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Abstract— Electrocardiography is the gold standard
technique for detecting abnormal heart conditions. Auto-
matic detection of electrocardiogram (ECG) abnormalities
helps clinicians analyze the large amount of data produced
daily by cardiac monitors. As the number of abnormal ECG
samples with cardiologist-supplied labels required to train
supervised machine learning models is limited, there is a
growing need for unsupervised learning methods for ECG
analysis. Unsupervised learning aims to partition ECG sam-
ples into distinct abnormality classes without cardiologist-
supplied labels–a process referred to as ECG clustering.
In addition to abnormality detection, ECG clustering has
recently discovered inter and intra-individual patterns that
reveal valuable information about the whole body and mind,
such as emotions, mental disorders, and metabolic levels.
ECG clustering can also resolve specific challenges facing
supervised learning systems, such as the imbalanced data
problem, and can enhance biometric systems. While sev-
eral reviews exist on supervised ECG systems, a compre-
hensive review of unsupervised ECG analysis techniques is
still lacking. This study reviews ECG clustering techniques
developed mainly in the last decade. The focus will be
on recent machine learning and deep learning algorithms
and their practical applications. We critically review and
compare these techniques, discuss their applications and
limitations, and provide future research directions. This
review provides further insights into ECG clustering and
presents the necessary information required to adopt the
appropriate algorithm for a specific application.

Index Terms— Electrocardiogram (ECG), Machine Learn-
ing, Unsupervised Learning, Clustering, Deep Learning

I. INTRODUCTION

An electrocardiogram (ECG) depicts the electrical activity
of the heart. It is routinely recorded in intensive care units
as well as in ambulatory and wearable monitors, producing
a large amount of data every day. Numerous systems based
on supervised machine learning have been developed using
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ECG datasets with cardiologist-supplied labels to classify
heartbeats into normal and several abnormality classes [1]–
[5]. However, cardiologists can only analyze and label a small
subset of the massive ECG data to indicate common cardiac
abnormalities. Moreover, most labeled ECG datasets are ac-
quired in controlled settings, such as hospitals and clinics, and
contain very limited samples compared to the wide variety of
ECG patterns that may occur in different physiological and
pathophysiological conditions. For example, patterns in ECG
data acquired from individuals experiencing stress or suffering
from diabetes mellitus are shown to differ from those acquired
in normal conditions [6], [7]. As such, several unsupervised
learning methods have recently been proposed to analyze ECG
data without the need for cardiologist-supplied labels – a
process referred to as ECG clustering.

The need for unsupervised ECG analysis is, however, not
only derived from the lack of cardiologist-supplied labels.
There exist inter and intra-patient ECG patterns and structures
that, if discovered, can further reveal valuable information
about the cardiovascular system and the whole body and mind.
Discovering such relationships can reveal complex mecha-
nisms and significant biomarkers of various health conditions
as well as the state of the mind and body and ultimately
guide physicians with refined treatment decisions. Notably,
visual identification of these patterns is impossible due to
their complexity and the high volume of data. These patterns,
however, can be automatically identified by clustering tech-
niques. For example, ECG clustering has helped researchers,
especially in the field of psychophysiology, discover hidden
ECG patterns that correlate with different emotional states,
such as sadness and emotional stress [6], brain disorders,
such as epilepsy [8], and other conditions such as drowsiness
[9]. ECG clustering has also enabled researchers to discover
distinct cardiac abnormalities and metabolic levels among
patients with various health conditions, including diabetes
mellitus [7], nocturnal hypoglycemia [10], embolic stroke [11],
and atherosclerosis [12].

In addition to their application as a part of a broader
knowledge discovery system, clustering techniques, in par-
ticular deep learning-based unsupervised methods, such as
autoencoders [13], [14] and generative adversarial networks
[15], have also been employed to overcome some challenges
facing ECG supervised learning systems by resolving the
imbalanced data problem [16] and low-level automation of
patient-specific ECG classifiers [17]–[19]. Moreover, ECG
clustering has been utilized in biometric authentication [20]–
[23], ECG segmentation [24], [25], and fetal ECG extraction
from abdominal ECG [26].

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on March 07,2022 at 23:52:32 UTC from IEEE Xplore.  Restrictions apply. 



1937-3333 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2022.3154893, IEEE Reviews
in Biomedical Engineering

2

To date, several studies have reviewed supervised ECG
analysis techniques [2]–[4], [27]–[30]. However, to the best
of the authors’ knowledge, this work is the first to provide
a comprehensive and critical review of unsupervised ECG
analysis systems. In this work, we review the clinical/medical
applications of unsupervised ECG analysis systems and re-
lated machine learning methods – from traditional models to
the more recent deep learning models – employed by such
systems. To conduct a comprehensive review, we searched sev-
eral platforms, including IEEEXplore, ScienceDirect, Google
Scholar, Scopus, and PubMed database, and mostly selected
studies published during the last decade in prestigious journals
and conferences ranked by well-known citation indices, such
as Science Citation Index. We discuss these state-of-the-art
studies, compare them, outline their limitations, and provide
future directions. This will enable researchers to conveniently
reach the desired information and choose the appropriate
algorithm for their specific application.

II. ECG CLUSTERING

The typical pipeline for ECG clustering comprises of several
data preparation and preprocessing steps before applying the
clustering algorithm. In this section, we briefly review the
data preparation techniques required for efficient clustering
of ECG data including denoising, segmentation, and feature
engineering. We will then extensively review the conventional
and the state-of-the-art clustering algorithms including deep
learning methods and provide a critical comparison.

A. Data Preparation for ECG Clustering
Methods used for denoising, segmentation, and feature

engineering mostly overlap with those used in supervised
learning systems. Here we briefly introduce these techniques
particularly those tailored for ECG clustering. The interested
reader is referred to [2]–[4] for more details.

1) Denoising and Artifact Removal: This step aims to reduce
the distorting effects of the patient’s breathing, skin stretching,
power line interference, and muscle contraction. ECG denois-
ing systems are typically based on moving average filters,
frequency-selective filters, Wiener filters, adaptive filters, and
discrete wavelet transform [31]. Further information about
ECG denoising methods can be found in [31].

2) Segmentation: The denoised ECG signal is usually seg-
mented into quasi-periodic units by automatically identifying
the heartbeats. A heartbeat is comprised of several electrical
waves, called P, QRS, and T, which represent the depolariza-
tion (contraction) and repolarization (relaxation) of the heart
chambers, namely atria and ventricles [32].

Most ECG clustering studies detect the peak of the QRS
complex, called the R peak, across the signal and consider
the interval between two consecutive R peaks, i.e., the whole
cardiac cycle, as the segmentation unit. There are very few
studies that have considered other characteristic points of
the ECG signal for segmentation [33]–[35]. Given that the
abnormal morphologies of PR, ST, and TP segments of an
ECG cycle can indicate common cardiac disorders, such as
myocardial ischemia, hypokalemia, and atrial fibrillation [32],

incorporating other ECG characteristic points in segmentation
could improve the clustering results. Instead of identifying
cardiac cycles across the ECG signal, some studies divide the
signal into fixed-time intervals without identifying any charac-
teristic points [36], [37]. There also exist a few ECG clustering
methods that do not perform segmentation [38], [39]. These
methods directly extract features from the ECG signal without
identifying any physiological characteristic points.

3) Feature Engineering: This step aims to obtain the most
informative features of ECG segments that facilitate the down-
stream unsupervised learning task. Here, we briefly introduce
conventional ECG feature engineering methods. More recent
deep learning approaches are presented in Section II-C.

Expert physicians often examine the time and amplitude
features of P, QRS, and T waves to diagnose heart disease.
However, cardiac abnormalities may not always be visible
in time domain. [40]. Frequency information of the ECG
signal obtained by power spectral analysis and time-frequency
analyzes, such as wavelet transform, can fill this gap. In
wavelet transform, the correlations between the input ECG
and a set of finite-duration functions, called wavelets, are
considered as ECG features [36], [41]. For further details
about time-domain, voltage-domain, and frequency-domain
feature engineering methods, interested readers can refer to
the following sources [3], [4], [29], [30].

Recently, nature-inspired population-based optimization
methods, such as Firefly and particle swarm optimization,
have been also used for feature engineering [42], [43]. These
methods search for features that result in the best classification
or clustering performance in a vast population of possible
features. For example, Kora [42] viewed each point on the
ECG signal as a possible feature. Using the Firefly algorithm,
she searched for the points that maximize the accuracy of the
neural network employed to classify ECG segments into nor-
mal and myocardial infarction classes. For more information
about nature-inspired feature engineering methods, we refer
the reader to the following sources [44]–[46].

Segmented units of ECG are lastly clustered into groups;
each group contains segments whose corresponding feature
vectors are more similar to each other than those in other
groups according to a predefined similarity metric.

B. Clustering Algorithms
Essential to clustering is the similarity (or dissimilarity)

metric used to measure the distance between two ECG seg-
ments. Among various existing similarity metrics, Euclidean
distance, cosine coefficient, and dynamic time-warped distance
[47] are the three widely used metrics in ECG clustering. The
first two are typically used to measure the similarity between
ECG units expressed as temporal and morphological features
or wavelet coefficients. Dynamic time warping is a method
that measures the similarity between two time series, which
may vary in length. Here, we briefly describe conventional
clustering algorithms employed for ECG clustering. Recent
deep learning-based clustering algorithms are described in
Section II-C. The strengths and limitations of the presented
algorithms in ECG analysis are discussed in Section II-D and
summarized in Table I.
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1) Centroid-based Clustering: Centroid-based clustering
techniques separate ECG segments into groups based on their
similarity to the centroids of these groups. A centroid is viewed
as the representative segment of its corresponding group.
K-means is the most well-known centroid-based clustering
algorithm that considers the cluster centroid as the average of
the ECG segments (or their feature vectors) in that cluster.
Variations of K-means used in unsupervised ECG analysis
are Fuzzy C-means [48], Affinity propagation [49], and Max-
Min clustering [50]. These algorithms differ from each other
based on how they obtain the centroids. For example, Affinity
propagation obtains the centroids by exchanging messages
carrying the similarity between ECG segments. Centroid-based
clustering algorithms are typically easy-to-implement and in-
cur a low computational cost. However, they are not generally
suitable for handling noise, outliers, and high-dimensional
feature spaces.

2) Hierarchical Clustering: Hierarchical clustering considers
each ECG segment as an individual cluster and merges the
most similar clusters until only one cluster is left (which com-
prises the entire dataset). Compared to the centroid-based clus-
tering algorithms, hierarchical clustering algorithms typically
incur a higher computational cost; however, the uniqueness of
these methods is the resulting dendrogram that visualizes the
hierarchical relationships between clusters, which can facilitate
the interpretation by physicians [51].

3) Distribution-based Clustering: This group of clustering
algorithms aims to find the probability of ECG segments
belonging to the clusters. Gaussian mixture model (GMM) is
a well-known distribution-based clustering algorithm widely
employed by the reviewed studies [36], [37]. GMM assumes
that several Gaussian distributions generate ECG segments;
that is, each cluster is defined by the mean and the standard
deviation around the mean of a Gaussian distribution. Dirichlet
Process GMM is a variation of GMM that does not require
the initial number of clusters (i.e., Gaussian components
within the data space) [52]. DPGMM automatically learns the
number of clusters through a variational Bayesian inference,
an iterative algorithm that estimates the prior distribution of
clusters. Distribution-based clustering algorithms are suitable
for handling noise and outliers, but they typically incur a
high computational cost. Notably, DPGMM incurs higher
computational cost that GMM.

4) Density-based Clustering: Density is often defined as the
number of data points within some predefined radius. Density-
based clustering considers clusters as regions with higher den-
sity within the data space. DBSCAN [53] and self-organizing
map [54] are well-known density-based clustering algorithms
that have been used for ECG clustering. DBSCAN considers a
region as a cluster if its density exceeds a predefined threshold.
It can effectively handle noise and outliers; however, the
resulting clusters are heavily dependent on the choice of the
radius and threshold. A self-organizing map (SOM) is a type
of neural network that maps the input segments into a two-
dimensional grid, with the assumption that there exists specific
topology among the ECG segments. The resulting grid is bent
and twisted toward regions of high density [54]. SOM provides
an interpretable organization of clusters in a 2-dimensional

grid; however, it incurs a high computational cost.
5) Spectral Clustering: Spectral clustering transforms the

clustering problem into a graph partitioning problem [55],
where the goal is to partition a graph into subgraphs such that
the sum of the weights of the edges connecting the subgraphs
is minimized. In ECG clustering, ECG segments are viewed
as nodes, and similarity between them are represented as the
weights of edges connecting the nodes [56]. Spectral clustering
can effectively handle high-dimensional feature spaces, but
incurs high computational and space costs [47].

6) Clustering Based on Swarm Intelligence: Swarm intel-
ligence models the clustering problem as an optimization
task, where the goal is to maximize the overall similarity
between ECG segments within the clusters. For example,
in the ant colony clustering algorithm [57], a population of
ants randomly moves from one ECG segment to another
and assigns a value (i.e., pheromone) to the segments based
on their similarity. Clusters are then identified as the seg-
ments whose similarity values exceed a pre-defined threshold.
Particle swarm optimization [58] and artificial bee colony
[59] are other swarm intelligence-based clustering algorithms
employed for ECG clustering [41], [60], [61]. Clustering
algorithms based on swarm intelligence can avoid the local
optimum when searching for the best cluster solution, promis-
ing high-quality clusters. However, due to the stochastic nature
of these algorithms, they often incur a high computational cost,
especially in large-scale datasets.

7) Maximum Margin Clustering: Maximum margin cluster-
ing (MMC) [62] takes the advantage of support vector ma-
chines (SVMs) to perform clustering over unlabeled data. In
particular, it finds a set of labels for ECG segments to maxi-
mize the margin obtained by running the SVM on the labeled
segments. The main drawback of MMC is its computationally
expensive steps to solve its non-convex integer problem [34].

8) Ensemble Clustering: In ensemble clustering, results
from multiple runs of one or several clustering algorithms
are integrated to achieve a consensus clusters that are better
fits to the data than the one obtained by individual clustering
algorithms. For example, Abawajy et al. [38] integrated the
results of K-means and GMM for ECG clustering, while Aidos
et al. [63] constructed an ensemble of 200 runs of K-means
with various values for K.

9) Permutation Distribution Clustering: This algorithm was
developed specifically for clustering time-series to find simi-
larity in time-series based on differences in their permutation
distribution. This is achieved by counting the frequency of
distinct order patterns in an embedding of the time-series [64].

C. Clustering with Deep Learning

Deep learning-based clustering algorithms have recently at-
tracted much attention and have achieved superior performance
than the conventional machine learning algorithms in numer-
ous tasks [65]. The primary advantage of these algorithms
over conventional clustering algorithms is that they bypass the
conventional feature engineering step and automatically learn
the best set of features for clustering. Deep learning-based
clustering methods are categorized into three groups based
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on their architecture [65]: (1) autoencoders, (2) feed-forward
networks, and (3) deep generative models. For each group, we
present the current advances in ECG clustering and introduce
state-of-the-art algorithms that can potentially be employed to
further enhance ECG clustering.

1) Deep Autoencoders: An auto-encoder comprises an en-
coder, a neural network that transforms the input data to
a low-dimension feature vector, followed by a decoder, a
neural network that reconstructs the original input from this
low-dimensional feature vector. The encoder and decoder are
trained simultaneously to minimize a reconstruction loss: the
difference between the original input and the decoded output.

Deep clustering network [13] and deep embedding network
[14] are two popular autoencoder-based clustering algorithms
that have been used for ECG analysis [66]–[68]. The idea
behind these algorithms is to impose a clustering loss in
addition to the reconstruction loss while training the network.
In the deep clustering network, K-means loss is imposed,
while in the deep embedding network, two constraints, namely,
locality preserving and group sparsity are imposed to preserve
the local structure of the data and diagonalize the affinity
of representations. Some applications of these algorithms are
further reviewed in Section III-A.

2) Deep Feed-Forward Networks: This group of algorithms
only incorporates the clustering loss to train the deep network.
The network architecture can be fully connected, convolu-
tional, or a combination of both. The weights of the networks
can be initialized randomly or fine-tuned using restricted
Boltzmann machines on a pre-trained network [69]. Deep
adaptive clustering (DAC) [70] is a popular deep feed-forward
clustering network. It is a one-layer convolutional neural
network (CNN) trained using a binary pairwise classification
approach. In short, the input sample is first mapped into a
one-hot encoded vector using the CNN. The cosine distance
between all pairs of samples is then calculated. As the ground-
truth similarities are unknown, an adaptive learning algorithm
called self-paced latent variable learning [71] is adopted to
train the weights of the CNN based on the estimated similar-
ities. DAC was originally proposed for image clustering and
achieved superior performance over several challenging image
datasets. With some modifications to its CNN architecture,
DAC can be adopted for ECG analysis, accounting for a
possible future direction.

3) Deep Generative Models: Variational autoencoders
(VAEs) [72] and generative adversarial networks [15] are the
most popular deep generative models in recent years. VAEs
enforce the latent representation learned by the autoencoder to
follow a predefined distribution, which is typically a mixture
of Gaussians. Variational deep embedding [73] is a VAE-
based clustering algorithm that has been employed for ECG
analysis [74]. This algorithm can be viewed as a deep learning
version of the conventional GMM clustering algorithm, where
the feature space is automatically learned.

Generative adversarial networks (GANs) aim to generate
a set of fake data based on the ground-truth such that the
fake data distribution is similar to that of the ground truth. In
short, a GAN comprises two submodules: (1) generator, G,
generating fake data, and (2) discriminator, D, distinguishing

the fake data generated by G from the ground-truth. Sets
of parameters in G and D are learned such that the Nash
equilibrium in the min-max game between the generator and
discriminator is achieved.

CatGAN [75] is a popular clustering algorithm based on
the GAN. It enforces the discriminator to classify the training
data into a predefined number of classes (instead of only
fake and real) while having low confidence in classifying
samples generated by generator. ClusterGAN is a variation
of CatGAN that has recently shown superior performance in
different clustering tasks over many other deep learning-based
clustering algorithms [76]. As these algorithms have not been
employed for ECG analysis, their applications in ECG analysis
can form a possible future direction.

In addition to clustering, deep generative-based algorithms
can learn to generate new samples from the obtained clusters.
Recently, several studies adopted GANs to generate new
heartbeats for tackling imbalanced data problems, one of
the long-lasting challenges in supervised ECG abnormality
classification [18], [19]. In Section III-E, we will discuss
applications of these methods.

D. Comparison of Clustering Algorithms for ECG
Analysis

Table I compares different ECG clustering algorithms.
The ability of a clustering algorithm to handle noise and out-

liers is an important factor in ECG clustering as outliers exist
in most publicly available ECG datasets and can adversely
affect the structure of the resulting clusters.

The time complexity of a clustering algorithm is another
important factor. For applications that real-time analysis of
ECG is vital (e.g., in ICU settings), a clustering algorithm
incurring high computational cost may be an infeasible choice
even though the resulting clusters may be of high quality. K-
means, Fuzzy C-means, and Max-Min algorithms incur a low
computational cost; however, their ability to handle outliers is
lower than more computationally expensive algorithms such as
DBSCAN, GMMs, hierarchical, spectral, and deep learning-
based clustering. Among these algorithms, DBSCAN incurs
the lowest computational cost, although it is sensitive to the
choice of its hyper-parameters (the radius of the neighborhood
and the minimum number of points in a neighborhood).
Moreover, DBSCAN is not suitable for data spaces where the
inherent density of clusters is uneven.

Finding arbitrary (i.e., non-convex) shaped clusters and
handling high-dimensional feature spaces are other important
factors in choosing an effective clustering algorithm for ECG
analysis. Although distance-based clustering algorithms, such
as K-means, mostly find clusters of convex shapes, clusters are
likely in arbitrary shapes in an ECG dataset. Density-based and
deep learning-based clustering algorithms can effectively find
non-convex shaped clusters but with a higher computational
cost than distance-based clustering algorithms.

Feature spaces in ECG analysis are typically high-
dimensional as many features are often extracted from ECGs,
while the number of training ECG samples is typically limited.
Graph-based and deep learning-based clustering algorithms;
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however, they typically incur a higher computational cost.
Deep learning-based algorithms, in particular, are significantly
more effective in handling high-dimensional data than con-
ventional algorithms; however, deep learning methods require
large amounts of data for training.

In addition to the above considerations, some clustering
algorithms provide unique features for visualization. For ex-
ample, hierarchical clustering provides dendrograms visualiz-
ing the hierarchical relationships between clusters, and self-
organizing maps provide a 2-dimensional grid that visualizes
some specific topologies within the dataset. For further infor-
mation about clustering algorithms and their pros and cons,
we refer the reader to [47], [65], [77].

III. APPLICATIONS

We have categorized unsupervised ECG analysis studies,
introduced to date, into six application fields, as shown in
Figure 1. The most developed application is heartbeat cluster-
ing that provides a succinct yet comprehensible organization of
heartbeats within large amounts of ECG data. The most recent
and innovative line of research aims to discover relationships
between the cardiovascular system and the whole body and
mind. Unsupervised ECG analysis has also been used to
improve the performance of supervised abnormality detection
and ECG-based authentication systems.

A. Heartbeat Clustering
Heartbeat clustering aims to partition heartbeats across the

ECG signal into groups representing distinct abnormalities
or events. A summary of state-of-the-art heartbeat clustering
methods is provided in Table II.

The effectiveness of heartbeat clustering systems is typically
measured over ECG datasets with cardiologist-supplied labels.
Each resulting cluster is expected to contain heartbeats belong-
ing to only one label. Classification metrics, such as accuracy
and sensitivity, and similarity metrics, such as Jaccard coeffi-
cient [104] and normalized mutual information (NMI) [105]
are widely used as success measures. The Jaccard coefficient
and NMI range from 0 to 1, where a high value indicates
that identified clusters match well with ground-truth labels.
Silhouette score [106] is another widely-used measure that
does not require the ground-truth clusters. Silhouette measures
the similarity of a sample to its cluster with respect to the
other clusters, and ranges from -1 to 1, where a high value
indicates that the sample is well-matched with its cluster and
well separated from other clusters.

The datasets used for the evaluation of ECG clustering
methods include MIT-BIH Arrhythmia [107], Physikalisch-
Technische Bundesanstalt (PTB) [108], St.-Petersburg Institute
of Cardiological Technics 12-lead Arrhythmia (CTAD) [109],
UCR Arrhythmia [110], and BIDMC Congestive Heart Failure
[111] datasets, among which MIT-BIH Arrhythmia is the most
frequently used set.

One of the first and effective heartbeat clustering systems
was designed by Lagerholm et al. [102]. They partitioned QRS
complexes represented as wavelet coefficients into 25 clusters
using a self-organizing map and achieved a high accuracy

(98.5%) over MIT-BIH. The motivation behind using SOM
was to provide a neighborhood map (as in a 2-dimensional
grid) that preserves some topological information within the
dataset, which can ultimately facilitate the interpretation by
cardiologists.

Extensive research have focused on improving the ECG
clustering accuracy by employing various clustering and op-
timization techniques, such as ant colony clustering [60],
bee colony clustering [41], maximum margin clustering [34],
Gaussian mixture models [36], hierarchical clustering [37], K-
means [81], affinity propagation [96], and deep auto-encoder
networks [67]. Among these, the clustering system proposed
by Balouchestani and Krishnan [81] achieved the highest
accuracy over the MIT-BIH dataset (99.98%). They devised
a system based on K-means, compressed sensing theory, and
K-singular value decomposition to partition heartbeats into
five groups corresponding to normal, supra-ventricular ectopic,
ventricular ectopic, fusion, and unclassifiable beats.

The ECG datasets used in these studies are relatively small
to train deep learning models. Nevertheless, a few studies have
recently adopted deep learning to cluster heartbeats within
these datasets. Wachowiak et al. [67] trained a deep embedding
network [14] over MIT-BIH with different initial number
of clusters. The clustering result with the best silhouette
score separated different abnormal beats into distinct clusters;
however, the normal beats were equally spread over several
clusters. Notably, this can be attributed to imbalanced classes
within MIT-BIH, where normal beats constitute almost 75% of
labeled beats in MIT-BIH. In another study, Thinsungnoen et
al. [66] employed a genetic algorithm to obtain the optimal
number of neurons in a 2-layer autoencoder. They trained
the network over the UCR dataset containing 200 ECGs
classified as normal or abnormal. The learned feature space
was then clustered by the permutation distribution clustering
algorithm which resulted in 80.6% overall accuracy. Most
recently, Pereira et al. [74] trained a variational deep em-
bedding network [73] over a subset of the BIDMC dataset
comprising 4500 beats classified into normal class and four
abnormality classes. Their evaluation over 500 test beats
presented an overall accuracy of 96.0%. Although these deep
learning-based studies achieved promising results, there is still
a significant need for more advanced clustering algorithms that
can automatically handle imbalanced data problem without
the need for preprocessing algorithms and expert analysis.
For this purpose, deep generative-based algorithms, such as
ClusterGAN [76], that can learn to generate new samples from
the minority clusters can further be investigated. Future work
should also focus on the application of deep learning-based
clustering algorithms over large public ECG datasets, such as
those collected by Zheng et al. [112] and Wagner et al. [113].

From the clinical point of view, Syed et al. [97] performed
an innovative ECG clustering via symbolization. They trans-
formed the ECG signal into a symbolic string by clustering
heartbeats using the Max-Min clustering algorithm [50] and
assigning symbols to each identified cluster. Over the reduced
symbolic representation of the signal, they then searched
for subsequences of increased entropy representing irregular
activities. In one case, their method detected a sequence
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TABLE I
SUMMARY OF CLUSTERING ALGORITHMS USED IN REVIEWED STUDIES AND THEIR PROS AND CONS. BASED ON ANALYSIS CONDUCTED BY XU AND

TIAN [47]. n AND k DENOTE NUMBER OF SAMPLES AND NUMBER OF CLUSTERS, RESPECTIVELY.

Algorithm Pros Cons Studies

Deep Embedding Network

Easier to implement than other deep ar-
chitectures. Suitable for high dimensional
feature space. Suitable for handling noise
and oulier. Finds arbitrary shape clusters.

A priori knowledge about number of clusters is
required. Sensitive to the choice of clustering loss
function. High computational cost.

[67]

Variational Deep Embedding

Capable to generate samples from obtained
clusters. Suitable for high dimensional fea-
ture space. Suitable for handling noise and
oulier. Finds arbitrary shape clusters.

A priori knowledge about number of clusters is
required. High computational cost. [74]

K-means
Easy to implement. Easily adapts to new
examples. Very low time complexity (linear
in the size of ECG samples).

A priori knowledge about number of clusters is
required. Sensitive to noise and outlier. Not suitable
for non-convex shape clusters.

[8], [33], [35],
[74], [78]–[87]

Fuzzy c-means Handles overlapped clusters. Handles noise
and outlier.

A priori knowledge about number of clusters is
required. Computationally more expensive than K-
means.

[35], [39], [83],
[88]–[95], [95]

Affinity propagation A priori knowledge about number of clus-
ters is not required.

Low scalability. Sensitive to noise and outlier. Com-
putationally more expensive than K-means. [96]

Max-Min
Easy to implement. Easily adapts to new
examples. Low time complexity (linear in
the size of ECG samples).

A priori knowledge about number of clusters is
required. Sensitive to noise and outlier. [97]

Gaussian Mixture Models Handles overlapped clusters. Suitable for
handling noise and outlier.

A priori knowledge about number of clusters is
required. High time complexity.

[8], [36], [37],
[98]

Maximum Margin Clustering
Suitable for high dimensional feature space.
Suitable for handling noise and outlier. Han-
dles overlapped clusters.

A priori knowledge about number of clusters is
required. High time complexity. Low scalability.
Sensitive to the choice of kernel.

[34]

Swarm Intelligence
A priori knowledge about number of clus-
ters is not required. Mostly avoids local
optimal.

High time complexity. Low scalability. [41], [60], [61]

Spectral clustering
Suitable for high dimensional feature space.
Suitable for handling noise and oulier. Finds
arbitrary shape clusters.

A priori knowledge about number of clusters is
required. High time complexity. [56]

DBSCAN

A priori knowledge about number of clus-
ters is not required. Suitable for handling
noise and oulier. Finds arbitrary shape clus-
ters.

Sensitive to the choice of hyper-parameters. Not
Suitable for data spaces with uneven density (im-
balance clusters).

[8], [9], [99]

Self-Organizing Map Provides an interpretable organization of
clusters in a 2-dimensional grid.

A priori knowledge about number of clusters is
required. High time complexity. [100]–[102]

Hierarchical Clustering

Provides hierarchical relationship among
clusters. Handles noise and outliers. Finds
arbitrary shape clusters. A priori knowledge
about number of clusters is not required

High time complexity. [83], [85], [86],
[86], [103]

Permutation distribution clus-
tering

Specifically designed for clustering time-
series data.

High time complexity. High space complexity for
storing permutation distribution of ECGs. [66]

with an ectopic atrial rhythm that had gone unnoticed by an
expert cardiologist. Syed et al. further extended their work
for risk stratification using hierarchical clustering [114]. Risk
stratification aims to identify groups of patients within the
post-acute coronary syndrome population with an elevated risk
of death despite receiving similar treatment. In their method,
two clusters that were most similar to each other were merged
until the similarity between clusters being merged diminished.
Once the merging stopped, all patients falling out of the
largest cluster were identified at an elevated risk. They tested
their framework over ambulatory ECGs acquired from 686
patients, and successfully found patients at an elevated risk
of major adverse cardiac events 90 days after their acute
coronary syndrome treatment. Similar to Syed et al., Wang

et al. [37] aimed to obtain a symbolized representation of
the ECG signal using K-means. They partitioned the symbolic
ECGs into ten clusters using Gaussian mixture models. Their
study reached an accuracy of 94.4% over a subset of the PTB
dataset containing ten multi-channel ECGs classified into ten
abnormality classes.

One of the standard clinical protocols for monitoring heart
is via the 12-lead ECG that records the electrical activity via
electrodes attached to 10 different positions on the patient’s
body [32]. To obtain features from the 12-lead ECG, it is
common to concatenate features extracted from each lead.
However, such a representation is often unable to preserve the
relative positions of the 12 signals. To overcome this problem,
He et al. [36] used a technique called Tensor decomposition.
First, the ECG recorded via each lead was represented as its
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Fig. 1. Overview of unsupervised ECG analysis applications.

wavelet coefficients: W ∈ RV×L, where V and L denote
the number of leads and number of wavelet coefficients,
respectively. Using tensorization, W was then decomposed
to W ′ ∈ RI1×I2×I3 , where I1, I2, and I3 represent the
recorded signal, sampling time, and wavelet frequency sub-
band, respectively. They partitioned the tensor representation
of 12-lead ECGs into two clusters, corresponding to normal
and abnormal ECGs, using Gaussian mixture models. Their
system reached a high Jaccard coefficient of 0.93 over a subset
of the CTAD dataset containing two 30-minute 12-lead ECG
recordings.

B. ECG and State of the Mind

Different states of the mind, emotions, and mental disorders
are often associated with the autonomic nervous system (ANS).
ANS and heart bidirectionally interact with each other through
the sinoatrial (SA) node in the heart [8], [115], [116]. The SA
node, also known as the heart’s pacemaker, generates electrical
impulses that stimulate the heart’s muscles to contract and
pump blood [32]. In recent years, ECG clustering has helped
researchers, especially in psychophysiology, discover hidden
ECG patterns that correlate with different states of the mind.

The datasets used in these studies typically consist of ECG
and impedance cardiogram (ICG) signals acquired from either
healthy individuals under different emotional states or patients
with mental disorders. The feature engineering stage relies
on the extraction of a combination of ECG and ICG fea-
tures. Here, rather than evaluating the quality of the resulting
clusters, statistical hypothesis tests, such as t-test, are usually
performed to measure how relevant ECG (and ICG) features in
each cluster are to the state of the mind of individuals in that
cluster. Different states of the mind are treated as ground-truth
clusters and are identified manually through questionnaires

or automatically by clustering electroencephalogram (EEG)
signals. As such, metrics that measure the similarity between
identified clusters and ground-truth labels, such as NMI [105]
and Jaccard coefficient [104], can be used to improve the
reliability of these studies.

In this section, we review novel studies in this line of re-
search. A summary of the reviewed studies is provided in Table
III. As the reviewed studies targeted different mental states
using various private datasets, the clustering techniques are
not compared against each other. Nevertheless, we critically
review the existing studies in terms of the employed clus-
tering algorithms, feature engineering, and their experimental
scheme, and provide future directions.

Most recently, Hoemann et al. [98] performed clustering
over ambulatory ECG and ICG signals, acquired from 67
participants, to investigate the correlation between the car-
diorespiratory activities and emotional granularity. Emotional
granularity describes an individual’s ability to precisely distin-
guish their emotions. Low levels of emotional granularity have
been associated with mental disorders, including schizophre-
nia, autism, and depression [98]. Hoemann et al. employed the
Dirichlet process Gaussian mixture model to find the optimum
number of clusters within the data. They found that ECG
and ICG can be used to identify different levels of emotional
granularity.

Leal et al. [8] investigated the relationship between time
interval features of ECG and preictal interval (i.e., short
time before the seizure) in patients with epilepsy via ECG
clustering, with the prospect of predicting epileptic seizures
early enough to allow the patient to prepare for the upcoming
seizure. They performed K-means, DBSCAN, and Gaussian
mixture models over time intervals extracted from ECGs of
epileptic patients to see if a cluster, clearly separated from
others, represented preictal interval. They found that in 41% of
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TABLE II
SUMMARY OF STATE-OF-THE-ART HEARTBEAT CLUSTERING METHODS ALONG WITH THEIR REPORTED PERFORMANCES

Ref. Clustering Dataset # of Test
ECGs

# of
Abnormality

Classes

# of
Clusters Performance

[102] Self-Organizing Map MIT-BIH 48 16 25 98.5% accuracy

[97] Max-Min MIT-BIH 48 6 Auto 98.6% accuracy

[96] Affinity Propagation MIT-BIH 48 15 15 98.4% accuracy

[81] K-means + SVD MIT-BIH 48 4 4 99.98% accuracy

[60] Ant Colony MIT-BIH 32 6 6 94.4% sensitivity

[34] Maximum Margin Clustering MIT-BIH 7 5 5 95.9% accuracy

[36] Tensorization + Gaussian Mixture Model CTAD 2 2 2 0.93 Jaccard coefficient

[37] Symbolization + Gaussian Mixture Model PTB 10 10 10 94.4% accuracy; 0.97 NMI

[66] Autoencoder + Permutation Distribution UCR 200 2 2 80.6% accuracy; 0.31 Silhouette
coefficient

[74] Variational Deep Embedding BIDMC 500 5 5 96.0% accuracy

the seizures, such a cluster existed and represented an interval
of two to nine minutes in advance of the seizure occurrence.

Babaeian and Mozumdar [9] proposed a system to detect
driver drowsiness through clustering ECGs collected from
wearable devices. They performed density-based clustering
over time interval features and found three clusters associated
with awake, drowsy, and sleep states.

Carreiras et al. [86] aimed to detect the drop of attention in
individuals solving challenging math problems through ECG
clustering. Detecting attention drop in attention-demanding
tasks, such as surgery and piloting, is important because lack
of attention in such tasks may be catastrophic. Their work
was motivated by the fact that acquiring ECG via wearables
is more convenient than acquiring EEG via head-mounted
equipment. They performed consensus clustering, consisting
of multiple runs of a hierarchical algorithm with different
distance metrics, on ECG and EEG signals acquired from 24
subjects while solving math problems. Their results showed
a strong correlation between discovered clusters in ECG
dataset and those in the EEG dataset, suggesting that ECG
can help detect different levels of attention. Another finding
revealed that the number of ECG clusters was greater than
those discovered in the EEG dataset, which can provide more
accurate information for deeper analysis. Similarly, Wang et
al. [117] showed that the clusters obtained by analyzing ECG
acquired from palms of the drivers strongly correlate with the
clusters obtained by analyzing EEG. They suggested that the
ECG collected from driver’s palms can be utilized, instead of
the EEG, to identify different levels of driver’s attention.

Another application of ECG clustering is emotion detection.
The aim is to automatically identify different emotional states,
such as joy and sadness, through clustering. Wan-Hui et al.
[118] found that the frequency-domain features of the ECG
signal were more discerning than the time-domain features in
distinguishing joy from sadness. Zheng et al. [95] employed
the fuzzy C-means clustering algorithm to separate ECGs
into emotional stress and non-emotional stress clusters, and

showed that time interval features played significant roles in
distinguishing these two clusters. Medina [119] performed an
ensemble clustering, including K-means and spectral cluster-
ing, over ECGs acquired from 25 subjects while solving math
problems. Their system successfully partitioned subjects with
a similar level of stress in the same groups.

In an innovative study, Kupper et al. [6] investigated the
relationship between emotional stress and cardiorespiratory
activities among 744 young adults performing a stress-induced
activity involving solving a math problem and speaking in
front of two audiences. The ECG and ICG signals were
acquired from participants before and during the task. Us-
ing distribution-based clustering, they found five clusters of
participants that differed in autonomic balance and the level
of resting systolic blood pressure. The results also showed
that smoking, regular physical exercise, and body mass index
(BMI) were unrelated to the clusters. Furthermore, men were
twice as likely to be in clusters with higher resting blood
pressure and increased cardiac output when performing the
stress-induced task.

González-Velázquez et al. [120] investigated the relationship
between emotional eating behavior and ECG through cluster-
ing. They performed K-means (K=2) on ECGs acquired from
52 young adults to partition individuals with and without emo-
tional eating behavior. They found that the emotional eating
behavior was more common among overweight individuals
(BMI > 85th percentile). Moreover, obese individuals showed
significantly greater high-frequency components in their RR
time series.

Motivated by the success of deep learning techniques,
Oskooei et al. [99] recently trained a convolutional auto-
encoder over RR time series of 100 firefighter trainees to
identify the group under significant stress when performing
a drill. They applied DBSCAN to the latent representation
learned by the auto-encoder and found two clusters – one
smaller than the other, corresponding to those firefighters
exhibiting significantly more stress. They further showed that
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the application of K-means for this task was unable to find
the group of trainees under stress.

Various statistical hypothesis tests can be used to infer a
significant relationship between ECG features and different
states of the mind. Most of the reviewed studies used t-
test, which assumes that the population follows a normal
distribution. However, this assumption needs further validation
as the collected datasets are small and may not follow such
a distribution. The application of non-parametric tests that
do not rely on the normality, such as Friedman test [121]
and Spearman’s rank correlation [122], can also be further
investigated in this application.

Additionally, the ECG feature engineering stage in most
studies is limited to RR interval and heart rate. As such,
there is an unmet need for investigating the correlation be-
tween other ECG features, such as PR and QT intervals and
voltage- and frequency-domain features, and different states
of the mind. Moreover, the employed clustering algorithms
are limited to conventional K-means, hierarchical cluster-
ing, Gaussian mixture models, and DBSCAN. In particular,
deep learning-based clustering algorithms have not yet been
employed for this purpose. Larger datasets are required to
develop and train reliable deep learning algorithms capable of
discovering the relationship between ECG and different states
of the mind.

Lastly, as mentioned earlier, most studies treated different
states of the mind, such as different emotions or different
levels of mental disorder, as ground-truth clusters. The number
of such clusters is required as prior knowledge for most em-
ployed clustering algorithms. Few studies, however, employed
algorithms that do not require such prior knowledge, such as
DP-GMM [52] and DBSCAN [53]. They obtained more ECG
clusters than those indicated by the ground truth. An increase
in the number of clusters often leads to a better separation
between different ECG patterns but makes the interpretation
of the clustering results difficult for experts. Future work needs
to focus on finding the optimal number of ECG clusters.

C. ECG and State of the Body

This line of research focuses on discovering distinct clinical
phenotypes, including ECG abnormalities, blood pressure pro-
file, metabolic indicators, and demographics, among patients
with various diseases through clustering. Several studies aim to
reveal the underlying mechanisms and significant biomarkers
in each subpopulation of patients with similar ECG patterns –
which is almost impossible to perform visually.

Datasets used in these studies typically consist of ECG
and blood pressure signals acquired from individuals with
different conditions such as diabetes, atherosclerosis, embolic
stroke, or a chronic habit such as smoking. After clustering
ECGs, the dominant ECG pattern in each cluster is determined.
Hypothesis tests are then performed to confirm whether such
pattern is correlated with the disease (or the severity level of
the disease) represented by the cluster. As ground-truth clusters
are mostly unknown in this application, metrics that measure
inter and intra cluster similarity, such as Silhouette score, can
be used to improve the reliability of these analyzes. Here, we

review novel studies in this line of research. A summary of
the reviewed studies is provided in Table IV.

Wang et al. [123] investigated the effect of heart rate and
blood pressure on predicting orthostatic cardiovascular dys-
regulation in patients with spinal cord injury. They performed
hierarchical clustering over ECG and blood pressure signals
acquired from 207 subjects (48 controls) while lying and
passively moving into the seated position. The clustering result
with the best silhouette score partitioned subjects into eight
groups. They found that heart rate and systolic and diastolic
blood pressures can effectively identify the prevalence of car-
diovascular dysregulation in the spinal cord injury population.

Tseng et al. [7] investigated the relationship between ECG,
diabetes, obesity, hypertension, and smoking habit. They used
ECGs of 268 subjects within the PTB dataset and performed
K-means over time interval features to partition the patients
into eight groups. The results showed that almost all diabetic
patients were partitioned into the same group suggesting
a strong association between diabetes and ECG. However,
patients with smoking, hypertension, and obesity were spread
over all clusters, suggesting a weak correlation between these
conditions and time-interval features of ECGs.

Hernandez et al. [124] investigated the relationship between
ECG and physical activity capacity. ECG was acquired from
67 male participants at resting, cycling, and recovery states.
A wearable body composition analyzer recorded the amount
of fat stored within the abdominal cavity during the ECG
acquisition. They applied hierarchical clustering to time in-
tervals and wavelet extracted features, and, by analyzing the
dendrograms, found a four-cluster solution separating the data
space appropriately. They next applied K-means (K=4) and
discovered the following four groups: (1) individuals with
high physical work capacity, (2) young individuals with low
physical work capacity, (3) old individuals with low physical
work capacity and low to medium abdominal fat, and (4)
old individuals with low physical work capacity and high
abdominal fat.

Lattanzi et al. [11] investigated the association of ECG
abnormalities, demographics, metabolic indicators, and the
smoking habit among 127 patients with embolic stroke of
undetermined source. Cardiac abnormalities identified by a
cardiologist, such as atrial fibrillation and hypertension, were
used for clustering. They performed hierarchical clustering
and found three subpopulations of patients: (1) young males
with patent foramen ovale and posterior circulation infarct, (2)
patients with hypertension, severe stroke, left atrial cardiopa-
thy, diabetes mellitus, and multiple vascular territories, and
(3) smoker patients with dyslipidemia, ipsilateral vulnerable
sub-stenotic carotid plaque, and infarct of anterior vascular
territory.

Hyun et al. [12] investigated the correlation of ECG and
blood pressure with atherosclerosis disease. They applied
consensus clustering over ambulatory ECG and blood pressure
signals acquired from 989 patients. They found 16 clusters,
out of which two clusters contained a significant proportion
of patients at high risk of atherosclerosis. In these two clusters,
metabolic indicators, including diabetes, body mass index, and
total cholesterol were significantly high. Notably, age was
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TABLE III
SUMMARY OF REVIEWED STUDIES INVESTIGATING RELATIONSHIP BETWEEN ECG DATA AND DIFFERENT STATES OF THE MIND IN TERMS OF THEIR

OBJECTIVES AND FINDINGS, ALONG WITH THE EMPLOYED CLUSTERING ALGORITHM.

Ref. Objective Biosignal/Modality Clustering Findings

[98] Investigate relationship between emotional gran-
ularity and cardiorespiratory signals ECG, ICG DP-GMM Higher emotional granularity results in a larger num-

ber of clusters of cardiorespiratory signals.

[8] Investigate relationship between ECG and pre-
ictal interval in epilepsy patients ECG

K-means,
DBSCAN,
and GMM

A cluster of ECGs suggestive of an upcoming seizure
in 41% of patients.

[9] Detect driver drowsiness via cluster analysis of
wearable ECG ECG DBSCAN Three clusters for each participant driver correspond-

ing to awake, drowsy, and sleep states.

[117]
Investigate relationship between ECG acquired
from driver’s palms and EEG for detecting fa-
tigue driving

ECG, EEG K-means
Strong correlation between ECG and EEG. ECG
can be utilized, instead of EEG, to identify fatigue
driving.

[87] Investigate relationship between driver’s heart
rate, eye blink rate, and fatigue level

ECG, Facial im-
age K-means Heart rate, blink rate, and fatigue level under traffic

congestion are higher than normal conditions.

[86] Investigate relationship between ECG and EEG
during attention-demanding tasks ECG, EEG Hierarchical

clustering

Strong correlation between ECG and EEG. ECG can
help detect different levels of attention. ECG clusters
are more separated than EEG clusters.

[118] Investigate ECG features discriminating between
joy and sadness during watching movie

ECG, Self-report
questionnaires K-means

Frequency-domain features of ECG are more dis-
criminative than time-domain features in distinguish-
ing joy from sadness.

[95] Investigate effect of negative emotions in emo-
tional stress inducement through ECG clustering

ECG, Self-report
questionnaires Fuzzy C-means

Heart rate is lowest in the cluster of subjects with
positive emotion, and is highest in the cluster with
negative emotion.

[6]
Investigate relationship between demographics,
physical activities, cardiorespiratory activities
and emotional stress

ECG, ICG,
Self-report
questionnaires

Mixture modles

Five clusters within 744 participants that differed in
autonomic balance and the level of resting systolic
blood pressure. Smoking, regular physical exercise,
and BMI were unrelated to the clusters. Men were
twice as likely to be in clusters with higher resting
blood pressure and increased cardiac output when
performing the stress-induced task.

[120] Investigate relationship between emotional eat-
ing behavior and ECG

ECG, Self-report
questionnaires K-means

Two clusters separating individuals with and without
emotional eating behavior. Emotional eating behav-
ior was more common among overweight individ-
uals. Obese individuals show significantly greater
high-frequency components in their RR time series.

[119] Detect stress states via ECG clustering ECG Ensemble
clustering

Subjects with a similar level of stress in the same
cluster.

[99] Detect group of firefighter trainees under stress
via cluster wearable ECG analysis ECG

Convolutional
auto-encoder,
DBSCAN

Two clusters found. One is smaller than the other,
which corresponds to those firefighters exhibiting
significantly more stress.

commonly associated with all clusters.

Porumb et al. [10] trained a convolutional autoencoder over
ECGs acquired from subjects with nocturnal hypoglycemia
(low blood glucose level during sleep) to predict the drop
of glucose level. They used t-distributed stochastic neighbor
embedding [125] method to cluster and visualize the learned
latent representations and showed that the autoencoder effec-
tively separated ECGs recorded during low glucose levels from
those recorded during normal glucose levels. They fed the
latent representation as the input to a convolutional neural
network and trained the network over expert-supplied labels
to classify the ECG into normal and low glucose levels.
Their study obtained an accuracy of 90% over eight subjects
experiencing nocturnal hypoglycemia.

The hierarchical clustering algorithm is widely used in this
line of research. This algorithm does not require the initial

number of clusters and provides a hierarchical visualization
of the resulting clusters. Such visualization can greatly help
researchers identify underlying mechanisms and biomarkers in
each subpopulation. Self-organizing map [54] and t-distributed
stochastic neighbor embedding [125] are other well-known
algorithms that provide a two and three-dimensional map
to visualize topologies within the data space. As these two
algorithms preserve the local and global structure of the data,
they are suitable candidates for this application.

Moreover, the clustering algorithms employed by the re-
viewed studies are limited to K-means and hierarchical cluster-
ing. As the collected datasets by these studies are significantly
larger than those available publicly (such as MIT-BIH), the
application of deep learning-based clustering algorithms can
provide further improvement.

Lastly, similar to studies investigating the relationship be-
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tween ECG and states of the mind, the extracted ECG features
are limited to RR interval and heart rate. As such, the appli-
cation of other time-, voltage-, and frequency-domain features
need to be studied.

D. ECG-based Biometric Authentication and
Identification

Biometric authentication is the process of authenticating an
individual based on their physical traits – mostly fingerprint
and face. Fingerprint and facial patterns are physically ex-
posed and prone to external attacks. ECG-based authentication
systems, however, are difficult to deceive as the underlying
biometric features of heart electrical activity are concealed
[23].

A challenge facing ECG-based authentication systems is
intra-subject variability due to the different subject’s physical
and mental states that can lead to authentication failure.
Several studies have aimed to improve the robustness of ECG-
based authentication systems to intra-subject variability by
cluster analysis. The idea is to partition the subject’s ECG (or
heartbeats) into clusters, when the subject is under different
mental or physical conditions, and use information about the
clusters, such as the center of the clusters, as an additional
feature for the supervised learning method performing the
authentication [20]–[23]. Most studies in this application use
their collected ECG dataset recorded under different levels of
emotion or stress. Rather than evaluating the quality of the
resulting clusters, classification metrics, such as sensitivity,
specificity, and F1-score, are used to assess the performance
of the downstream supervised authentication task. As ground-
truth clusters are mostly unknown in this application, metrics
that measure inter and intra cluster similarity, such as Silhou-
ette score, can further be used to improve the reliability of
these studies.

As an example of a state-of-the-art study, Zhou et al. [23]
employed Gaussian mixture models clustering to improve the
robustness of their authentication system when the subject
is under stress. In particular, they partitioned the subject’s
ECG into several groups that differed in stress levels. The
centers of the clusters, combined with the latent representation
of the ECG learned by a convolutional auto-encoder, were
fed as the input feature vector to a support vector machine
performing authentication. They tested their system over 23
healthy subjects under different stress conditions and achieved
an average recognition rate of 95% and an average F1-score
of 0.97.

Similar to authentication, biometric identification is the pro-
cess of identifying an individual based on their physical traits
within a database of previously identified templates. ECG-
based identification systems typically incur a high computa-
tional cost due to cross-matching of the given ECG with all the
template ECG signals stored in the database to find a match.
Clustering has helped reduce the computational cost of such
systems by clustering the template ECG signals. During iden-
tification, only the cluster whose centroid is most similar to the
given ECG signal is searched. Neehal et al. [126] partitioned
templates in a database of 50,000 ECGs into five clusters

using K-means. Searching only the most similar cluster during
identification, they reduced the identification time by 79.26%.
Following a similar approach, Sufi et al. [127] proposed an
ECG-based identification system that worked with compressed
ECG data. Compression of ECG data is often required for
wireless cardiovascular monitoring. However, decompressing
millions of compressed ECG signals is highly time-consuming.
To solve this issue, Sufi et al. devised a system based on
Gaussian mixture models that directly clustered compressed
ECG signals within the template ECG database.

The clustering algorithms employed by these studies are
mostly limited to K-means and GMM. As such, the application
of other clustering algorithms used for ECG clustering, such as
DBSCAN [53] and deep learning-based methods, needs to be
further investigated. The datasets used by studies focusing on
ECG-based authentication are very small (n < 30). A much
larger ECG dataset recorded under different levels of emotions
or stress is needed to further improve the robustness of ECG-
based authentication systems to intra-subject variability. The
development of clustering algorithms capable of detecting
synchrony between ECG and other physiological signals need
to be also investigated [128].

E. Improving Supervised Abnormality Classification

In addition to knowledge discovery, clustering and deep
learning-based unsupervised techniques can be employed to
improve the performance and overcome the challenges of ECG
classification systems. The quality of the identified clusters
is barely evaluated in this application. Instead, classification
metrics, such as sensitivity, specificity, and F1-score, are used
to assess the performance of the downstream classification
task. Nevertheless, as the ground-truth clusters are known, the
classification metrics mentioned above as well as similarity
metrics, such as NMI and Jaccard coefficient, can be used to
evaluate the performance of the clustering phase and improve
the reliability of these studies. The MIT-BIH dataset has been
mostly used in this line of research. As this dataset is relatively
small, future work should also focus on using larger datasets
such as those collected by Zheng et al. [112] and Wagner et
al. [113].

One of the long-lasting challenges in accurately classifying
ECG abnormalities is the heavily imbalanced data problem
as a huge portion of cardiologists-supplied labels in public
ECG datasets indicate normal heartbeats. For example, in the
MIT-BIH dataset, more than 75% of the labeled heartbeats
belong to the normal class, while less than 1% of the beats
belong to four abnormality classes, namely, ventricular flutter,
nodal escape, atrial premature, and ventricular escape beats.
These imbalanced data result in poor performance of classifiers
when detecting minority classes. A well-known technique
to overcome this problem is under-sampling, where samples
from the majority class are randomly removed to make the
training set balanced [129]. However, this technique may lose
relevant information that is essential for the classification task.
To reduce information loss during under-sampling, Carrillo-
Alarcón et al. [16] clustered heartbeats in each majority
class within the MIT-BIH dataset using self-organizing maps.
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TABLE IV
SUMMARY OF REVIEWED STUDIES INVESTIGATING RELATIONSHIP BETWEEN ECG DATA AND DIFFERENT STATES OF THE BODY IN TERMS OF THEIR

OBJECTIVES AND FINDINGS, ALONG WITH THE EMPLOYED CLUSTERING ALGORITHM.

Ref. Objective Modality Clustering Findings

[123]
Investigate effect of heart rate and blood pres-
sure on predicting orthostatic cardiovascular
dysregulation in patients with spinal cord injury

ECG, Blood
pressure

Hierarchical
clustering

Heart rate, systolic blood pressure, and diastolic blood
pressure can effectively identify the prevalence of car-
diovascular dysregulation in the SCI population.

[7] Investigate relationship between ECG, diabetes,
obesity, hypertension, and the habit of smoking PTB dataset K-means

All diabetic patients were partitioned in the same group.
Patients with smoking, hypertension, and obesity were
spread over all clusters.

[124] Investigate relationship between ECG and phys-
ical activity capacity ECG

Hierarchical
clustering,
K-means

Four clusters. C1: individuals with high physical work
capacity. C2: young individuals with low physical work
capacity. C3: old individuals with low physical work
capacity and low abdominal fat. C4: old individuals with
low physical work capacity and high abdominal fat.

[11]

Investigate distinct ECG abnormalities, demo-
graphics, metabolic indicators, and the habit of
smoking among patients with embolic stroke of
undetermined source

ECG, Medi-
cal records

Hierarchical
clustering

Three clusters. C1: young males with patent foramen
ovale and posterior circulation infarct. C2: patients with
hypertension, severe stroke, left atrial cardiopathy, and
diabetes. C3: smoker patients with dyslipidemia and
ipsilateral vulnerable sub-stenotic carotid plaque.

[12] Investigate correlation of heart rate and blood
pressure with atherosclerosis disease

ECG, Blood
pressure Ensemble

16 clusters. Two of them include significantly greater
proportion of patients at high risk of atherosclerosis
disease. In these two clusters, diabetes, body mass index,
and total cholesterol were significantly high.

[10] Detect nocturnal hypoglycemia through ECG ECG Auto-encoder,
CNN

Obtained an accuracy of 90% over eight subjects expe-
riencing nocturnal hypoglycemia.

They under-sampled the heartbeats that are farthest from the
center of their clusters to ensure that the most informative
heartbeats are used to train the classifier. Their study reached
a high accuracy (> 99.96%) when detecting minority classes.
Notably, they used the differential evolution algorithm [130]
– a nature-inspired population-based optimization algorithm –
to find the optimal number of clusters that resulted in the best
classification performance.

Deep learning-based unsupervised techniques have also
been used to enhance the automation and performance of
abnormality classification systems. Xu et al. [131] improved
the performance of their deep neural network classifier by ini-
tializing the weights in each layer using a greedy unsupervised
algorithm. Each hidden layer was viewed as a restricted Boltz-
mann machine [69] and optimized using the contrastive diver-
gence algorithm [132] – a well-known unsupervised algorithm
to train energy-based latent models. The entire network was
then fine-tuned by minimizing the cross-entropy loss between
the ground-truth labels and the predictions. They evaluated
their method over the MIT-BIH dataset using three patient-
specific and one patient-independent experiments. Their sys-
tem reached an accuracy of 93.1%, 94.7%, 99.9% over three
individuals within MIT-BIH. Their system generalized well
to unseen patients in their patient-independent experiment but
with a lower accuracy of 91.8%.

Patient-specific ECG classifiers – trained classifiers that
are fine-tuned over the ECG of the given patient – have
shown superior performance over classifiers trained on a
common ECG pool. Zahi et al. [17] showed that re-tuning
the classifier over patient-specific normal beats improved the
classification performance over MIT-BIH. Despite their supe-
rior performance, patient-specific classifiers have a low level

of automation as they require a part of the ECG signal to be
manually labeled for fine-tuning. To overcome this problem,
Zahi et al. [17] proposed an unsupervised method to automat-
ically identify normal ECG beats. They clustered heartbeats
based on their similarity to their adjacent beats, and identified
beats in the cluster exhibiting the highest average similarity
as normal. Their deep classifier was then fine-tuned over
the identified normal beats. Their system outperformed the
patient-independent classifier – especially when detecting two
abnormality classes, namely ventricular and supraventricular
ectopic beats, where they obtained the high accuracy of 97.4%
and 98.6%, respectively.

Recently, generative adversarial networks (GANs) [15] have
been also used to improve the automation of patient-specific
classifiers. The idea is to utilize the generator in GAN to
generate new patient-specific normal beats. Zhou et al. [18]
used the MIT-BIH dataset augmented with the GAN-generated
normal heartbeats for more accurate training and classification
on ventricular and supraventricular ectopic beats, and reached
an overall accuracy of 97%. Similarly, Golany et al. [19]
trained a GAN over first few minutes of each patient unlabeled
ECG data to generate normal beats. In contrast to Zhou et al.
[18] that used a convolutional neural network for arrhythmia
classification, they used a long short-term memory neural
network [133], and achieved similar good performance.

Deep learning-based unsupervised feature extraction tech-
niques have also improved the performance of supervised
classification systems when compared with classifiers that use
hand-crafted features. As an example, Nurmaini et al. [68]
combined a CNN-based deep auto-encoder as an unsupervised
feature extraction technique with a deep neural network for
arrhythmia classification. Their system reached a high F1-
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score of 0.92 over the entire MIT-BIH dataset.
Another advantage of combining unsupervised learning with

supervised ECG classification is the usage of transfer learning
[134]. The idea is to transfer the parameters of a model
trained on a large dataset to another model for performing
classification over a smaller dataset labeled inaccurately or
missing some labels. Weimann et al. [135] trained a deep
residual network classifier [136] over the Icential11K dataset
[137] – the largest publicly available ECG dataset with 11,000
patients – and fine-tuned their network on Physionet/CinC
2017 dataset [138] for atrial fibrillation detection. Jang et al.
[139] pre-trained a convolutional autoencoder over more than
two million ECG samples. They then fine-tuned their network
over another dataset of ten thousand 12-lead ECGs to detect
11 arrhythmia classes and achieved an F1-Score of 0.857.

F. Other Applications

In addition to the discussed applications, ECG clustering
has also been employed in other interesting applications. Xia
et al. [24] used ECG clustering to improve the accuracy of
a QRS detection system. The idea is that lines intercepting
pairs of points belonging to QRS regions have a significantly
higher absolute slope than lines intercepting any other pairs
of points across the ECG. Using K-means, they partitioned
all pairs of points across the ECG based on their absolute
slope into two clusters. They found that one cluster mainly
contains pairs of points belonging to QRS regions. Among
these points, the point with maximum amplitude was identified
as the R-peak. They achieved a sensitivity of 99.72% and a
positive predictivity of 99.80% on R-peak detection over eight
records in MIT-BIH. Following a similar idea, in a recent
study, Chen et al. [25] applied hierarchical clustering to the
average amplitude of each pair of points in addition to their
slope to partition the points into two clusters: R-wave cluster
and non-R-wave cluster. They achieved a sensitivity of 99.89%
and a positive predictivity of 99.97% in R-peak detection over
MIT-BIH.

Zhou et al. [26] extracted fetal QRS complexes from ma-
ternal QRS complexes in abdominal ECG through clustering.
Notably, fetal ECG acquired from the maternal abdomen is
contaminated by maternal heart’s activities, fetal brain activi-
ties, and various noises such as uterine contraction. Zhou et al.
proposed that the amplitude of R-S peaks can be a distinctive
characteristic to distinguish maternal QRS complexes from
that of fetal ECG because the amplitude of R and S peaks
in maternal ECG is significantly larger than that in fetal
ECG. They applied K-means to pairs of consecutive local
maximum-minimum across the ECG and found three clusters.
One included R-S peaks belonging to the mother, the other
included R-S peaks from the fetal, and the last cluster had
non-RS peaks.

Salman et al. [140] tried to reduce the average waiting time
for remote patients by clustering them into groups that differ
in degrees of urgency. They applied fuzzy c-means to the
features extracted from ECG and blood pressure signals, and
partitioned patients into five groups. The identified clusters
corresponded to patients at normal, cold, sick, urgent, and high

risk states. They viewed each cluster as a queue and proposed
an algorithm that minimized the average waiting time while
prioritizing urgent patients.

IV. DISCUSSION AND FUTURE DIRECTION

A. Deep Learning-based Clustering and Contrastive
Learning

Although the reviewed ECG clustering techniques have
reported promising results, there is still a significant need
for more advanced algorithms that can automatically handle
large amounts of data without the need for preprocessing
steps and expert analysis. The primarily advantage of deep
learning techniques over traditional machine learning methods
is the automatic feature extraction and selection process. Deep
learning techniques have shown to outperform the traditional
machine learning methods in several complex tasks, such as
speech recognition and image classification — to name just a
few. Nevertheless, very few studies have focused on employing
deep learning for unsupervised ECG analysis. As such, new
generation of deep learning algorithms, such as deep adaptive
clustering [70] and ClusterGAN [76] (as reviewed in Section
II-C) have the potential to be employed in ECG clustering
systems.

A disadvantage of deep learning techniques is their lack
of interpretability as features are extracted in black-box. This
becomes an ever more important concern in the ECG analysis
as the interest in how the results are obtained is no less
that what the results are. Future research in this area should
focus on interpretability of deep learning techniques for ECG
analysis. The adoption of algorithms such as DeepLIFT [141]
can be investigated. Given an input, DeepLIFT assigns a
contribution score to each neuron in the neural network by
back-propagating the activations of neurons from the predicted
output to every feature of the input.

In addition to deep learning, the application of contrastive
learning in ECG clustering can be further studied. Contrastive
learning aims to learn an embedding space where similar data
points are closer to each other than dissimilar ones without
the need for labeled data. It recently achieved superior per-
formance over several deep learning methods tackling vision
and language processing tasks. In ECG analysis, it can be
adapted for unsupervised or semi-supervised analysis where
cardiologists annotate a small subset of the dataset. Interested
readers can refer to [142], [143] for more information.

B. Unsupervised Analysis of ECG Recorded by
Wearable Devices

The time and space complexity of the clustering method
must be within the computational power of the wearable when
ECG data are supposed to be analyzed within the device. The
reliability of the transmission channel and its latency are im-
portant considerations when the ECG data are transmitted to a
remote server. Therefore, efficient compression and encryption
algorithms are required for optimum and secure transmission
of the ECG data [144]–[147].

Besides, the robustness to the noise is of high importance as
the wearable devices are more likely to record lower quality
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ECGs than standard clinical equipment. Even after de-noising,
there is no guarantee that the signal is noise-free, because the
practical implementation of any de-noising system is known
to be imperfect [148]. The use of artifact rejection algorithms
is extremely important within this context [149].

The majority of the reviewed methods have been developed
and verified on resting-state ECG where the heart rate is
typically below 120 beats per minute. However, heart rate
may vary significantly in ambulatory settings where subjects
are being monitored for long periods of time. Therefore, the
robustness of the methods to the heart rate variations is another
important consideration. Analyzing ECGs recorded via wear-
able devices is a recent and emerging field on which very few
studies have focused, leaving room for further investigation.
Interested readers can refer to the following sources for more
information [144]–[147], [150]–[152].

C. Stream ECG Clustering
The sheer volume of ECG data produced every day is

impractical to be stored due to the limited hardware resources.
Moreover, real-time monitoring of high-risk patients and the
immediate detection of abnormal events is vital. As such,
future clustering systems need to handle ECG data arriving
continuously — a form of data known as stream.

Stream ECG clustering poses several key challenges to
traditional clustering systems. First, the ECG should be an-
alyzed in only one pass as storing all the arriving signals is
impractical. Second, the clusters can change as new ECGs
arrive. Third, cardiac events must be identified in real-time.
Notably, all the methods reviewed here handle non-stream
ECGs, leaving room for possible future research. Interested
readers can refer to the following sources to gain more
information about data stream clustering analysis [153]–[157].

D. Public Database of ECG Recorded under Different
States of Mind and Body

To date, much effort has been devoted to developing
open-access ECG datasets that represent various cardiac
abnormalities [1], [112], [113]. Nevertheless, as described in
Sections III-B–III-D, studies discovering relationships between
ECG and different states of the mind and body, and those
developing ECG-based authentication systems use private
datasets. This makes the comparison among methods and
reproducing their results impossible. To further develop these
innovative lines of research, an open-access dataset of ECGs
recorded under different mental states, such as stress or mental
disorders, and different health conditions, such as diabetes, is
needed. Such a database needs to be large enough and balanced
in terms of the sex and age of the individuals.

E. Feature Engineering based on P, QRS, and T Waves
The majority of the reviewed studies do not aim to identify

P and T waves for feature engineering, while the abnormal
morphology of such waves can indicate important cardiac
disorders, such as myocardial ischemia, hypokalemia, or atrial
fibrillation — to name just a few [32]. Moreover, the R-wave

is often assumed to be present in all recorded heartbeats.
However, we note that R-wave can be absent in the presence
of some abnormalities such as dextrocardia [32].

To overcome these problems, researchers can employ state-
of-the-art ECG segmentation systems such as those developed
by Martinez et al. [158] and Bote et al. [159]. Such systems
can effectively identify P, Q, R, S, and T waves along the ECG,
allowing extracting temporal and morphological features of all
primary waves.

V. CONCLUSIONS

In this paper, we provided a comprehensive and critical
review of unsupervised machine learning methods for ECG
analysis. The conventional as well the state-of-the-art ECG
clustering algorithms were reviewed, and their advantages and
disadvantages were thoroughly discussed. We also extensively
reviewed various applications of unsupervised ECG analysis,
described state-of-the-art studies in each application, outlined
their limitations, and provided future directions.

We believe that the reviewed clustering methods in this
paper will continue to advance in the context of unsupervised
biomedical signal processing and will likely form an important
component of ECG monitors in the future.
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[92] Y. Özbay et al., “A fuzzy clustering neural network architecture for
classification of ecg arrhythmias,” Computers in Biology and Medicine,
vol. 36, no. 4, pp. 376–388, 2006.

[93] R. Ceylan et al., “A novel approach for classification of ecg arrhyth-
mias: Type-2 fuzzy clustering neural network,” Expert Systems with
Applications, vol. 36, no. 3, pp. 6721–6726, 2009.
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