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Figure S6. Complete antibody-escape maps for sera from mice immunized with the mosaic 8b-
RBD-mi3 (top 6) or homotypic SARS-2 Beta RBD-mi3 (bottom 6) nanoparticles. The line plots at 
left indicate the sum of effects of all mutations at each RBD site on antibody binding, with larger 
values indicating more escape. The logo plots at right show key sites where mutations disrupted 
antibody binding (highlighted in purple on the line plot x-axes). The height of each letter is that 
mutation’s escape fraction. The y-axis is scaled independently for each sample. RBD sites are 
colored by antibody epitope, indicated at right. Sites where some mutations introduce a potential 
N-linked glycosylation site sequon (NxS/T) are highlighted in gray. All escape scores are in Data 
S2 and at https://github.com/jbloomlab/SARS-CoV-2-
RBD_Beta_mosaic_np_vaccine/blob/main/results/supp_data/all_raw_data.csv. Interactive 
versions of logo plots and structural visualizations are at https://jbloomlab.github.io/SARS-CoV-
2-RBD_Beta_mosaic_np_vaccine/.   
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Figure S7. Complete antibody-escape maps for sera from NHPs immunized with mosaic 8b-RBD-
mi3. (A) As in fig. S6, line plots (left) and logo plots (right) indicate the sum of the escape fractions 
for each mutation at a site, or mutation-level escape fractions for key sites, respectively. The y-
axis is scaled independently for each sample. Sites where mutations introduce a potential N-
linked glycosylation site sequon (NxS/T) are highlighted in gray. RBD sites are colored by 
antibody epitope, indicated in panel B. (B) The site-total antibody escape is averaged across n=4 
sera, with the y-axis scaled as in panel A. (C) The average site-total antibody escape is mapped 
to the surface of the SARS-2 Beta RBD (PDB 7LYQ), with white indicating no escape, and blue 
indicating the site with the most antibody escape. Key sites are labeled, and labels are colored 
by antibody class. All escape scores are in Data S2 and at https://github.com/jbloomlab/SARS-
CoV-2-RBD_Beta_mosaic_np_vaccine/blob/main/results/supp_data/all_raw_data.csv. 
Interactive versions of logo plots and structural visualizations are at 
https://jbloomlab.github.io/SARS-CoV-2-RBD_Beta_mosaic_np_vaccine/.   
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Table S1. Pathology and immunohistochemistry (IHC) for lung tissue isolated from vaccinated 
K18-hACE2 mice challenged with either SARS-2 Beta or SARS-1. Scoring for hematoxylin and 
eosin (H&E) is as follows: 0 = not present; 1 = minimal, 1-10%; 2 = mild, 11-25%; 3 = moderate, 
26-50%; 4 = marked, 51-75%; 5 = severe, 76-100%. Scoring for IHC is as follows: 0 = not present; 
1 = rare/few; 2 = scattered; 3 = moderate; 4 = numerous; 5 = diffuse. Each column represents a 
single animal.  
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