

)
w1Q/Q.

8.2.2. Generic locus. We think of X̊1 as the generic locus ofX1. This terminology is further justified
by Lemma 13.(iii) below. In view of §8.1.1, it is natural to expect that the generic locus of BunG′

consists of bundles labelled by pairs (w̃, g̊), where w̃ ∈ Ω. We confirm this expectation in Corollary
17.

8.2.3. Stabilisers. We record some basic facts about the action of G on G/Q. The proofs are direct
computations and omitted. Recall the subgroup Tj ⊆ T defined in (5).

Lemma 13. (i) Let i ∈ {2, ..., n} and g ∈ Xi, then T1 ⊆ StabT (g).
(ii) Let j ∈ {2, ..., n} and g ∈ X1j , then Tj ⊆ StabT (g).
(iii) StabT (̊g) = {1}.

Next, let β = αpq be a root of G. Let Yβ be the subscheme of TUβ consisting of elements of the
form tu(t), where t = diag(1, ..., tq , .., 1) ∈ Tq and

(24) u(t) :=

{
exp((1− tq)Epq) p 6= 1 6= q;

exp((tq − 1)Epq) otherwise.
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Note that Yβ is a variety isomorphic to A1 − {0}; however, it is not a group.

Lemma 14. Yβ is a subscheme of the identity component of StabTUβ
(̊g).

8.3. The group G(w̃). Recall that G(w̃) is the image of S(w̃) under evaluation map ev1 (22). It
is, therefore, generated by T together with certain root subgroups, where the roots are the image
of affine roots in S(w̃) under ev1. Thus, we obtain:

Lemma 15. Φ(G(w̃)) = ∅ if and only if w̃ ∈ Ω, in which case G(w̃) = T .

Proof. If w̃ ∈ Ω, then S(w̃) = I− ∩ I = T = G(w̃) and Φ(G(w̃)) = ∅. For the converse, suppose
w̃ /∈ Ω. Then there exists at least one simple affine root αi ∈ ∆aff(G) = {α0, α1, ..., αn−1}, such
that w̃αi < 0. Since S(w̃) = I−∩ w̃Iw̃−1, this means w̃αi ∈ Φaff(S(w̃)). Let us write w̃αi = α+m,
where α ∈ Φ(G) and m ∈ Z. Then ev1(Uw̃αi

) = Uα ⊆ G(w̃); thus, α ∈ Φ(G(w̃)); in particular,
Φ(G(w̃)) is non-empty. �

8.4. Automorphisms of G′-bundles. Let E ∈ BunG′ be a bundle associated to a pair (w̃, g) ∈

W̃ ×G/Q. Then

(25) AutG′(E) ≃ ev−1
1 (StabG(w̃)(g)).

Recall that G(w̃) = ev1(S(w̃)). Thus, for each β ∈ Φ(G(w̃)), there exists β̃ ∈ Φaff(Stab(w̃)) such

that that β is the finite part of β̃. We therefore have an isomorphism ev1(TUβ̃) ≃ TUβ. Let

Yβ̃ ⊂ TUβ̃ be the inverse of Yβ under this isomorphism.

Proposition 16.

(i) If w̃ ∈ W̃ and g ∈ Xi, 2 ≤ i ≤ n, then T1 ⊆ (AutG′(E))◦.

(ii) If w̃ ∈ W̃ and g ∈ X1j ⊆ X1 − X̊1, 2 ≤ j ≤ n, then Tj ⊆ (AutG′(E))◦.

(iii) If w̃ /∈ Ω, g = g̊ ∈ X̊1, and β ∈ Φ(G(w̃)), then Yβ̃ ⊆ (AutG′(E))◦.

(iv) If w̃ ∈ Ω and g ∈ X̊1, then AutG′(E) is trivial.

Proof. Recall that for all w̃ ∈ W̃ , we have T ⊆ G(w̃). Thus, (i) and (ii) follows from Part (i) and
(ii) of Lemma 13, respectively. When w̃ 6∈ Ω, Lemma 15 implies that there exists β ∈ Φ(G(w̃));
thus, TUβ ⊆ G(w̃). Therefore, (iii) follows from Lemma 14. When w̃ ∈ Ω, we have Stab(w̃) =

I− ∩ I = T = G(w̃). Note that any g ∈ X̊ is in the same T -orbit as g̊. Thus, (iv) follows from
Lemma 13.(iii). �

8.4.1. Generic locus. As discussed in §4.3.1, the Kottwitz homomorphism (which is the degree map
here) defines an isomorphism π0(BunG′) ≃ Z. Let w̃1 denote the generator of Ω specified in §2.3.2.
The above proposition immediately implies the following:

Corollary 17. For each α ∈ Z, the generic locus ˚BunαG′ consists of one element, namely, the bundle
labelled by (w̃α1 , g̊)

8.5. Rigidity. The following is a more precise version of Theorem 10 in the tame setting.

Theorem 18. For each α ∈ Z, the only relevant element on BunαG′ is the generic element, i.e., the
bundle labelled by (w̃α1 , g̊).

8.5.1. As a first step in proving this theorem, let us explain what being relevant in this context

means. Let E be a bundle associated to the pair (w̃, g) ∈ W̃ ×G/Q. If we make the identification

AutG′(E) = ev−1
1 (G(w̃) ∩ gQg−1) ⊆ S(w̃) = I− ∩ w̃Iw̃−1,

then the map Res, defined in (14), is given by

(26) Res : AutG′(E) → Aut(E|O0
)×Aut(EO|∞) ≃ Iopp × I, h 7→ (h, w̃−1hw̃).
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By definition, E is relevant if the pullback of the local system γS := Lχ ⊠ Lρ to (AutG′(E))0 is
constant.

8.5.2. If w̃ ∈ Ω and g ∈ X̊1 (equivalently, g is in the T -orbit of g̊), then E has a trivial automor-

phism group and is therefore relevant. We now show that if w̃ /∈ Ω or g /∈ X̊1, then the pullback of
γS to the one-dimensional subscheme of (AutG′(E))◦ given in the Proposition 16 is non-constant.
We prove this by showing that the Frobenius trace function of Res∗(Lχ ⊠Lρ) over this subscheme
is non-constant, i.e. not identically equal to 1.

8.5.3. Let w̃ ∈ W̃ , g ∈ Xi, 2 ≤ i ≤ n, and t = (t1, 1, ..., 1) ∈ T1. By Proposition 16.(i),
T1 ⊆ AutG′(E). The Frobenius trace of Res∗(Lχ ⊠ Lρ) over T1 is

χ(t)ρ(w̃−1tw̃) = χ−1
1 (t1)ρl(t1),

where l is defined by the equality w̃−1T1w̃ = Tl. If above expression equals 1 for all t1 ∈ k×, then
χ1 = ρl, which contradicts with the assumption that χi’s and ρj ’s are disjoint. Thus, the Frobenius
trace function is non-constant.

8.5.4. Let w̃ ∈ W̃ , g ∈ X1j ⊆ X1 − X̊1, 2 ≤ j ≤ n, and t = (1, ..., 1, tj , 1, ..., 1) ∈ Tj . Analogous
to the above, the Frobenius trace of the restriction of γS to Tj ⊆ AutG′(E) is given by the function

χ−1
j (tj)ρl(tj). The assumption χj 6= ρl implies that the trace function is non-constant.

8.5.5. Let w̃ ∈ W̃ − Ω and g ∈ X̊1. Without the loss of generality, we can take g = g̊. Let
β = αij ∈ Φ(G(w̃)), t = (1, ..., 1, tj , 1, ..., 1) ∈ Tj, and u(t) ∈ Uβ̃ be the preimage of the element

given in (24) under isomorphism ev1 : TUβ̃ ≃ TUβ. Then tu(t) ∈ Yβ̃. The Frobenius trace of the

restriction of γS to Yβ̃ ⊆ AutG′(E) is given by

χ(tu(t))ρ(w̃−1tu(t)w̃) = χ(t)ρ(w̃−1tw̃) = χ−1
j (tj)ρl(tj)

Again, the assumption χj 6= ρl implies that the trace function is non-constant. This concludes the
proof of Theorem 18 .

9. Hecke eigenvalue in the tame case

The goal of this section is to prove Theorem 11 in the tame case. We start by giving a description
of BunG in terms of lattices (cf. [HNY13, §3]).

9.1. Alternative description of BunG. Let Bun+ be the classifying stack of (E, F ∗E, {vi}, F∗E, {vi}, Vn−1, v),
where:

• E is a vector bundle of rank n on P1;
• E = F 0E ⊃ F 1E ⊃ · · · ⊃ FnE = E(−{0}) is a decreasing filtration F ∗E giving a complete
flag of the fibre of E at 0;

• vi ∈ F i−1E/F iE is a nonzero vector, 1 ≤ i ≤ n;
• E(−{∞}) = F0E ⊂ F1E ⊂ · · · ⊂ FnE = E is an increasing filtration F∗E giving a complete
flag of the fibre of E at ∞;

• vi ∈ FiE/Fi−1E is a nonzero vector, 1 ≤ i ≤ n;
• E(−{1}) ⊂ Vn−1 ⊂ E is an increasing filtration giving a partial flag of mirabolic type at 1,
i.e., Vn−1/E(−{1}) is an (n− 1)-dimensional subspace of E/E(−{1});

• v ∈ E/Vn−1 is a nonzero vector.

Above data corresponds to level structures Iopp(0), I(∞), and Q. Thus, we obtain an isomorphism
of stacks BunG ≃ Bun+.
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9.1.1. Choosing a trivialisation of E over P1 − {0,∞}, we can rewrite the above moduli problem
in terms of lattices. Let Λ be the free k[t, t−1]-module with basis e1, e2, ..., en. Let ei+jn := tjei for
j ∈ Z, 1 ≤ i ≤ n. Then {ei}i∈Z is a k-basis of Λ. Let R be a k-algebra. An R[t]-lattice in R ⊗k Λ
is a R[t]-submodule Λ′ ⊂ R⊗k Λ such that there exists a positive integer M satisfying

SpanR{ei|i > M} ⊂ Λ′ ⊂ SpanR{ei|i ≥ −M},

and both Λ′/SpanR{ei|i > M} and SpanR{ei|i ≥ −M}/Λ′ are projective R-modules.

9.1.2. Let B̃un
+
be the stack whose R-points classify the data (Λ∗, {vi},Λ∗, {vi}, Vn−1, v), where:

• R ⊗k Λ ⊃ Λ0 ⊃ Λ1 ⊃ · · · ⊃ Λn = tΛ0 is a chain Λ∗ of R[t]-lattices such that Λi/Λi+1 is a
rank one projective rank R-module;

• vi ∈ Λi−1/Λi, 1 ≤ i ≤ n is an R-basis;
• Λ0 = t−1Λn ⊂ Λ1 ⊂ · · · ⊂ Λn ⊂ R ⊗ Λ is a chain Λ∗ of R[t−1]-lattices such that Λi/Λi−1 is
rank one projective R-module, 1 ≤ i ≤ n;

• vi ∈ Λi/Λi−1, 1 ≤ i ≤ n, is a an R-basis;
• (t− 1)R ⊗ Λ ⊂ Vn−1 ⊂ R⊗ Λ a R⊗ Λ-submodule such that

Vn−1/(t− 1)R⊗ Λ ⊂ R⊗ Λ/(t− 1)R ⊗ Λ

is a projective rank n− 1 R⊗ Λ-submodule;
• v ∈ R⊗ Λ/Vn−1 a R-basis.

9.1.3. The group G(k[t, t−1]) acts on Λ, and therefore, also on B̃un
+
, giving an isomorphism

Bun+ ≃ B̃un
+
/G(k[t, t−1]).

Henceforth, we regard BunG as the moduli of G(k[t, t−1])-orbits of chains of lattices and vectors.

9.1.4. The degree of a vector bundle can be calculated in terms of lattices as follows:

deg(Λ∗,Λ∗) := χR(ι : Λ
0 ⊕ Λ0 → R⊗ Λ) = rkR ker(ι)− rkRcoker(ι).

For each α ∈ Z, let Bun+,α be the substack classifying degree α lattices. Then Bun+,α’s are the
components of Bun+. We now explicitly describe the open embedding of the generic locus

jα : Oα = ˚Bun+,α ≃ T0 × T∞ →֒ Bun+,α.

9.1.5. The generic locus. Recall that Λ is a free k[t, t−1] module with basis e1, ..., en. Let ⋆ ∈ Bun+,0

be the G(R[t, t−1])-orbit of the data (Λ∗(⋆), {vi(⋆)},Λ∗(⋆), {vi(⋆)}, Vn−1(⋆), v(⋆)) where

• Λi(⋆) = 〈ei+1, ei+2, ...〉 ⊂ R⊗ Λ;
• vi(⋆) = ei;
• Λi(⋆) = 〈..., ei−1, ei〉 ⊂ R⊗ Λ;
• vi(⋆) = ei;
• Vn−1(⋆) = 〈e1, ..., en−1〉+ (t− 1)R ⊗ Λ ⊂ R⊗ Λ;
• v(⋆) = en.

The map jα is given by

(27) jα(a, b) := (Λ∗(⋆), {avi(⋆)}, w̃α1 · Λ∗(⋆), {w̃
α
1 b · vi(⋆)}, uw · Vn−1(⋆), g̊ · v(⋆)),

where (a, b) ∈ T0 × T∞. For future use, let ⋆1 := j1(1, 1) ∈ Bun+,1.

9.2. Relevant part of the Hecke stack. Our goal here is to explicitly describe the correspon-
dence in (12).
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9.2.1. We want to compute ˚GRω1
defined in the diagram (12). Its R-points are R[t, t−1]-morphisms

M : R⊗ Λ → R⊗Λ such that M is an isomorphism at all but one point x ∈ P1 − {0, 1,∞}. At x,
M gives upper modification associated to ω1. In addition, M needs to satisfy M(j0(a, b)) = ⋆1 for
some a ∈ T0 and b ∈ T∞. We now write down the matrix for such M explicitly.

9.2.2. First, we have M(Λi(⋆),Λi(⋆)) = (Λi(⋆1),Λi(⋆1)). Thus, with respect to the basis e1, ..., en,
any such M takes the form

M =




x1 tyn
y1 x2

y2
. . .

. . .

yn−1 xn



.

9.2.3. Second,M maps vi, vi of j0(a, b) to the corresponding data for ⋆1. If we let a = diag(a1, ..., an) ∈
T0 and b = diag(b1, ..., bn) ∈ T∞, then we obtain

M(aei) =M(aiei) = ei, M(bei) =M(biei) = w̃1ei = ei+1.

In view of the matrix form of M , these equations amount to

ai = x−1
i , bi = y−1

i .

9.2.4. Third, M maps the data Vn−1 and v of j0(a, b) to that of ⋆1, resulting in the equations

Mg̊〈e1, ..., en−1〉 = g̊〈e1, ..., en−1〉, Mg̊en = g̊en.

Using the explicit matrices of M and g̊ , the above equalities amount to

(28) x1 − y1 = xn − yn = xi + yi = 1, 2 ≤ i ≤ n− 1.

9.2.5. Finally, detM = x1 · · · xn − (−1)nty1 · · · yn vanishes for exactly one t ∈ P1 − {0, 1,∞}. If
we replace xi with −xi for 1 ≤ i ≤ n, and replace y1, yn with −y1,−yn, then detM vanishes at
π2(M) =

∏n
i=1

xi
yi
. Under this substitution, xi = yi − 1, 1 ≤ i ≤ n. Putting all this together, we

obtain the description of the Hecke stack given in §1.6.1.

9.3. Proof of Theorem 11 in the tame case. According to (13), the Hecke eigenvalue is given
by

EStd = π2!π
∗
1(Lχ ⊠ Lρ)[n − 1].

Our goal now is to show that EStd is geometrically isomorphic to the tame hypergeometric sheaf
H = H (ψ,χ1, ..., χn, ρ1, ..., ρn).

9.3.1. Since both H and EStd are local systems on Gm and H is irreducible, it is sufficient to show
that the Frobenius trace functions are equal up to a nonzero scalar. Now for a ∈ P1 − {0, 1,∞},
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we have

trEStd
(a) = tr(π2!π

∗
1(Lχ ⊠ Lρ)[n − 1])(a)

= (−1)n−1
∑

∏n
i=1

(yi−1)/yi=a

n∏

i=1

χi(1− yi)ρi(y
−1
i )ρ1(−1)ρn(−1)

= (−1)n−1
∑

∏n
i=1

(1−y−1
i )=a

n∏

i=1

χi(1− y−1
i )χ−1

i (−y−1
i )ρi(−y

−1
i )

n−1∏

i=2

ρi(−1)

=
∑

∏n
i=1

(1−yi)=a

ε

n∏

i=1

χi(1− yi)(χ
−1
i ρi)(−yi) (yi 7→ y−1

i , ε := (−1)n−1
n−1∏

i=2

ρi(−1))

=
∑

∏n
i=1

zi=a,zi 6=0,1

ε
n∏

i=1

χi(zi)(χ
−1
i ρi)(zi − 1) (zi = 1− yi)

9.3.2. On other hand, recall from §3.1.5 that the Frobenius trace of H is given by

trH (a) = (−1)n+n−1
∑

∏n
i=1 xi=a

∏n
i=1 yi

ψ(

n∑

i=1

(xi − yi))

n∏

i=1

χi(xi)ρi(y
−1
i )

= −
∑

∏n
i=1

zi=a,yi 6=0

ψ(
n∑

i=1

yi(zi − 1))
n∏

i=1

χi(zi)χi(yi)ρi(y
−1
i ) (zi := xi/yi)

= −
∑

∏n
i=1

zi=a,zi 6=0,1,yi 6=0

ψ(

n∑

i=1

yi(zi − 1))

n∏

i=1

χi(zi)(χ
−1
i ρi)(y

−1
i ).

9.3.3. The last step follows because the assumption χi 6= ρi implies that
∑

yi 6=0 χ
−1
i ρi(y

−1
i ) = 0.

We therefore obtain

trH (a) = −
∑

∏n
i=1

zi=a,zi 6=0,1,yi 6=0

ψ(

n∑

i=1

yi(zi − 1))

n∏

i=1

χi(zi)(χ
−1
i ρi)(y

−1
i )

= −
∑

∏n
i=1

zi=a,zi 6=0,1,wi 6=0

ψ(
n∑

i=1

wi)
n∏

i=1

(χiρ
−1
i )(wi)χi(zi)(χ

−1
i ρi)(zi − 1) (wi = yi(zi − 1))

= −
∑

∏n
i=1 zi=a,zi 6=0,1

n∏

i=1

(
∑

wi 6=0

ψ(wi)(χiρ
−1
i )(wi))

n∏

i=1

χi(zi)(χ
−1
i ρi)(zi − 1)

= −(

n∏

i=1

G(ψ,χiρ
−1
i ))

∑
∏n

i=1
zi=a,zi 6=0,1

n∏

i=1

χi(zi)(χ
−1
i ρi)(zi − 1)

= −(
n∏

i=1

G(ψ,χiρ
−1
i ))ε−1 · trEStd

(a),

where G(ψ,χiρ
−1
i ) =

∑
wi 6=0 ψ(wi)(χiρ

−1
i )(wi) 6= 0 is a Gauss sum. This concludes the proof of

Theorem 11 in the tame case. �

9.3.4. We note that one can reformulate above proof in a purely sheaf-theoretic language (at the
cost of notational inconveniences). Thus, the result also holds in characteristic 0.
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10. Rigidity in the wild case

The goal of this section is to prove Theorem 10 in the wild case. We start by parameterising the
objects of BunG′ and describing their automorphisms.

10.1. Parameterisation of G′-bundles. Recall that the level structure at ∞ is given in terms of
the parahoric P associated to the barycentre ρ̌/d. Let I ′ be an Iwahori contained in P . Then, we
have a decomposition

BunG′(k) = I−\G(k((s)))/J =
⋃

w̃∈W̃

I−\I−w̃I ′/J =
⋃

w̃∈W̃

I−\I−w̃P/J =
⋃

w̃∈W̃ ,ℓ∈L

I−\I−w̃ℓJ/J,

The first equality follows because every G′-bundle on P1 − {∞} is trivialisable (cf. §8.1.1), the
second from the Birkhoff decomposition, the third from the fact that I ′ ⊆ P , and the fourth from
P = LP (1) = LJ .

10.1.1. The previous paragraph implies that to every pair (w̃, ℓ) ∈ W̃ × L, we can associate an
element E ∈ BunG′(k). Moreover, if we let x = w̃ℓ, then

AutG′(E) ≃ StabI−(xJ) = J ∩ x−1I−x.

Clearly, there can be two different elements of W̃ × L mapping to the same element of BunG′(k).
Our next goal is to formulate a refinement of the above parametrisation using a convenient subset

of W̃ × L. To this end, we introduce an auxiliary subgroup Υ ⊆ L.

10.1.2. The subgroup Υ. Let BL be the Borel subgroup of L and UL its unipotent radical. Recall
that J = BφP (1), where Bφ ⊆ BL is a Borel of Lφ ⊆ L. Let Tφ and Uφ be, respectively, the
maximal torus and unipotent radical of Bφ. We can see from (19) that Uφ is generated by root
subgroups. We can therefore define a complement of Uφ in UL as follows. Let Υ ⊆ UL be the
subscheme defined by

(29) Υ :=
∏

α∈Φ(UL)−Φ(Uφ)

Uα.

Explicitly, we have:

Φ(Υ) = {αij | 1 ≤ i ≤ d, i+ d ≤ j ≤ n, j ≡ i mod d};

Φ(Uφ) = {αij | d+ 1 ≤ i ≤ n, i+ d ≤ j ≤ n, j ≡ i mod d}.

From the above discussions, one readily verifies the following:

Lemma 19. The scheme Υ is a commutative normal subgroup of UL and UL = Uφ⋉Υ. Moreover,
given β = αij ∈ Φ(Uφ), there exists a unique root α ∈ Φ(Υ) such that α + β ∈ Φ(G). Explicitly,
α = αpi, where p ∈ {1, 2, .., d} is determined by the requirement p ≡ i mod d. In this case,
α+ β = αpj ∈ Φ(G).

10.1.3. Refined parameterisation.

Proposition 20. Every element of BunG′(k) can be represented by a double coset I−xJ , where
x = w̃ℓ, and w̃ and ℓ satisfy:

(i) w̃α > 0 for all α ∈ ∆(L);
(ii) ℓ = wu, where w ∈WL and u ∈ Υ.

Moreover, if we write that u =
∏

α∈Φ(Υ)

uα, then we can assume uα is either 1 or exp(Eα).
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10.1.4. An auxiliary lemma. To prove this proposition, we need a lemma. Let B−
L ⊆ L be the Borel

opposite to BL.

Lemma 21. If w̃α > 0 for all α ∈ ∆(L), then L ∩ w̃−1I−w̃ = B−
L .

Proof. The assumption w̃α > 0 implies w̃(−α) < 0; thus, the one parameter subgroup U−α is in fact
a subgroup of w̃−1I−w̃ for all α ∈ ∆(L) ⊂ Φaff(G). These one parameter subgroups generate the
unipotent radical U−

L of B−
L . On the other hand, T ⊂ w̃−1I−w̃; thus, B−

L = TU−
L ⊆ L ∩ w̃−1I−w̃.

For the reverse inclusion, consider the Bruhat decomposition L =
⊔
w∈WL

B−
LwB

−
L . Since B

−
L is

already a subgroup of w̃−1I−w̃, we obtain

B−
LwB

−
L ∩ w̃−1I−w̃ 6= ∅ ⇔ B−

LwB
−
L ⊆ w̃−1I−w̃ ⇔ w ∈ w̃−1I−w̃ ⇔ w̃ww̃−1 ∈ I−.

Now the Birkhoff decomposition of G(k((s))) implies that w̃ww̃−1 ∈ I− if and only if w = 1. It
follows that L ∩ w̃−1I−w̃ ⊆ B−

L . �

10.1.5. Proof of Proposition 20. Let E ∈ BunG′(k) and represent E by a pair (w̃, ℓ) ∈ W̃ × L. For
any w in the Weyl group WL of L, we may replace w̃ and ℓ with, respectively, w̃w−1 and wℓ,
without changing the double coset I−w̃ℓJ . Thus, we may assume w̃α > 0 for all α ∈ ∆(L).

Next, using the Bruhat decomposition of L, we can write

ℓ = bwu, b ∈ B−
L , u ∈ UL, w ∈WL.

The previous lemma implies that w̃bw̃−1 ∈ I−. Thus, we may assume b = 1 without changing
the double coset I−w̃ℓJ . Also, since J = BφP (1) and Bφ = TφUφ, we may assume that u ∈ Υ.
Replacing u with its Tφ-conjugation would also not change the double coset. This concludes the
proof of the proposition. �

10.1.6. A lemma for future use.

Lemma 22. Assume x = w̃ℓ where w̃ and ℓ = wu are as in Proposition 20. Then

Bφ ∩ x
−1I−x = Bφ ∩ ℓ

−1B−
L ℓ = {tv ∈ TφUφ | (t−1ut)vu−1 ∈ UL ∩ w−1U−

L w}.

Proof. The first equality is immediate from Lemma 21. For the second equality, we have

Bφ ∩ ℓ
−1B−

L ℓ = {tv ∈ TφUφ | wutvu−1w−1 ∈ B−
L }

= {tv ∈ TφUφ | (wtw−1)w(t−1utvu−1)w−1 ∈ B−
L = TU−

L }

= {tv ∈ TφUφ | (t−1ut)vu−1 ∈ UL ∩ w−1U−
L w}.

�

10.2. Generic part of BunG′ . In this subsection, we find a natural candidate for the generic locus
of BunG′ .

10.2.1. The generic part of Υ. With respect to the adjoint action of Tφ on Υ, there is a unique open

dense orbit Υ̊ consisting of the elements in Υ whose Uα component is nontrivial for all α ∈ Φ(Υ).

Thus, Υ̊ = AdTφ (̊u), where

(30) ů := exp


 ∑

α∈Φ(Υ)

Eα


 .

We think of Υ̊ as the generic locus of Υ.

10.2.2. Conjugating J into G(O∞). To find the generic locus of BunG′ , it is convenient to conjugate

P into G(O∞). In §A.5, we construct an element w̃d ∈ W̃ which conjugates P to a parahoric
subgroup P ′ ⊂ G(O∞). Let J ′, U ′, Υ′, etc. denote the conjugates of J , U , Υ, etc..
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10.2.3. Generic part of Bun(Iopp, J ′). Let Bun(Iopp, J ′) denote the moduli stack of G-bundles with
Iopp-level structure at 0 and J ′-level structure at ∞. As J and J ′ are conjugate, Bun(Iopp, J ′) is
isomorphic to BunG′ . Note that the standard Iwahori has a decomposition I = TΥ′J ′. Thus,
analogous to §10.1, we have:

Bun(Iopp, J ′)(k) = I−\G(k((s)))/J ′ =
⊔

w̃∈W̃

I−\I−w̃I/J ′ =
⊔

w̃∈W̃

I−\I−w̃Υ′J ′/J ′.

As J ′ contains I, we have a forgetful map Bun(Iopp, J ′) → Bun(Iopp, I). As discussed in §8.1.1,
the generic locus of Bun(Iopp, I) consists of bundles labelled by w̃ ∈ Ω. Thus, it is natural to expect
that the generic locus of Bun(Iopp, J ′) consists of bundles labelled by pairs (w̃, g), where w̃ ∈ Ω

and g ∈ Υ̊′.

10.2.4. Returning to BunG′ , in view of above considerations, it is natural to expect that the generic

locus of BunG′ consists of bundles labelled by (w̃, g), where w̃ ∈ Ωw̃d and g ∈ Υ̊. We confirm this
expectation in the next subsection.

10.3. Automorphisms of G′-bundles.

Proposition 23. Let E ∈ BunG′ be a bundle associated to I−xJ , where x = w̃ℓ, and w̃ and ℓ = wu
are as in Proposition 20. Then

(i) If u /∈ Υ̊, then Tj ⊆ (AutG′(E))◦ for some j ∈ {d+ 1, d+ 2, ..., n}.

(ii) If u ∈ Υ̊ and w 6= 1, let β = αij be a root in Φ(UL ∩ w−1U−
L w). Then

(a) If β ∈ Φ(Υ), then Tj ⊆ (AutG′(E))◦.
(b) If β ∈ Φ(Uφ), then there exists a one-dimensional subscheme Yβ ⊂ (AutG′(E))◦ of the

form Yβ = {tv(t) ∈ Bφ | t ∈ Tj , v(t) ∈ Uβ}.

(iii) If u ∈ Υ̊, w = 1, and w̃ /∈ Ωw̃d, then for some lowest weight δ of the L-module V , we have
ℓ−1Uδℓ ⊆ (AutG′(E))◦.

(iv) If u ∈ Υ̊, w = 1, and w̃ ∈ Ωw̃d, then AutG′(E) is trivial.

We now discuss the proof of this proposition.

10.3.1. For (i), write u = exp(
∑

α∈Φ(Υ) λαEα). By assumption, λα = 0 for some α = αij ∈ Φ(Υ).

One easily verifies that Tj commutes with u; thus, by Lemma 22,

Tj ⊆ (Bφ ∩ ℓ
−1B−

L ℓ)
◦ ⊆ (J ∩ x−1I−x)◦ = (AutG′(E))◦.

10.3.2. For part (ii).(a), let t := diag(1, ..., tj , ..., 1) ∈ Tj. We claim that t ∈ Bφ ∩ ℓ
−1B−

L ℓ. To see

this, note that t−1utu−1 ∈ Uβ ⊂ UL ∩w
−1U−

L w, where the first inclusion follows from the fact that
α(t) = 1 for all α ∈ Φ(Υ)− {β}. As above, the result follows from Lemma 22.

10.3.3. For part (ii).(b), note that any u ∈ Υ̊ is Tφ-conjugate to ů; thus, we may assume u = ů.
Let t = diag(1, ..., tj , .., 1) ∈ Tj and v = v(t) := exp((1 − tj)Eβ).

Claim: tv ∈ Bφ ∩ ℓ
−1B−

L ℓ.
In view of Lemma 22, it is sufficient to show that t−1ut = vuv−1. To see the latter equality, note

that by Lemma 19, there exists a unique root α = αpi ∈ Υ such that α + β = αpj ∈ Φ(G). Thus,
if we let log(u) :=

∑
α∈Φ(Υ)Eα, then we obtain

vuv−1 = exp(v log(u)v−1) = exp(log(u) + (1− tj)[Eβ , log(u)])

= exp(log(u)− (1− tj)Epj) = exp(
∑

α∈Φ(Υ)

Eα − (1− tj)Epj) = t−1ut,
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establishing the claim. (Note that higher order terms in the expansion of v log(u)v−1 vanish because
2β + α is not a root.)

To conclude the proof of (ii).(b), let Yβ := {tv(t) | t ∈ Tj}. Then Yβ is a one-dimensional
subscheme of TjUβ and the above claim implies

Yβ ⊆ (Bφ ∩ ℓ
−1B−

L ℓ)
◦ ⊆ (J ∩ x−1I−x)◦.

10.3.4. For (iii), recall that by assumption, w̃α > 0 for all α ∈ ∆(L). Thus, if w̃ /∈ Ωw̃d, then by
Proposition 27, there exist lowest weight δ ∈ wt−(V ) such that w̃δ < 0. Therefore, we obtain

w̃Uδw̃
−1 ⊆ w̃P (1)w̃−1 ∩ I− =⇒ ℓ−1Uδℓ ⊆ (P (1) ∩ x−1I−x)◦ ⊆ (J ∩ x−1I−x)◦.

10.3.5. Finally, for (iv), first observe that P ∩x−1I−x = ℓ−1(P ∩ w̃−1I−w̃)ℓ. Now P ∩ w̃−1I−w̃ is
generated by T and affine root subgroups, and these affine root subgroups are contained in either
L or P (1). Thus, we have P ∩ w̃−1I−w̃ = (L∩ w̃−1I−w̃)(P (1)∩ w̃−1I−w̃). Conjugating by ℓ−1, we
obtain

P ∩ x−1I−x = (L ∩ x−1I−x)(P (1) ∩ x−1I−x).

As J = BφP (1) ⊆ P , this implies

AutG′(E) = J ∩ x−1I−x = (Bφ ∩ x
−1I−x)(P (1) ∩ x−1I−x).

Now the fact that w̃ ∈ Ωw̃d implies that w̃P w̃−1 contains the standard Iwahori I. Thus, w̃P (1)w̃−1 ⊆
I(1), which in turn implies

P (1) ∩ x−1I−x = x−1(w̃P (1)w̃−1 ∩ I−)x = {1}.

On the other hand, as UL ∩ U−
L = {1}, Lemma 22 implies

Bφ ∩ ℓ
−1BLℓ = {tv ∈ TφUφ | t

−1utvu−1 = 1}.

We now show that for every tv in the above set, t = v = 1. Indeed, since v ∈ Uφ and t−1u−1tu ∈ Υ,

the requirement v = t−1u−1tu implies that v ∈ Uφ ∩Υ = {1}. Thus, v = 1 and tu = ut. As u ∈ Υ̊
and t ∈ Tφ, we get t ∈ StabTφ(u) = {1}. Thus, AutG′(E) = 1. This concludes the proof of the
proposition. �

10.3.6. Generic locus. As discussed in §4.3.1, the Kottwitz homomorphism defines an isomorphism
π0(BunG′) ≃ Z. Let w̃1 denote the generator of Ω specified in §2.3.2. The above proposition
immediately implies:

Corollary 24. For each α ∈ Z, the generic locus ˚BunαG′ consists of one bundle, namely, the one
labelled by (w̃α1 w̃d, ů).

10.4. Proof of strict rigidity. The fact that the coarse moduli space of Bun0Z is a point was
discussed in §4.3.4. It remains to determine the relevant elements on BunG′ . Let E ∈ BunG′ be a
bundle associated to I−xJ , where x = w̃ℓ, and w̃ and ℓ = wu are as in Proposition 20. Recall that
we have a restriction map (14)

Res : AutG′(E) ≃ J ∩ x−1I−x→ Aut(E|O0
)×Aut(E|O∞

) ≃ Iopp × J

h 7→ (xhx−1, h).

The bundle E is called relevant if the pullback of γS = Lχ ⊠Lµ to (AutG′(E))◦ via Res is constant.

10.4.1. If ů ∈ Υ̊ and w̃ ∈ Ωw̃d, then Proposition 23 implies that E is relevant. This gives one
relevant point on each component of BunG′ . It remains to show that all other points are irrelevant.
To this end, it suffices to show that the Frobenius trace of Res∗(γS) is non-constant over the
subscheme of (AutG′(E))◦ given in Parts (i), (ii), (iii) of Proposition 23.
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10.4.2. Suppose u 6∈ Υ̊ and let t := (1, ..., 1, tj , 1, ..., 1) ∈ Tj . The Frobenius trace of Res∗(γS) over
Tj is

χ(w̃wutu−1w−1w̃−1)µ(t) = χ(w̃wtw−1w̃−1)ρ(t) = χ−1
l (tj)ρj−d(tj), ∀tj ∈ k∗.

Here, l is determined by the requirement (w̃w)Tj(w̃w)
−1 = Tl, and the first equality comes from

the fact that χ is trivial on Iopp(1) . If this trace function constantly equals 1, then χl = ρj−d,
which contradicts the assumption that χi’s and ρj’s are disjoint.

10.4.3. Suppose u ∈ Υ̊ and w 6= 1, and let β = αij be a root of UL ∩ w−1U−
L w. As any such u is

conjugate to ů by Tφ, we may assume u = ů. Let t = (1, ..., 1, tj , 1, ..., 1) ∈ Tj . Now we have two
cases:

(a) If β ∈ Φ(Υ), then (as above) the trace function in question restricted to Tj is χ
−1
l ρj−d and

therefore non-constant.
(b) Suppose β ∈ Φ(Uφ). Let t = (1, ..., 1, tj , 1, ..., 1) ∈ Tj and tv(t) ∈ Yβ. By a similar argument,

the Frobenius trace function over Yβ equals

χ((w̃wu)tv(t)(w̃wu)−1)ρ(tv(t)) = χ−1
l (tj)ρj−d(tj),

and is therefore non-constant.

10.4.4. Finally, suppose u ∈ Υ̊, w = 1, and w̃ /∈ Ωw̃d. Then there exists a lowest weight δ
of the L-module V such that ℓ−1Uδℓ ⊆ (AutG′(E))◦. Suppose the Frobenius trace function is
constant over ℓ−1Uδℓ. Let Eδ be a basis of uδ = Lie(Uδ). Then Uδ = {exp(λEδ)|λ ∈ k}. As
V = P (1)/P (2) ≃ p(1)/p(2), we may regard φ as a linear function on p(1)/p(2). Thus, the
Frobenius trace function over ℓ−1Uδℓ is

χ((w̃ℓ)ℓ−1 exp(λEδ)ℓ(w̃ℓ)
−1)µ(ℓ−1 exp(λEδ)ℓ) = ψφ(λu−1Eδu) = ψ(λφ(u−1Eδu)).

If this function equals 1 for all λ, then we obtain φ(u−1Eδu) = 0. Note that replacing u with a Tφ-

conjugate does not change the double coset; thus, the above equality holds for all u ∈ AdTφ (̊u) = Υ̊.

Moreover, φ is stabilised by Uφ, so φ(AduEδ) = 0 for all u ∈ Υ̊Uφ. As Υ̊Uφ is dense in ΥUφ = UL,
we obtain φ(AdUL

(Eδ)) = 0. Taking the differential, we get φ(aduL(Eδ)) = 0. Since δ is a lowest
weight of V , Eδ and aduL(Eδ) span the irreducible submodule Vδ ⊆ V with lowest weight δ. Thus,
φ(Vδ) = 0, which is a contradiction to Corollary 31. �

11. Hecke eigenvalue in the wild case

The goal of this section is to prove Theorem 11 in the wild case. Since the proof is similar to the
tame setting, we will only sketch the main steps.

11.1. Alternative description of BunG. It will be convenient to replace the parahoric P at ∞
with its conjugate P ′ ⊂ G(O), defined in §A.5. Note that this does not change the isomorphism
type of the stack BunG.

11.1.1. Let τ := [n/d] and σ := n− τd. Recall the integers ni defined in (34). Let Bun1,2 be the
classifying stack of (E, F ∗E, {vi}1≤i≤n, F∗E, {vi}1≤i≤d), where:

• E is vector bundle of rank n on P1;
• E = F 0E ⊃ F 1E ⊃ · · · ⊃ FnE = E(−{0}) is a decreasing filtration F ∗E giving a complete
flag of the fibre of E at 0;

• vi ∈ F i−1E/F iE is a non-zero vector for each 1 ≤ i ≤ n;
• E(−{∞}) = F0E ⊂ F1E ⊂ · · · ⊂ FdE = E is an increasing filtration F∗E giving a partial
flag (of type P ′) of the fibre of E at ∞ such that dimFiE/Fi−1E = τ + 1 for 1 ≤ i ≤ σ;
dimFiE/Fi−1E = τ for σ + 1 ≤ i ≤ d;
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• {vni+1, vni+2, ..., vni+1
} is a set of vectors in FiE/Fi−2E whose image in FiE/Fi−1E is a basis.

Here, F−1E = Fd−1E(−{∞}) and F−2E = Fd−2E(−{∞}).

11.1.2. As in the tame setting, we can reformulate the moduli problem by choosing a trivialisation

of E over P1 − {0,∞}. Let B̃un1,2 be the stack of bundles classifying the data (Λ∗, {vi},Λ∗, {vi}),
where the latter is defined analogously to the tame case. Then, we have isomorphisms of stacks

BunG ≃ Bun1,2 ≃ B̃un1,2/G(k[t, t
−1]).

Let Bunα1,2 be the substack classifying data with degree α ∈ Z. These are the components of Bun1,2.

11.1.3. Note that after conjugation by w̃d, the relevant points in BunG′ become I−w̃ů′J ′, where
w̃ ∈ Ω. Moreover, the inclusion of a relevant orbit jα : O →֒ BunαG can be explicitly described as
follows:

LS = T ×Bφ′V
′ ≃ Oα = I−(1)\I−(1)T w̃α1 ů

′J ′/P ′(2) →֒ BunαG ≃ Bunα1,2.

11.1.4. We can describe the latter embedding in terms of lattices. To this end, let ⋆0 be the
G(k[t, t−1])-orbit of (Λ∗(⋆0), v

i(⋆0),Λ∗(⋆0), vi(⋆0)) where

• Λi(⋆0) = Span{ej |j > i}, 1 ≤ i ≤ n;
• vi(⋆0) = ei+1;
• Λi(⋆0) = Span{ej |j ≤ ni+1}, 1 ≤ i ≤ d;
• vi(⋆0) = ei, 1 ≤ i ≤ d.

The map jα : LS = T ×Bφ′V
′ →֒ Bunα1,2 is then given by

(t, g) 7→ (Λi(⋆0), t · ei+1, w̃
α
1 ů

′g · Λi(⋆0), w̃
α
1 g · ei).

11.2. Relevant part of the Hecke stack. For i ∈ {1, 2, ..., d}, set tni+1 := x−1
i . Let j(k) be the

k-th smallest number in the set {j ∈ {1, 2, ..., n} | j 6= 1 + ni, ∀i} and define tj(k) := (1 − yk)
−1.

Similar, but more involved, computations as the tame setting gives:

Proposition 25. Consider the correspondence

G̊Rω1
= Gd

m × (Gm − {1})n−d

Gn
m ×Gn−d

m ×Ga P1 − {0,∞},

π′

1 π2

where

π′1(xi, yj) = (t1, ..., tn, y
−1
1 , ..., y−1

n−d,

d∑

i=1

xi, ), π2(xi, yj) =

d∏

i=1

xi

n−d∏

j=1

(1− y−1
j ).

Then the Hecke eigenvalue is EStd ≃ π2!(π
′
1)

∗(Lχ ⊠Lρ ⊠ Lψ)[n− 1].

In the above proposition, π2 is as in (12) and π′1 is the composition of π1 of (12) with φ and the

projection from Bφ to Tφ. Note that if d = n, then G̊Rω1
≃ Gn

m and the above correspondence
coincides with the Kloosterman diagram [HNY13, prop. 3.4].
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11.3. Proof of Theorem 11 in the wild case. To show that EStd is (geometrically) isomorphic
to H , it is sufficient to show that their trace functions are a scalar multiple of each other. Similar
computation to the tame case shows that for every a ∈ P1 − {0,∞}, we have

trEStd
(a) · (−1)n+m−1

n−d∏

i=1

ρi(−1)


∑

ai 6=0

ψ(ai)χiρ
−1
i (ai)


 = trH (χ,ρ) .

�

Appendix A. Principal gradings

In this section, we gather some facts about principal gradings of reductive Lie algebras. The
results are probably known to the experts but we could not find an appropriate reference.

A.1. Notation.

A.1.1. Let G be a split reductive group over a field k. Let T be a maximal split torus, X∗(T ) =
Hom(Gm, T ) the group of cocharacters and AQ = Hom(Gm, T ) ⊗ Q the rational apartment. Let
g := Lie(G) and Φ the root system of g. For each α ∈ Φ, let gα ⊂ g be the corresponding root
space. Let h denote the Coxeter number of G. We fix, once and for all, a Borel subgroup B ⊂ G.
Let ρ̌ denote the half sum of positive coroots.

A.1.2. Let Gaff = G((s)) denote the loop group of G with Lie algebra gaff and affine roots Φaff .
For each α ∈ Φaff , let gaffα ⊂ gaff be the corresponding affine root space. Note that affine roots are
of the form α +m where α ∈ Φ and m ∈ Z. We call α the finite part of α +m. Thus, we have a
map

(31) Fin : Φaff → Φ

sending an affine root to its finite part.

A.2. Inner gradings.

A.2.1. Let x ∈ AQ be an element of order d. By definition, d is the smallest positive integer such
that α(x) ∈ 1

dZ for all α ∈ Φaff . For i ∈ Z/dZ, let

Φi := {α ∈ Φ |α(x)− i/d ∈ Z}.

Define

(32) g =
⊕

i∈Z/dZ

gi, gi :=





t⊕
⊕

α∈Φ0

gα i = 0;

⊕

α∈Φi

gα i 6= 0.

Kac proved that, up to conjugation, these are all the inner gradings of g.

A.2.2. A grading is called principal (or N -regular) if g1 contains a principal nilpotent element. Us-
ing Kostant’s description of principal nilpotent elements, it is easy to see that for all d ∈ {1, 2, .., h},
the grading defined by x = ρ̌/d is principal. According to [RLYG12], up to conjugation, every inner
principal grading is of this form.

A.2.3. Vinberg pairs. Let G0 denote the connected subgroup of G whose Lie algebra is g0. Then
G0 is a split reductive group. The pair (G0, g1) was studied extensively by Vinberg under the name
of “θ-groups”. We refer to (G0, g1) as a Vinberg pair. The adjoint action of G on g restricts to an
action of G0 on g1, called the (finite) Vinberg representation.
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A.2.4. Affine gradings. A point x ∈ AQ of order d also defines a grading of gaff . Namely, let

Φaff
i := {α ∈ Φaff |α(x) = i/d}

and define

gaff =
⊕

i∈Z

gaffi ,

where

gaff0 := t⊕
⊕

α∈Φaff
0

gα gaffi :=





⊕

α∈Φaff
i

gα 1 ≤ i ≤ d− 1;

gaffi+kd = skgaffi , k ∈ Z.

This is sometimes referred to as the Kac–Moy–Prasad grading of gaff , cf. [Che17].

A.2.5. Affine Vinberg pairs. Let L := Gaff
0 ⊂ Gaff be the reductive subgroup of Gaff with Lie

algebra g0, and V := gaff1 . Then L acts on V via the adjoint action. One readily checks that Fin

(31) defines bijections

Φaff(L) = Φaff
0 ↔ Φ(G0), Φaff(V ) = Φaff

1 ↔ Φ(g1).

Thus, we have canonical isomorphisms L ≃ G0 and V ≃ g1, giving an identification of the finite
and affine Vinberg representations.

A.2.6. Moy–Prasad subalgebras. For each non-negative integer j, define

p(j) :=
⊕

i≥j

gaffi .

Then p = p(0) is a parahoric subalgebra of gaff and p(j)’s are its Moy–Prasad subalgebras. Let
P be the corresponding (connected) parahoric group with Moy–Prasad subgroups P (i). Then, we
have isomorphisms

P/P (1) ≃ Gaff
0 ≃ G0, P (1)/P (2) ≃ p(1)/p(2) = gaff1 ≃ g1.

A.3. Barycentres.

A.3.1. Alcoves. Let C ⊂ A be an alcove. By definition, the boundary C − C consists of root
hyperplane {Hα}, where α runs over a basis ∆aff(C) of Φaff . The map C 7→ ∆aff(C) defines a
bijection between alcoves and bases of Φaff .

A.3.2. Barycentre. An element x ∈ AQ of order d is called a barycentre if there exists an alcove
C such that for all α ∈ ∆aff(C), α(x) is either 0 or 1

d . If this condition holds for some alcove C,
then it holds for all alcoves containing x in their closure. Thus, the definition is independent of the
choice of C.

Example 26. One can show (e.g. using [RY14, Lemma 3.1]) that ρ̌/d is a barycentre if and only if
d ∈ {1, ..., h}.
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A.3.3. Characterisation via the Vinberg representation. Recall that every x ∈ AQ gives rise to an
affine Vinberg pair (L, V ). The chosen Borel B ⊂ G determines a basis ∆(L) ⊂ Φaff(L) and lowest
weights wt−(V ) ⊂ Φaff(V ) of the L-module V . Let

(33) Θ(x) := ∆(L) ⊔ wt−(V ) ⊂ Φaff .

Proposition 27. An element x ∈ AQ is a barycentre if and only if Θ(x) is a basis of Φaff .

Convention 28. For a barycentre x, we let Cx denote the alcove corresponding to the basis Θ(x).

Proof. By the definition of L and V , we have

α(x) =

{
0 α ∈ ∆(L);
1
d α ∈ wt−(V ).

Thus, if Θ(x) is a basis of Φaff , then x is a barycentre (of the facet of the alcove corresponding to
Θ(x)).

Conversely, suppose x is a barycentre. Let C be any alcove containing x in its closure. Let us
write ∆aff(C) = {β1, ..., βr+1}, where

βi(x) =

{
0 i ∈ {1, ..., l};
1
d i ∈ {l + 1, ..., r + 1}.

A priori, {β1, ..., βl} ⊆ Φ(L) and {βl+1, ..., βr+1} ⊆ Φ(V ).
We claim that {β1, ..., βl} is, in fact, a basis for Φ(L). Indeed, as ∆aff(C) is a basis for Φaff ,

every affine root has a unique expression α =
∑r+1

i=1 niβi, where all ni’s are either nonnegative or
non-positive. In particular, for α ∈ Φ(L), we have

0 = α(x) =

l∑

i=1

niβi(x) +

r+1∑

i=l+1

niβi(x) =
1

d

r+1∑

i=l+1

ni.

Therefore, ni = 0 for all l + 1 ≤ i ≤ r + 1. Thus, every root of L has a unique expression of the

form
∑l

i=1 niβi, establishing the claim.
It follows that there exists an element w ∈ WL such that w{β1, ..., βl} = ∆(L). Since w · C also

contains x in its closure, we can assume without loss of generality that w = 1.
It remains to show that {βl+1, ..., βr+1} = wt−(V ). Let θ ∈ wt−(V ) and write θ =

∑r+1
i=1 niβi,

where all ni have the same sign. Then

1

d
= θ(x) =

l∑

i=1

niβi(x) +
r+1∑

i=l+1

niβi(x) =
r+1∑

i=l+1

ni
1

d
.

Thus, there exists a unique j ∈ {l + 1, ..., r + 1} such that nj = 1 and ni = 0 for all other i in this
set. Moreover, as all ni have the same sign, we obtain that ni ≥ 0 for all i ∈ {1, ..., l}. Next, note
that

θ +

l∑

i=1

ni(−βi) = βj ∈ Φ(V ).

Since {β1, ..., βl} are positive roots of L and θ is a lowest weight, the above relation implies that
θ = βj . It follows that wt

−(V ) ⊆ {βl+1, ..., βr+1}.
To see the reverse inclusion, note that every weight can be obtained from a lowest weight; thus,

in particular, for every βκ, κ ∈ {l + 1, ..., r + 1}, there exists a lowest weight θ and integers ni ≥ 0
such

βκ = θ +
l∑

i=1

niβi.
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By the above discussions, θ = βj for some j ∈ {l+1, ..., r+1}. By the uniqueness of the expression
of roots as combination of simple affine roots, we conclude that ni = 0 for i = 1, ..., l and βκ = θ;
thus {βl+1, ..., βr+1} ⊆ wt−(V ). This completes the proof of the proposition.

�

A.3.4. The above proof gives us some information about the Vinberg representation:

Corollary 29. If x is a barycentre of order bigger than one, then V is a direct sum of r + 1 − l
irreducible L-submodules, where r and l are the semisimple ranks of G and L, respectively.

It would be interesting to further understand the pair (L, V ) and the structure of the L-module
V . In the next subsection, we prove some results in this direction for GLn.

A.3.5. Normalised Kac coordinate. Let us write ∆aff = {α0, α1, ..., αr}. Let x ∈ AQ be an element

of order d. Let w̃ ∈ W̃ be an element of the Iwahori-Weyl group which maps x into the closure of
the fundamental alcove. The normalised Kac coordinates of x is

d · (α0(w̃x), ..., αr(w̃x)) ∈ Zr+1
≥0 .

The above proposition shows that the normalised Kac coordinates of a barycentre consists of l zeros
and r+1− l ones. (Of course, the exact location of zeros and ones depends on the chosen ordering
on ∆aff .)

A.4. Inner principal gradings for GLn. Henceforth, we restrict to the case G = GLn and
use the notation of §2. So elements of G are denoted by (aij) and roots by αij . Fix an integer
d ∈ {1, 2, ..., n} and consider the (principal) grading of g defined by the barycentre x = ρ̌/d. Our
goal is to understand the pair (G0, g1) and the corresponding Vinberg representation. Note that if
d = 1, then (G0, g1) = (G, g) and the Vinberg representation is simply the adjoint representation.
Thus, we may assume d > 1 when convenient.

A.4.1. First, note that the definition of the grading (32) implies

G0 = 〈T,Uα | ht(α) ≡ 0 mod d〉 = {(aij) ∈ G | aij = 0 when i 6≡ j mod d},

and
g1 =

⊕

ht(α)≡1 mod d

gα =
⊕

j≡i+1 mod d

Span{Eij}.

A.4.2. Next, define

Gi := {(apq) ∈ G | p 6= q : apq = 0 unless p ≡ q ≡ i mod d; app = 1, p 6≡ i mod d},

and
Vi :=

⊕

p≡i, q≡i+1mod d

Span{Epq}.

Proposition 30. Let τ := [n/d] and σ := n− τd. Let ∆(G0) be the set of simple root of G0. Then

(i) G0 =
∏d
i=1Gi, where Gi ≃ GLτ+1 for 1 ≤ i ≤ σ and Gi ≃ GLτ for σ + 1 ≤ i ≤ d.

Moreover,
∆(G0) = {αi,i+d | 1 ≤ i ≤ n− d}.

(ii) g1 =
⊕d

i=1 Vi. Moreover, when d > 1, each Vi is an irreducible G0-representation with
lowest weight

α(i) :=





αi+τd,i+1 1 ≤ i ≤ σ;

αi+(τ−1)d,i+1 σ + 1 ≤ i ≤ d− 1;

ατd,1 i = d.
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Proof. Part (i) is easily verified from the definition. For (ii), note that G0 maps the root subspace
gαij

into direct sum of several gαi′j′
where i ≡ i′, j ≡ j′ mod d. It follows that Vi is an G0-

submodule of g1. Now the weights in Vi are of the form αpq, p ≡ i and q ≡ i+ 1 modulo d. Thus,
the lowest weight is αi+t′d,i+1 or αt′d,1 for maximal possible t′, giving the above formula. �

A.4.3. The functional φsp. Recall the functional φsp ∈ g∗1 defined in (17). The above proposition
immediately implies a fundamental property of this functional:

Corollary 31. The restriction of φsp to every irreducible constituent Vi ⊆ V is non-zero.

A.4.4. Explicit description of Θ(x). The above proposition also gives a description of the affine
roots Θ(x) associated to x (33). Let wt−(g1) = {α(1), α(2), ..., α(d)}. Let (k1, ..., kn) be an ordering
of {1, 2, ..., n} defined as follows:

(k1, k2, ..., kn) = (1, 1 + d, 1 + 2d, ..., 1 + τd, 2, 2 + d, ..., (τ − 1)d, τd).

By convention, kn+1 = 1. Recall that n = τd+ σ, where 0 ≤ σ ≤ d− 1. For i ∈ {1, 2, ..., d+ 1}, let

(34) ni :=

{
(i− 1)(τ + 1) 1 ≤ i ≤ σ + 1;

σ(τ + 1) + (i− σ − 1)τ σ + 2 ≤ i ≤ d+ 1.

Proposition 30 then implies:

Lemma 32. The map Fin (31) defines a bijection between Θ(x) and {αki,ki+1
| 1 ≤ i ≤ n}. Under

this bijection, wt−(V ) is mapped to {αkni
,kni+1

| 2 ≤ i ≤ d+ 1}.

A.5. Moving to the fundamental alcove. Recall that in Conventions 28, we defined a canonical
alcove Cx containing x = ρ̌/d in the closure. Note that Cx is not, in general, the fundamental alcove.
It will be convenient to use the Iwahori–Weyl group to move x into the closure of the fundamental
alcove.

A.5.1. Let w̃d be an element of the Iwahori–Weyl group W̃ such that w̃dCx is the fundamental

alcove. Note that w̃d is unique, up to the stabiliser Ω ⊂ W̃ of fundamental alcove. In particular,
the finite part of w̃d, denoted by wx ∈ W = Sn, is unique, up to translations by an n-cycle. We
assume, without the loss of generality, that wx fixes 1. Lemma 32 then implies:

Corollary 33. For all i ∈ {1, 2, ..., n}, wx(ki) = i.

A.5.2. Normalised Kac Coordinates. Let x′ := w̃d · x. By definition, x′ is in the closure of the
fundamental alcove. The following lemma gives the normalised Kac coordinates of x:

Lemma 34. We have αj(x
′) =

{
1/d j = ni for some i ∈ {2, ..., d + 1};

0 otherwise.

Proof. By Corollary 33 and Lemma 32, we have w̃d.wt
−(V ) = {αn2

, ..., αnd+1
} ⊂ ∆aff(G) where,

by convention, αnd+1
= αn = α0 = 1 + αn,1. �

A.5.3. The associate Vinberg pair. Let (G′
0, g

′
1) denote the Vinberg pair associated to x′. Proposi-

tion 30 implies that G′
0 is the Levi subgroup of G = GLn given by

(35) G′
0 = GLτ+1 × ...×GLτ+1 ×GLτ × ...×GLτ .
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Here, there are σ many GLτ+1’s and d− σ many GLτ ’s. Proposition 30 also implies that g′1 ⊂ g is
given by

g′1 =




0 Matτ+1,τ+1

. . .
. . .

0 Matτ+1,τ+1

0 Matτ+1,τ

0 Matτ,τ
. . .

. . .

0 Matτ,τ
Matτ,τ+1 0




A.5.4. The character φ′sp. Recall the functional φsp ∈ g∗1 defined by (17). Conjugating by w̃d, we

obtain the functional on g′1 given by

(36) φ′sp = E∗
1+n1,1+n2

+ E∗
1+n2,1+n3

+ · · ·+ E∗
1+nd−1,1+nd

+ E∗
1+nd,1+n1

.

Note that the stabiliser of φ′sp (under the action of G′
0 on (g′1)

∗), is ZL′
φ′, where Z is the centre and

L′
φ′ ⊂ G′

0 is the block-diagonal subgroup defined by

(37) L′
φ′ := diag

((
1

GLτ (k)

)
, · · · ,

(
1

GLτ (k)

)
,

(
1

GLτ−1(k)

)
, · · · ,

(
1

GLτ−1(k)

))
.

Here, there are σ many GLτ and d− σ many GLτ−1.

A.5.5. Subgroups of the positive loop group. Associated to x′, we have the parahoric P ′ ⊂ G(O)
and the corresponding affine Vinberg pair

(L′, V ′) := (P ′/P ′(1), P ′(1)/P ′(2)) ≃ (G′
0, g

′
1).

The functional φ′sp defines a character P ′(1). Let Bφ′ denote the subgroup of L′
φ′ consisting of

upper triangular matrices. Let J ′ be the subgroup P ′ defined by J ′ := Bφ′ ⋉ P ′(1).

Lemma 35. We have dim(G(O)/J ′) = dim(B).

Proof. Observe that

dim(G(O)/J ′) = dim(G(O)/P ′(1)) − dim(Bφ′) = dim(B) + dim(UL′)− dim(Bφ′),

where UL′ is the subgroup of L′ consisting of unipotent upper triangular matrices. Thus, the
lemma amounts to the statement dim(Bφ′) = dim(UL′). This follows immediately from the explicit
description of L′ ≃ G′

0 (35) and L′
φ′ (37). �
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