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Semiconductors with OðmeVÞ band gaps have been shown to be promising targets to search for sub-
MeV mass dark matter (DM). In this paper we focus on a class of materials where such narrow band gaps
arise naturally as a consequence of spin-orbit coupling (SOC). Specifically, we are interested in computing
DM-electron scattering and absorption rates in these materials using state-of-the-art density functional
theory techniques. To do this, we extend the DM interaction rate calculation to include SOC effects which
necessitates a generalization to spin-dependent wave functions. We apply our new formalism to calculate
limits for several DM benchmark models using an example ZrTe5 target and show that the inclusion of
SOC can substantially alter projected constraints.
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I. INTRODUCTION

The detection of dark matter (DM) through nongravita-
tional interactions remains one of the main goals of particle
physics. Electronic excitations have been identified as a
promising path to lead the direct detection of DM to
sub-GeV masses, a region not kinematically accessible
in experiments based on nuclear recoil. A variety of
avenues to search for DM-induced electronic excitations
have been proposed: ionization in noble gases [1–8],
excitations across a band gap in crystal targets [1–3,9–
19], superconductors [20,21], graphene [22], Dirac materi-
als [23–27], and transitions between molecular orbitals in
aromatic organics [28,29].
In this work we focus on a specific class of semi-

conductors for which OðmeVÞ band gaps [as opposed to
typicalOðeVÞ band gaps in semiconductors and insulators]
arise as a consequence of spin-orbit coupling (SOC) effects.
Targets with such small band gaps can probe DM masses
down to OðkeVÞ via scattering, and OðmeVÞ via absorp-
tion, while still suppressing thermal noise. Moreover, some
of these SOC materials have tunable band structures, a
property which makes them interesting candidates for
direct-detection experiments [27].

However, SOC effects introduce some intricacies in the
DM-electron interaction rate calculations since the Bloch
wave functions are no longer eigenstates of the Sz operator,
and therefore become two-component objects in spin space.
This implies that electron spin sums cannot be trivially
performed, and new transition form factors must be
computed. For example, spin-dependent vector-mediated
scattering can no longer be related to its spin-independent
counterpart, and must be computed from first principles.
We extend the framework in Sec. II and implement the new
spin-dependent form factors numerically within EXCEED-
DM [30,31], which is publicly available on Github.
To showcase the formalism developed in this paper, we

apply it to a target with important SOC effects: ZrTe5. This
material has been extensively studied in the context of DM
direct detection [24–26] as a leading candidate for Dirac
material targets. Dirac materials are characterized by low-
energy excitations which behave like free electrons and
satisfy the Dirac equation. The properties of the electronic
excitations can then be understood by a simple extension of
the standard QED results. An additional consequence is that
they have weak electromagnetic screening, even with a small
energy gap between the valence and conduction bands,
making them a desirable target for sub-MeV dark matter
coupled to electrons via a dark photon mediator [25]. In this
work, however, we focus only on ZrTe5 properties that stem
from its SOC nature, and we will not exploit any of those
deriving from itsDirac nature (which is still debated [32–43]).
To illustrate the variety of DMmodels that an SOC target

can probe, we consider several different DM models and
processes. Specifically, we study the following.
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(1) Standard spin-independent (SI) and spin-dependent
(SD) scattering via vector mediators: The funda-
mental interaction Lagrangians for these models take
the form

Lint ¼
(
ϕμðgχ χ̄γμχ þ geψ̄γμψÞ ðSIÞ;
ϕμðgχ χ̄γμγ5χ þ geψ̄γμγ5ψÞ ðSDÞ; ð1Þ

where ψ and χ are the electron and DM fermion
fields, respectively, and ϕμ is the dark mediator field.

(2) Scalar, pseudoscalar, and vector DM absorption: In
this case, the fundamental interaction Lagrangians
take the form

Lint ¼

8>><
>>:

geϕψ̄ψ ðscalar DMÞ;
geϕψ̄iγ5ψ ðpseudoscalar DMÞ;
geϕμψ̄γ

μψ ðvector DMÞ:
ð2Þ

The paper is organized as follows. In Sec. II we extend
the DM interaction rate formalism to account for spin-
dependent wave functions in general (spin-orbit coupled,
anisotropic) targets. Then, in Sec. III we apply these results
to the candidate material ZrTe5 and compare the results
obtained with and without the inclusion of SOC effects.
Further details of the density functional theory (DFT)
calculation are presented in Appendix A 1, and conver-
gence tests for the results shown in Sec. III can be found in
Appendix A 2.

II. DM INTERACTION RATE FORMALISM

In this section we derive the rates for transitions between
electronic energy levels induced by DM absorption and
scattering. For the targets of interest here, the electronic
energy levels can be labeled by a band index i and a
momentum k within the first Brillouin zone (1BZ), which
we collectively indicate with an index I ¼ fi; kg. The wave
functions of the electronic states can be written in the Bloch
form as

ΨIðxÞ ¼
1ffiffiffiffi
V

p eik·xuIðxÞ; ð3Þ

where the periodic Bloch wave functions uI are two-
component vectors in the spin basis, and V is the crystal
volume.

A. Absorption

In this subsection, we use the nonrelativistic (NR)
effective filed theory (EFT) developed in Ref. [19], and
summarized in Appendix B, to compute DM absorption
rates in materials with sizable SOC.

The absorption rate of a state can be derived from the
imaginary part of its self-energy. In a medium, care must be
taken due to the possible mixing between the DM, ϕ, and
standard model (SM) states (in our case the SM photon, A).
In the presence of such mixing effects, the DM absorption
rate is related to the imaginary part of the self-energy of the
“mostly DM” eigenstate, Πϕ̂ ϕ̂:

Γϕ
abs ¼ −

Zϕ̂

ω
ImΠϕ̂ ϕ̂; ð4Þ

where ω ≃mϕ is the energy of the DM state, and Zϕ̂ ¼
ð1 − dReΠϕ̂ ϕ̂

dω2 Þ−1 ¼ 1þOðg2eÞ is the wave-function renorm-
alization which we will approximate as unity in the
following. The total absorption rate per unit target mass,
R, is given by

R ¼ ρϕ
ρTmϕ

1

n

Xn
η¼1

Γϕη

abs; ð5Þ

where n is the number of degrees of freedom of the DM
particle (n ¼ 3 for vector DM and n ¼ 1 for scalar and
pseudoscalar DM) and we average over the incoming DM
polarizations. The DM density ρϕ is taken to be
0.4 GeVcm−3, and ρT is the target density.
To derive Πϕ̂ ϕ̂ we need to diagonalize the in-medium

self-energy matrix, which in our case contains a mixing
between the DM and the SM photon:

Seff ⊃ −
1

2

Z
d4QðAλ ϕη Þ

×

 
Πλλ0

AA Πλη0
Aϕ

Πηλ0
ϕA m2

ϕδ
ηη0 þ Πηη0

ϕϕ

!�
Aλ0

ϕη0

�
; ð6Þ

where the implicit sum over λ; λ0 (η; η0) runs over the photon
(DM) polarizations, and we have dropped the Lorentz
indices on Aλ (and ϕλ in the case of vector DM) for
simplicity. We have also introduced components of the self-
energy projected on the polarization vectors, defined as

Πλλ0 ≡ ϵλμΠμνϵλ
0�
ν ; ð7Þ

where ϵλμ are polarization vectors. In general, the polari-
zation vectors that diagonalize this matrix are not the
typical longitudinal and transverse polarization vectors,
since mixing can occur (i.e., ϵλT;μΠ

μν
AAϵ

λ0�
L;ν ≠ 0, where ϵT , ϵL

are the transverse and longitudinal polarization vectors,
respectively). However, one can always find an appropriate
basis to diagonalize the DM and photon self-energies. In
this basis, Eq. (6) becomes
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Seff ⊃ −
1

2

Z
d4QðAλ ϕη Þ

×

 
Πλ

AAδ
λλ0 Πλη0

Aϕ

Πηλ0
ϕA ðm2

ϕ þ Πη
ϕϕÞδηη

0

!�
Aλ0

ϕη0

�
; ð8Þ

where Πλ
AA and Πη

ϕϕ are the eigenvalues of Πλλ0
AA and Πηη0

ϕϕ,
respectively.
The off-diagonal terms in Eq. (8) are perturbatively

suppressed by a factor of ge with respect to the ΠAA terms.
Therefore, working at order Oðg2eÞ, we find that the in-
medium self-energy for the η polarization of the mostly DM
eigenstate is given by

Πη

ϕ̂ ϕ̂
¼ Πη

ϕϕ þ
X
λ

Πηλ
ϕAΠ

λη
Aϕ

m2
ϕ − Πλ

AA

: ð9Þ

Since vector DM couples to electrons in the same way as
the photon, one can derive the relevant self-energies by
simply replacing the electromagnetic charge with ge, e.g.,
Πηλ

ϕA ¼ −ðge=eÞΠλ
AAδ

ηλ. Doing so allows us to write Eq. (9)
in terms of the photon self-energy as

Πη

ϕ̂ ϕ̂
¼
�
ge
e

�
2 m2

ϕΠ
η
AA

m2
ϕ − Πη

AA

ðvector DMÞ: ð10Þ

Scalar and pseudoscalar DM only have one degree of
freedom, and therefore Eq. (9) takes the form

Πϕ̂ ϕ̂ ¼ Πϕϕ þ
X
λ

Πλ
AϕΠλ

ϕA

m2
ϕ − Πλ

AA

½ðpseudoÞscalar DM�: ð11Þ

As usual, the self-energies appearing in the previous
equations are computed from the sum of one-particle
irreducible diagrams. Working at one loop, there are two
graph topologies that can contribute:

ð12Þ

ð13Þ

where Oð1;2Þ is any operator coupling the external field, A
or ϕ (dashed lines), to the electron (solid lines). For vector
external states these operators carry Lorentz indices that are
inherited by Π̄ and Π̄0.

The full expressions for the self-energies involved in the
absorption calculation can be found in Appendix B.
However, as we discuss in the same appendix, due to
the absorption kinematics and the hierarchy between the
DM and electron velocities, a few diagrams dominate these
self-energies. Specifically, we find that the diagonalization
of the photon in-medium self-energy (and therefore the
derivation of Πλ

AA) reduces to diagonalizing Π̄vi;vj , where
the velocity operator is defined by

vi ≡ −i∇↔i

2me
: ð14Þ

From this it follows that the long-wavelength limit of the
dielectric function εð0;ωÞ, which will enter explicitly in the
scattering rate calculation, can be derived from Π̄vi;vj :

½εð0;ωÞ�ij ¼ 1þ Πij
AA

ω2
≃ 1 − e2

Π̄vi;vj

ω2
: ð15Þ

The long-wavelength dielectric function εð0;ωÞ, together
with details of its numeric calculation, are reported in
Appendix A 2.1 For scalar and pseudoscalar DM, the
leading-order terms in the self-energy of the mostly DM
eigenstate are found to be

Πϕ̂ ϕ̂ ≃
� g2eΠ̄v̄2;v̄2 ðscalar DMÞ;
g2e ω2

4m2
e
Π̄v·σ;v·σ ðpseudoscalar DMÞ; ð16Þ

where we have introduced the operator

v̄2 ≡ −
∇↔2

8m2
e
: ð17Þ

B. Scattering

In this subsection we proceed to derive the DM scatter-
ing rate with spin-dependent electronic wave functions.
Generalizing the formulas previously derived in
Refs. [2,5,10,15,31,44], we can write the DM scattering
rate as

1Strictly speaking, the dielectric function is a mixed-index
tensor, as evident from the defining equation, Ji ¼ σijA

j ¼
iωð1 − εijÞAj, where Ji is the electronic current density, σij is
the conductivity tensor, and εij ¼ δij − Πi

j=ω
2 ¼ 1þ Πij=ω2 (see

the discussion in Appendix A f Ref. [25] for more details). With a
slight abuse of notation, we define the matrix ε which has
components ½ε�ij ¼ εij.

DARK MATTER DIRECT DETECTION IN MATERIALS WITH … PHYS. REV. D 106, 015024 (2022)

015024-3



ΓI→I0 ¼
π

8Vm2
em2

χ

Z
d3qδðEI0 − EI − ωqÞ

×

����
Z

d3k
ð2πÞ3 Ψ̃

�
I0 ðkþ qÞ ·MðqÞ · Ψ̃IðkÞ

����2; ð18Þ

where the bar indicates a spin average (sum) over the
incoming (outgoing) DM states, Ψ̃IðkÞ are the Fourier
transforms of the electronic wave functions defined in
Eq. (3), and

ωq ≡ q · v −
q2

2mχ
: ð19Þ

For the SI and SD models of interest here, we can write
the free electron scattering amplitude as

Mss0;σσ0 ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πm2

χm2
eσ̄e

μ2χe

s
fe
f0e

Fmed

�
q
q0

�
Sss0;σσ0 ; ð20Þ

where Fmedð qq0Þ encodes the momentum dependence
induced by the mediator propagator, feðqÞ=f0e is the
screening factor introduced by in-medium effects (defined
explicitly in Sec. III B), and σ̄e is a reference cross section
defined by

σ̄e ≡ μ2χe
64πm2

χm2
e

X
ss0;σσ0

jMss0;σσ0 ðq0Þj2; ð21Þ

with q0 ¼ αme. The total rate per unit detector mass is then

R¼ πσ̄e
Vμ2χemχ

ρχ
ρT

X
I;I0

Z
d3q
ð2πÞ3

�
fe
f0e

�
2

F 2
medðqÞgðq;ωÞF II0 ðqÞ;

ð22Þ

where gðq;ωÞ is the velocity integral defined as

gðq;ωÞ≡
Z

d3vfχðvÞ2πδðω − ωqÞ; ð23Þ

with fχðvÞ being the DM velocity distribution in the
laboratory rest frame, which we take to be a boosted
Maxwell-Boltzmann distribution with parameters v0 ¼
230 km s−1, vesc ¼ 600 km s−1, and ve ¼ 240 km s−1.
The crystal form factor F II0 is defined as

F II0 ðqÞ≡
����
Z

d3k
ð2πÞ3 Ψ̃

�
I0 ðkþ qÞ · S · Ψ̃IðkÞ

����2; ð24Þ

where the spin operators for the models considered in this
work are given by

Sss0;σσ0 ¼
(
δss0δσσ0 ðSIÞ;
1ffiffi
3

p
P
i
σiss0σ

i
σσ0 ðSDÞ; ð25Þ

and σi are the Pauli matrices. Given these expressions, the
form factors F II0 for the SI and SD models take the form2

F II0 ¼
� jT II0 j2 ðSIÞ;

1
3
T �

II0 · T II0 ðSDÞ; ð26Þ

where we have defined the DM model-independent tran-
sition form factors T II0 and T II0 as

T II0 ¼
Z

d3k
ð2πÞ3 Ψ̃

�
I0 ðkþ qÞ · Ψ̃IðkÞ; ð27Þ

T II0 ¼
Z

d3k
ð2πÞ3 Ψ̃

�
I0 ðkþ qÞ · σ · Ψ̃IðkÞ: ð28Þ

III. DETECTION RATES IN ZrTe5

We will now apply the formalism developed in the
previous section to our benchmark SOC target: ZrTe5. The
band structure of ZrTe5, with and without the inclusion of
SOC effects, is shown in Fig. 1. The details of the DFT
calculation can be found in Appendix A 1. The dominant
effect of SOC is to shift the valence and conduction bands
closer at the Γ point relative to the No SOC calculation.
While in theory the calculation of DM interaction rates is

identical for OðmeVÞ and OðeVÞ gap semiconductors, in
practice one must be careful about sampling the 1BZ. This
is because theseOðmeVÞ energy differences generally only
occur in small volumes within the 1BZ. To account for this
we sample the 1BZ with a higher k-point density in regions
corresponding to the low-energy band structure. For ZrTe5
this occurs near the Γ point, and we split the phase space
into two separate regions, “low E” and “high E,” which we
describe now. The low-E region consists of the highest two
(one) valence bands and lowest two (one) conduction
bands, for the calculation with (without) SOC, sampled
on a “mini-BZ” grid. This mini-BZ grid is a rescaled
uniform Monkhorst-Pack grid [46]; each k is scaled by a
factor of 1=5, giving a 125 × k-point sampling in that
region. This region will give the dominant contribution to
absorption of DM with mass ≲100 meV, as well as
DM scattering via a light mediator. The high-E region
includes all the bands outside the low-E region, sampled
with a standard Monkhorst-Pack uniform grid. The DM

2The absence of the overall factor of 2, relative to the SI rate
formula given inRef. [31], can be understood from the sumover the
states. If the wave functions are spin independent, thenP

IF →
P

IF

P
ss0 , where s (s

0) indexes the initial (final) electron
spin state. These spin sums contribute the extra factor of 2, bringing
Eq. (22) and the rate formula in Ref. [31] into agreement.
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absorption rates in Sec. III A are a combination of the low-
and high-E regions. The DM scattering rates in Sec. III B
will be shown for both regions, and it will be clear when
one dominates the other.
We compute the Bloch wave functions (3) in both regions

within the framework of DFT with Quantum ESPRESSO
[47–49]; details can be found in Appendix A 1. The DM
absorption and scattering rates are computed with an
extended version of EXCEED-DM [30,31] which includes
the formalism developed in Sec. II, and is publicly available
on Github.

For each of the models considered in the following
subsections, we show the projected constraints from three
different calculations. The curves labeled “SOC” are
computed with the inclusion of SOC effects, the curves
labeled “No SOC” do not include any SOC effects, and
those labeled “Partial SOC” are a combination of the SOC
and No SOC calculations, obtained using the energy levels
computed with SOC, and the wave functions without SOC.
While the Partial SOC results are not a consistent calcu-
lation, they aid in understanding how much of the differ-
ence between the SOC and No SOC results is due to the
changes in the band structure versus the inclusion of the
spin-dependent wave functions. Generally, we find that
the changes in the band structure are more influential than
the spin dependence in the wave functions, but the latter can
still be important.
Last, we note that previous works [24–26] derived exci-

tation rates analytically by exploiting the putative Dirac
nature of ZrTe5. While a direct comparison to assess the
validity of the analytic approximations is dubious sincewe do
not observe a conical band structure (see Appendix A 1),
previous estimates fromRef. [25] are shown in Figs. 2 and 3.
In Appendix C we discuss the validity of these analytic
approximations in more general Dirac materials.

A. Absorption

For the models considered [Eq. (2)] our results are shown
in Fig. 2. For ease of comparison we map the constraints on
the ge parameters in Eq. (2) to a more commonly used
notation,

FIG. 2. Comparison of projected 95% C.L. reach (three events, no background) assuming 1 kg-year exposure for scalar (left),
pseudoscalar (center), and vector (right) DM. We compare our results with (solid) and without (dotted) SOC for electronic absorption in
a ZrTe5 target (red), with those for semiconductor silicon (Si, blue) and germanium (Ge, green) targets [19], superconducting aluminum
(Al-SC, brown) [19]), phononic absorption in polar materials [50,51] (GaAs in orange and SiO2 in purple), and previous estimates for
ZrTe5 (teal) [25]. We also show the projected constraints combining the SOC energy levels with the No SOC wave functions (“Partial
SOC,” red dashed) to explicitly show the effect of the spin-dependent wave functions. Constraints are expressed in terms of the
commonly adopted parameters shown in Eq. (29). Shaded red bands correspond to different parametrizations of the electron width
δ ∈ ½10−1.5; 10−0.5�ω used in calculating the self-energies [see, e.g., Eq. (B17)], with the solid line corresponding to δ ¼ 10−1ω. Thin
lines indicate results obtained by rescaling the optical data. Also shown are the direct-detection limits from XENON10=100 [13], fifth
force constraints [52], and stellar cooling constraints from red giants (RG) [53], and white dwarfs (WD) [54]. For the pseudoscalar
scenario we also report the couplings corresponding to the QCD axion in KSVZ and DFSZ models, for 0.28 ≤ tan β ≤ 140 [55].

FIG. 1. ZrTe5 band structure computed using DFT with SOC
(solid lines) and without SOC (dashed lines). The inset highlights
the low-energy (low E) band dispersion, whose details are
sampled using a denser k-point grid. The band gap for the
SOC band structure is set to the experimental value of 23.5 meV
[45], and the No SOC band structure is shifted accordingly, which
gives a larger band gap of 81.6 meV.
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ge ¼

8>><
>>:

ffiffiffiffi
4π

p
me

MPl
dϕee ðscalarÞ;

gaee ðpseudoscalarÞ;
eκ ðvectorÞ;

ð29Þ

where MPl ¼ 1.22 × 1019 GeV is the Planck mass.
For all of the benchmark models, the inclusion of SOC

effects dominantly impacts the low-mass reach where the
SOC corrections to the band structure are most relevant.
Most notably, the lowest testable DM mass is shifted as a
consequence of the different band gaps: 23.5 meV with
SOC, and 81.6 meV without SOC. At higher masses the
SOC effects are milder and, as expected, the SOC reach
approaches the reach without SOC effects. The close
agreement between the “Partial SOC” and “SOC” curves
indicates that changes to the energy levels are what is
mainly driving the difference in the “SOC” and “No SOC”
calculations.
For the scalar and vector DM models we find that ZrTe5

is superior at low DM masses relative to a superconducting
aluminum target, another target material with an OðmeVÞ
gap (0.6 meV for the Al-SC curves shown here). However,
for pseudoscalar DM, for mϕ ≲ eV, Al-SC yields better
sensitivity than ZrTe5. This can be attributed to the large

amount of screening present in the vector DM case (but not
in the pseudoscalar DM case) for Al-SC.
Shaded bands correspond to different parametrizations

of the electron width, δ ∈ ½10−1.5; 10−0.5�ω, used when
computing the self-energies [see Eq. (B17) for more
details]. In theory, the absorption rate calculation is
independent of the choice of width; however, when
sampling the 1BZ discretely this is not the case, and
practically the goal is to find results that have a weak
dependence on this parameter. The discrepancy in the
shaded bands should be viewed as an uncertainty in the
calculation. The constraints turn up on the left-hand side
because of the band gap, and on the right-hand side because
of the finite number of bands used in the calculation. All
bands for which E − EF < 4 eV, where EF is the valence
band maximum, were included; see Appendix A 2 for more
details.

B. Scattering

We now consider DM-electron scattering in ZrTe5 for
the two benchmark models—standard SI and standard SD
interactions—shown in Eq. (1). Specifically, we consider a
light mediator for the SI model and a heavy mediator for the
SD model. For the SI model a light mediator was chosen
due to its high sensitivity to the lowest-energy excitations,

FIG. 3. Projected constraints on DM-electron scattering cross sections at 95% C.L. (three events, no background) assuming 1 kg-year
exposure for two benchmark models shown in Eq. (1). Left: SI model with a light mediator [Fmed ¼ ðq0=qÞ2], screened with the static
dielectric shown in Fig. 6. The red solid (dashed) curve shows the constraints with (without) the inclusion of SOC effects. For
comparison we also show projected constraints from single phonon excitations in GaAs (orange) and SiO2 (purple) computed with
PhonoDark [56] (assuming an energy threshold of ωmin ¼ 20 meV), electronic excitations in an aluminum superconductor [57]
(brown), and previous estimates for ZrTe5 (teal) [25]. We also show the projected constraints combining the SOC energy levels with the
No SOC wave functions (“Partial SOC”, red, dashed) to explicitly show the effect of the spin-dependent wave functions. Stellar
constraints (gray) are taken from Ref. [58] and the freeze-in benchmark (orange) is taken from Ref. [59]. Right: SD model with a heavy
mediator (Fmed ¼ 1). Curves labeled “low/high E” include transitions restricted to the low-/high-E regions discussed in Sec. III.
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as well as for ease of comparison with other proposals
which commonly report constraints on this model. The SD
model was chosen to highlight the effect of spin-dependent
wave functions.3

The results are shown in Fig. 3 and we discuss them in
detail here. Constraints computed in this work are shown
in red, with shaded bands corresponding to the uncertainty
in the calculation of the screening factor/dielectric function
from the electron width parameter, discussed previously in
Sec. III A.
When considering the SI model with a light mediator we

include anisotropic screening effects in the

feðqÞ
f0e

¼ ðq̂ · εðq;ωÞ · q̂Þ−1 ð30Þ

factor. εðq;ωÞ is the dielectric tensor, and this screening
factor is especially important for the sub-MeV DM masses
considered here. Since in this model the scattering rate is
dominated by events with small q, we approximate
εðq;ωÞ ≈ εð0;ωÞ, such that we replace the dielectric with
the anisotropic, long-wavelength dielectric function shown
in Fig. 6. There is no such screening in the SD model:
fe ¼ f0e.
For the SI model, we find that the contributions from

transitions in the low-E region, discussed earlier in Sec. III,
dominate the scattering rate. Therefore, in the left panel of
Fig. 3, we only show the results derived from transitions
within the low-E region. For the massive mediator SD
model, in the right panel of Fig. 3, we see that the low-E
contributions dominate at small DM masses. However,
for mχ ≳ 100 keV, when the high-E contributions at
Oð100 meVÞ become kinematically available, the high-E
contributions are dominant. This is due to the fact that when
scattering via a heavy mediator the rate is no longer
dominated by the smallest momentum transfers. While
we did not explicitly include transitions between the low-
and high-E regions, we note that these are only expected to
be important for masses where the reach is comparable
between the regions, and will not affect the conclusions.
We find that, for the SI model with a light mediator, the

inclusion of SOC effects significantly alters the reach for
the whole DM mass range considered since the rate is
dominated by small energy/momentum depositions. For the
SD model with a massive mediator the SOC effects are
most prominent for low DM masses when the scattering is
probing the band structure near the band gap, which is the
most affected by SOC effects. We also see that at the lowest
masses the “Partial SOC” curve is closer to the “SOC” than

the “No SOC” lines. This shows that while the change to
the energy levels is the dominant effect when including
SOC, the spin dependence of the wave functions can give
Oð1Þ variations.
The left-hand side of all of the constraint curves are

determined by the band gap. The smallest kinematically
allowed DM mass is mχ ¼ 6 keV for the SOC calculation
with Eg ¼ 23.5 meV, and mχ ¼ 21 keV for the No SOC
with Eg ¼ 81.6 meV. As mentioned in Sec. III A, we only
consider bands up to 4 eV above the valence band
maximum. Kinematically, this means that we are only
including all contributions for mχ < MeV, and explains
why our projections stop there.

IV. CONCLUSIONS

Materials with strong spin-orbit coupling, such as ZrTe5,
are promising targets in which electronic excitations can be
utilized to search for sub-MeV DM. Their OðmeVÞ band
gaps lead to sensitivity to new DM parameter space via
both absorption and scattering processes, without relying
on detecting single collective excitation modes.
However, due to the spin-orbit coupling, in these

materials the electron spin is no longer a good quantum
number, and the spin sums over electronic states cannot be
trivially reduced. This introduces interesting wrinkles in the
DM absorption and scattering rate calculations, which we
extended to account for these effects. In addition, we
updated the EXCEED-DM program [30,31], which com-
putes DM-electron interaction rates from first principles, to
be compatible with this input for future study of general
targets with spin-orbit coupling.
We considered a wide range of DM models and

processes to which materials with SOC are sensitive:
absorption of vector, pseudoscalar, and scalar DM in
Sec. III A, and scattering via heavy and light mediators
via spin-independent and spin-dependent scattering poten-
tials in Sec. III B. We found that for sub-eV vector and
scalar DM absorption, ZrTe5 is a far superior target relative
to an aluminum superconductor. We also found more
optimistic projections for SI scattering via a light mediator
than previous estimates, and computed, for the first time,
the projected constraints on an SD model with a heavy
mediator. Our projections for ZrTe5 lay the foundation for
further first-principles studies of materials with strong spin-
orbit coupling as targets in direct-detection experiments.
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APPENDIX A: NUMERICAL DETAILS

1. Density functional theory

The DFT calculations are carried out within the gener-
alized gradient approximation [60] using the Quantum
ESPRESSO code [61] with and without SOC included. We
use the ZrTe5 experimental lattice constants a ¼ 3.9797 Å,
b ¼ 14.470 Å, and c ¼ 13.676 Å of the orthorhombic
crystal structure [62]. We employ fully relativistic pseu-
dopotentials for calculations including SOC, and scalar
relativistic pseudopotentials for calculations without SOC,
in both cases generated with Pseudo Dojo [63–65]. In each
case, we use a 3265 eV kinetic energy cutoff on a uniform
4 × 4 × 2 Brillouin zone grid to compute the electron

density. To systematically converge the absorption and
scattering rates, for the high-E region we compute the
electronic wave functions with 200, 300, and 400 eV
cutoffs on 10 × 10 × 10, 12 × 12 × 12, and 14 × 14 × 14
k-grids. For the low-E region, we compute the wave
functions with 650, 750, and 850 eV cutoffs on
8 × 8 × 8, 9 × 9 × 9, and 10 × 10 × 10 uniform k-grids
in a small reciprocal-space volume that includes the low-
energy band dispersion. The convergence of these calcu-
lations is discussed in Appendix A 2.
The computed band structure of ZrTe5 is presented in

Fig. 1, where we correct the band gap with a scissor shift to
match the experimental band gap for the calculation with
SOC. The inset shows in detail the dispersion near the band
edges, highlighting the linear dispersion along the intra-
layer directions Γ-Y and Γ-Z. Note that in interlayer
directions (not shown in Fig. 1) the dispersion is not linear
or conical. This band structure obtained by combining the
experiment lattice constant and the Perdew-Burke-
Ernzerhof exchange correlation functional is consistent
with a previous study [66]. While the presence of a
Dirac cone in ZrTe5 is still under debate [32–43], pursuing

FIG. 4. Convergence of the constraints on DM absorption, for the models discussed in Sec. III A, with respect to the k-point sampling
(k-grid) and plane-wave energy cutoff, Ecut. The first row includes SOC effects, while the second row does not. Absorption rates were
computed by adding the contributions from the low-E and high-E regions, and the first (second) value in the legends corresponds to the
parameter used in the low (high) E calculation. For example, the red dotted line corresponds to a calculation in which the low (high) E
region was sampled on an 8 × 8 × 8ð10 × 10 × 10Þ Monkhorst-Pack grid in the 1BZ, with Ecut ¼ 650ð200Þ eV. All curves assume a
width parameter of δ ¼ 10−1ω.
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more extensive tests of crystal structure and DFT func-
tionals, or carrying out beyond-DFT band structure calcu-
lations, is beyond the scope of this work.

2. DM interaction constraint convergence
and dielectric function

In this appendix, we discuss some details of the DM
scattering and absorption rate calculations, as well as the
long-wavelength, anisotropic dielectric function, εð0;ωÞ.
Since the main focus of this paper is the effect of SOC, only
the electronic wave functions near the Fermi surface are

needed. This is because, in ZrTe5, SOC effects are
approximately Oð10 meVÞ, and therefore a very small
perturbation for states > eV away from the Fermi surface.
We are therefore safely within the “valence to conduction”
regime, discussed in more detail in Ref. [31], and do not
need to study deeper, core electronic levels, or larger energy
states where the electrons are close to free. DFT is the
preferred tool for studying these transitions, and the two
main convergence parameters are the number of k-points in
the 1BZ sampling, and the plane-wave expansion cutoff,
Ecut. In both the low-E and high-E regions we sample

FIG. 5. Convergence of the constraints on DM scattering, for the models discussed in Sec. III B, with respect to the k-point sampling
(k-grid) and plane-wave energy cutoff, Ecut. The first row includes SOC effects, while the second row does not. The collection of
constraints dominant at the lowest masses corresponds to the low-E transitions, and the other set corresponds to the high-E transitions.
Similar to Fig. 4, the Ecut parameters in the legend correspond to the values used for the low-/high-E regions.
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k-points uniformly with a Monkhorst-Pack grid. The only
difference is that the low-E points are scaled by 1=5 relative
to the high-E region. Convergence of the DM absorption
and scattering constraints with respect to the k-point
sampling and Ecut parameters are shown in Figs. 4 and
5, respectively. The constraints in the main text are identical
to the most converged constraints shown in Figs. 4 and 5.
Generally, we see faster convergence with respect to Ecut
than the k-point density, and slightly faster convergence for
the DFT calculation, which omits SOC effects, than those
which include them. We also note that all-electron
reconstruction effects are omitted here since we are focus-
ing on very small DM masses and therefore kinematically
limited to small-q transitions. However, these effects could
be important for studies of DM scattering in ZrTe5 at higher
masses, or for larger experimental thresholds.
The dielectric function in the long-wavelength limit is

shown in Fig. 6, and was used as an intermediate to
compute a few different constraints. Specifically, it was
used to screen the SI scattering rate, and it can be shown
that the vector DM absorption rate, as well as the
pseudoscalar DM absorption rate when wave functions

are spin independent, can be related to the dielectric
function. Moreover, this calculation serves as a useful
benchmark to compare future DFT calculations.

APPENDIX B: GENERALIZED SELF-ENERGIES

In this appendix, we provide the expressions for the self-
energies used in the main text, namely, ΠAA, ΠAϕ, and Πϕϕ.
Since electrons in the target are nonrelativistic, we work in
the framework of NR EFT, closely following Ref. [19],
generalizing the results to anisotropic materials with
sizable SOC.
At leading order in the NR EFT, it can be shown [19] that

the electron-photon coupling reads

Leff
ψA ¼ −eA0ψ

†
þψþ −

ie
2me

A · ðψ†
þ∇
↔
ψþÞ

þ e
2me

ð∇ × AÞ · ðψ†
þΣψþÞ −

e2

2me
A2ψ†

þψþ; ðB1Þ

where Σ ¼ diagðσ; σÞ and ψþ ¼ 1
2
ð1þ γ0ÞψNR, with ψNR

being the NR electron field defined as

ψðx; tÞ ¼ e−imetψNRðx; tÞ: ðB2Þ

For vector DM, by simply replacing eAμ → eAμ − geϕμ in
Eq. (B1), we obtain

Leff
int ¼ gϕ0ψ̂

†
þψ̂þ þ ig

2me
ϕ · ðψ̂†

þ∇
↔
ψ̂þÞ

−
g

2me
ð∇ × ϕÞ · ðψ̂†

þΣψ̂þÞ þ
ge
me

ϕ · Aψ̂†
þψ̂þ

−
g2

2me
ϕ2ψ̂†

þψ̂þðvector DMÞ: ðB3Þ

In deriving the effective interaction Lagrangian for scalar
and pseudoscalar DM, we have to keep some next-to-
leading-order (NLO) terms in the NR expansion. This is
because, as discussed in Ref. [19], the LO terms contain
factors of the momentum transfer q, which in the absorp-
tion limit induces a larger suppression compared to the
electron velocity. Therefore, keeping all of the NLO terms
that do not contain factors of q, we obtain

Leff
int ¼

8<
:

gϕψ̂†
þψ̂þ þ g

8m2
e
ϕðψ̂†

þ∇
↔2

ψ̂þÞ − ige
2m2

e
ϕA · ðψ̂†

þ∇
↔
ψ̂þÞ ðscalar DMÞ;

− g
2me

ð∇ϕÞ · ψ̂†
þΣψ̂þ þ ig

4m2
e
ð∂tϕÞðψ̂†

þΣ · ∇↔ψ̂þÞ ðpseudoscalar DMÞ:
ðB4Þ

With these effective interactions, we are now ready to derive the expressions for the self-energies. By using the photon-
electron coupling given in Eq. (B1), we obtain the expression for Πμν

AA in terms of the loop diagrams ΠO1O2
and Π0

O defined
in Eqs. (12) and (13):

FIG. 6. Magnitude of the dielectric function of ZrTe5 computed
with SOC (solid), without SOC (dotted), and a combination of the
calculations with and without SOC (dashed), as described in
Sec. III. The directional dependence of the dielectric function is
due to the anisotropic nature of ZrTe5. Note that while nonlocal
corrections are not included in this figure, we found that they
have a small Oð10%Þ effect. These results are obtained with an
electronic broadening of δ ¼ 10−1ω.
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Π00
AA ¼ −e2Π̄11; ðB5Þ

Πi0
AA ¼ −e2

�
Π̄vi1 þ

iql

2me
ϵimlΠ̄σm1

�
; ðB6Þ

Πij
AA ¼ −e2

�
Π̄vivj þ

iql

2me
ðϵjmlΠ̄viσm þ ϵimlΠ̄σmvjÞ −

qlqr

4m2
e
ϵilmϵjrnΠ̄σmσn

�
− ω2

pδ
ij; ðB7Þ

where ωp ¼
ffiffiffiffiffiffiffi
nee2

me

q
is the plasma frequency, and we have highlighted in red terms that vanish in the absence of sizable spin-

orbit coupling (in this specific case, they vanish because tr½σi� ¼ 0 in the absence of SOC). Since vector DM couples to
electrons in the same way as the photon but with a rescaled coupling, κ ¼ ge=e, we have

Πμν
ϕϕ ¼ −κΠμν

ϕA ¼ κ2Πμν
AA ðvector DMÞ: ðB8Þ

For scalar DM, by using the interactions given in Eq. (B4), we get

Π0
ϕA ¼ −gee

�
Π̄11 − Π̄1v̄2 þ

iqk

4me
ϵijkΠ̄1ṽij

�
ðscalar DMÞ; ðB9Þ

Πi
ϕA ¼ −gee

�
Π̄1vi − Π̄v̄2vi þ

iqk

4me
ϵljkΠ̄ṽljvi þ

iql

4me
ϵlimðΠ̄1σm − Π̄v̄2σmÞ þ

iqk

4me

iqr

4me
ϵijkϵmlrΠ̄ṽijσm þ 1

me
Π̄0

vi

�
; ðB10Þ

Πϕϕ ¼ g2e

�
Π̄11 − Π̄1v̄2 − Π̄v̄21 þ Π̄v̄2v̄2 þ

iqk

4me
ϵijkðΠ̄1ṽij þ Π̄ṽij1 þ Π̄v̄2ṽij þ Π̄ṽijv̄2Þ þ

iqk

4me

iqr

4me
ϵijkϵmlrΠ̄ṽijṽml

�
; ðB11Þ

where we have introduced the operator ṽij ≡ σivj, and as before highlighted in red the terms that vanish in the absence of
sizable SOC. The terms highlighted in blue, instead, vanish in isotropic materials without SOC.
Similarly, by using the couplings given in Eq. (B4), we derive the expression for the self-energies of pseudoscalar DM:

Π0
ϕA ¼ −igee

�
qi

2me
Π̄σi1 −

ω

2me
Π̄ṽii1

�
; ðB12Þ

Πi
ϕA ¼ gee

�
qj

2me
Π̄σjvi −

ω

2me
Π̄ṽjjvi −

qj

2me

ql

2me
ϵlirΠ̄σjσr þ Π̄0

σi

�
ðpseudoscalar DMÞ; ðB13Þ

Πϕϕ ¼ −g2e
�
qi

2me

qj

2me
Π̄σiσj −

qi

2me

ω

2me
ðΠ̄σiṽjj þ Π̄ṽjjσiÞ þ

ω2

4m2
e
Π̄ṽiiṽjj

�
: ðB14Þ

Due to the absorption kinematics (q ∼mϕvϕ ≪ ω ∼mϕ)
and the hierarchy that exists between the DM velocity
(vϕ ∼ 10−3) and the electrons’ typical velocity in a crystal
(ve ∼ 10−2), only a few terms are actually relevant in the
self-energy expressions given above. To facilitate the
following discussion, in Table I we summarize the velocity
scaling of all of the terms appearing in the self-energy
expression given above. By using these scaling relations it
is easy to see that the photon self-energy (and therefore also
the DM self-energy) is dominated by its spatial compo-
nents, specifically by the Π̄vivj term. For scalar DM, Πϕϕ is
dominated by the term Π̄v̄2v̄2 , and the mixing self-energies
ΠAϕ are suppressed by one power of vϕ. Finally, for

pseudoscalar DM, Πϕϕ is dominated by Π̄ṽ ṽ and the
mixing self-energies are again suppressed.
So far we have ignored the tadpole terms Π̄0

O. They can
be written in terms of the electronic wave functions as [19]

Π̄0
O ¼ −

1

V

X
I

fIhIjOjIi; ðB15Þ

and are usually related to macroscopic quantities of the
material. Specifically, Π̄0

vi and Π̄0
σi are related to the current

and spin densities of the material (which both vanish for the
case of ZrTe5). For the case of ZrTe5, the only non-
vanishing tadpole term is Π̄0

1 ¼ ne, which enters in the
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expression for the vector self-energy. However, we never
explicitly compute this term. Instead, we exploit the
relation

Π̄ij
11 ¼

m2
e

ω2

�
Π̄vivj −

δij

me
Π̄0

1

�
; ðB16Þ

where Π̄11 ¼ qi

me
Π̄ij

11
qj

me
. Indeed, as discussed in Ref. [67], a

direct numerical derivation of Π̄vivj − δij

me
Π̄0

1 would be
affected by numerical errors in the ω → 0 limit.
Let us conclude this section by discussing the scaling

relations given in Table I in more detail. Indeed, while some
of them are trivial, others require some explanation. The

expression for the loop diagrams Π̄O1;O2
is given

by [19]

−iΠ̄O1;O2
¼ i

V

X
I0I

fI0 − fI
ω − ωI0I þ iδI0I

× hI0jO1eiq·xjIihIjO2e−iq·xjI0i; ðB17Þ

where V is the total volume, ωI0I ≡ E0
I − EI , δI0I≡

δsgnðωI0IÞ, and fI , f0I are the occupation numbers (which,
at zero temperature, equal one for states below the Fermi
surface, and zero for states above it). From this expression
we can see that self-energies involving the identity oper-
ators contain the matrix element hi0; k0jeiq·xji; ki, which
vanishes in the q → 0 limit since ji0; k0i and ji; ki are
distinct energy eigenstates and therefore orthogonal. At
OðqÞ, we have hi0; k0jeiq·xji; ki ≃ iq · hi0; k0jxji; ki. One way
to compute this matrix element is to trade the position
operator for the momentum operator via its commutator
with the Hamiltonian. Here we assume that the Hamiltonian

has the form H ¼ p2

2me
þ VðxÞ, ignoring the possibility of

momentum-dependent or nonlocal terms in the potential.
While these terms can introduce mild corrections
[Oð10%Þ], we do not expect them to change the overall
scaling of the self-energies, so we can ignore them in this
context. With this assumption in mind, we can write the
matrix element involving the position operator as

hi0; k0jxji; ki ¼ −
1

Ei0;k0 − Ei;k
hi0; k0j½x; H�ji; ki ¼ −

i
meðEi0;k0 − Ei;kÞ

hi0; k0jpji; ki: ðB18Þ

Writing the wave functions in the Bloch form, we find

hi0; k0jeiq·xji; ki ¼ δk0;k
q

meωi0i;k
·
X
G

ðkþ GÞðusi0;k;GÞ�usi;k;G þOðq2Þ; ðB19Þ

where ωi0i;k ≡ Ei0;k − Ei;k. Therefore, in the absorption limit, each identity operator entering in a self-energy diagram
induces a suppression of order vevϕ.
Parity-odd self-energies also vanish in the q → 0 limit. Let us show this explicitly for the case of Π̄viv̄2 . By rewriting the

electronic wave function in the Bloch form, we can write Π̄viv̄2 as

Πv̄2vi ¼
1

V
1

16m3
e

X
i0∈ con:
i∈ val:

X
k

�½PGð2kþ Gþ qÞus�i0kGusikG�½
P

Gð2kþ Gþ qÞ2uλ�i0kGuλikG�
ω − ωi0i;k;kþq þ iδi0i;k;kþq

− i → i0
�
: ðB20Þ

By parity invariance the Bloch coefficients satisfy the relation usikG ¼ usi−k−G; therefore, at order q0 we have
Π̄viv̄2 ¼ −Π̄viv̄2 ¼ 0. The first nonvanishing contribution arises at order q and is given by

Π̄v̄2vi ¼
1

V
qi

4m3
e

X
i0∈con:
i∈val:

X
k

�½PGu
s�
i0kþqGu

s
ikG�½

P
Gð2kþ GÞ2uλ�i0kGuλikG�

ω − ωi0i;k þ iδi0i;k
− i → i0

�
: ðB21Þ

TABLE I. Self-energies scaling with the DM and electron
velocities in the absorption limit. Notice that each insertion of
the identity operator induces a suppression of order vevϕ due to
the wave-function orthogonality, and that parity-odd self-energies
receive an additional suppression of order q=k.

Π̄O1O2
1 σ v; ṽ v̄2

1 v2ev2ϕ
mϕ

me
v2ϕ v2evϕ

mϕ

me
v2ev2ϕ

σ 1 mϕ

me
vϕ v2e

v; ṽ v2e
mϕ

me
v2evϕ

v̄2 v4e
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Therefore, instead of the naive v3e scaling, Π̄v̄2vi scales as
ðmϕ=meÞv2evϕ in the absorption limit. By following an
analogous derivation, we can conclude that any parity-odd
operator receives an additional mϕvϕ

meve
∼ q

k suppression with
respect to its naive scaling.

APPENDIX C: ANALYTIC APPROXIMATIONS IN
DIRAC MATERIALS

Dirac materials are defined by having a conical band
structure near the Fermi surface. They are “Dirac” since the
electronic dispersion relation in this conical region is linear
in k, similar to the solutions to the Dirac equation

ði=∂ −mÞψðxÞ ¼ 0 ðC1Þ

describing free fermions. The presence of this conical
structure in Dirac materials implies the existence of low-
energy excitations, which satisfy a rescaled version of this
equation,

ði=̃∂ − ΔÞψðxÞ ¼ 0; ðC2Þ

where 2Δ is a band gap between the two cones, and
∂̃μ ≡ ð∂t; vxF∂x; vyF∂y; vzF∂zÞ, with vF being the directionally
dependent Fermi velocity. The solutions to Eq. (C2) can be
found analytically, and most previous works [24–26] that
studied DM-electron interactions in 3D Dirac materials
used these analytic solutions as the Bloch wave functions in
Eq. (3). Specifically, they used these analytic wave func-
tions to derive scattering and absorption rates.
However, the subtlety is that solutions to Eq. (C2) cannot

be the electronic Bloch wave functions since they are not
eigenstates of the crystal Hamiltonian, H ¼ p2=2me þ V.
Therefore, while the excitations that satisfy the rescaled
Dirac equation (C2) are certainly related to the electronic
Bloch wave functions, they are, generally, not the appro-
priate wave functions to use when computing DM inter-
action rates.
To further illustrate this point, we briefly discuss the

most well-known Dirac material: graphene. Even though it
is only two dimensional it will serve as a good example to
illustrate the difference between the electronic Bloch wave
functions and those that satisfy the Dirac equation. Our
discussion here will closely follow Ref. [68], to which we
refer the reader for further details.
Graphene has two carbon atoms within a unit cell which

form a hexagonal lattice structure. The Bloch wave
functions, satisfying the crystal Hamiltonian, are typically
found using the “tight-binding” method, which assumes
that the Bloch wave functions are a linear combination of
the atomic wave functions of each of the carbon atoms,

Ψi;kðxÞ ¼
X
j¼A;B

ψ j;kðxÞXj;kðxÞ; ðC3Þ

where the “A” and “B” indices refer to the individual
carbon atoms (equivalently, the individual carbon atom
sublattices), ψ j;k are some coefficient functions, and Xj;k
are a linear combination of atomic wave functions which
form a Bloch state,

Xj;kðxÞ ¼
1ffiffiffiffi
N

p
X
r

eik·rψ atom
j ðx − r − r0jÞ: ðC4Þ

Here r is a lattice vector, r0j is the equilibrium position of
the carbon atom on the jth sublattice, and N is the number
of unit cells in the lattice. The Bloch nature of the Xj;k

functions can be seen explicitly by noticing that
Xj;kðxþ rÞ ¼ eik·rXj;kðxÞ. Assuming that the ψ j;k’s are
lattice periodic implies that Ψi;k is also a valid Bloch state.
The idea behind this decomposition is that the ψ j;k’s are
slowly varying functions, or envelope functions, in position
space, while the atomic wave functions contain the high-
frequency behavior, being very localized to the atomic
sites. Using this intuition, we can simplify the full
Schödinger equation near the Dirac point

�
−

∇2

2me
þ VðxÞ − Ei;k

�
Ψi;k ¼ 0 ðC5Þ

to

0¼
X
j¼A;B

−
1

me
∇ψ j;k ·∇Xj;kþψ j;k

�
−
∇2

2me
þV−Ei;k

�
Xj;k:

ðC6Þ

This equation can now be “coarse grained” by integrating
out the pieces close to the center of the atoms with the
operator,

R
Ωl
d3xX�

l;k for both l ∈ fA; Bg sublattices.
Assuming that ψ varies slowly over these regions, we
can pull ψ j;k out of these integrals and Eq. (C6) becomes
two equations,

0 ¼
X
j¼A;B

�
−

1

me
hXl;kj∇jXj;ki · ∇ − δl;jEi;k

�
ψ j;k ðC7Þ

for each l ¼ A, B, where the expectation value of
−∇2=2me þ V with respect to Xi;k vanishes since we are
implicitly assuming that k is close to the Dirac point, i.e., at
the peak of the conical band. From symmetry arguments, it
can be shown that hXA;kj∇jXB;ki ∝ x̂ − iŷ and therefore
Eq. (C7) can be further simplified to

vFðσ · kÞ
�
ψA;k

ψB;k

�
¼ Ei;k

�
ψA;k

ψB;k

�
; ðC8Þ

which is exactly the rescaled Dirac equation, where vF is
the Fermi velocity parameter.
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Therefore, we see that the ψ i;k components of the total
Bloch wave functions in Eq. (C3) are what satisfy the
Dirac equation, not the Ψi;k which should be used in the
excitation rate calculations. Moreover, note that the σ
operator does not act in spin space, but rather in “sub-
lattice” space, and therefore for spin-dependent excitation
rates the spin dependence follows from the Xj;k functions.
There are circumstances where the analytic expressions

can be used as an approximation. If the tight-binding
approximation is valid, and the Bloch wave functions can
be cleanly separated into high- and low-momentum
components (as was just done for graphene), then for q

much smaller than the typical momentum scale of the X
functions the spin-independent transition form factors
[e.g., Eq. (27) if Ψ is spin independent] can reduce to
the previously used analytic expressions. In these targets
the agreement between an analytic and a numeric
approach is then indicative of how good the tight-binding
approximation is. However, not all Dirac cones neces-
sarily appear from the same tight-binding approximation
as in graphene, and a detailed study of the Bloch wave
functions, along with the band structure, should be done to
understand whether any analytic approximations will be
valid.
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