A Caltech Library Service

The NICER “Reverberation Machine”: A Systematic Study of Time Lags in Black Hole X-Ray Binaries

Wang, Jingyi and Kara, Erin and Lucchini, Matteo and Ingram, Adam and van der Klis, Michiel and Mastroserio, Guglielmo and García, Javier A. and Dauser, Thomas and Connors, Riley and Fabian, Andrew C. and Steiner, James F. and Remillard, Ron A. and Cackett, Edward M. and Uttley, Phil and Altamirano, Diego (2022) The NICER “Reverberation Machine”: A Systematic Study of Time Lags in Black Hole X-Ray Binaries. Astrophysical Journal, 930 (1). Art. No. 18. ISSN 0004-637X. doi:10.3847/1538-4357/ac6262.

[img] PDF - Published Version
Creative Commons Attribution.

[img] PDF - Accepted Version
Creative Commons Attribution.


Use this Persistent URL to link to this item:


We perform the first systematic search of all NICER archival observations of black hole (and candidate) low-mass X-ray binaries for signatures of reverberation. Reverberation lags result from the light travel time difference between the direct coronal emission and the reflected disk component, and therefore their properties are a useful probe of the disk-corona geometry. We detect new signatures of reverberation lags in eight sources, increasing the total sample from three to 11, and study the evolution of reverberation lag properties as the sources evolve in outbursts. We find that in all of the nine sources with more than one reverberation lag detection, the reverberation lags become longer and dominate at lower Fourier frequencies during the hard-to-soft state transition. This result shows that the evolution in reverberation lags is a global property of the state transitions of black hole low-mass X-ray binaries, which is valuable in constraining models of such state transitions. The reverberation lag evolution suggests that the corona is the base of a jet that vertically expands and/or gets ejected during state transition. We also discover that in the hard state, the reverberation lags get shorter, just as the quasiperiodic oscillations (QPOs) move to higher frequencies, but then in the state transition, while the QPOs continue to higher frequencies, the lags get longer. We discuss the implications of the coronal geometry and physical models of QPOs in light of this new finding.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Wang, Jingyi0000-0002-1742-2125
Kara, Erin0000-0003-0172-0854
Lucchini, Matteo0000-0002-2235-3347
Ingram, Adam0000-0002-5311-9078
van der Klis, Michiel0000-0003-0070-9872
Mastroserio, Guglielmo0000-0003-4216-7936
García, Javier A.0000-0003-3828-2448
Dauser, Thomas0000-0003-4583-9048
Connors, Riley0000-0002-8908-759X
Fabian, Andrew C.0000-0002-9378-4072
Steiner, James F.0000-0002-5872-6061
Remillard, Ron A.0000-0003-4815-0481
Cackett, Edward M.0000-0002-8294-9281
Uttley, Phil0000-0001-9355-961X
Altamirano, Diego0000-0002-3422-0074
Additional Information:© 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 2021 December 1; revised 2022 March 27; accepted 2022 March 28; published 2022 May 2. We thank the anonymous referee for helpful comments that improved this work. J.W., G.M., E.K., and J.A.G. acknowledge support from NASA ADAP grant 80NSSC17K0515. J.A.G. thanks support from the Alexander von Humboldt Foundation. A.I. and D.A. acknowledge support from the Royal Society. R.A.R. acknowledges support from NICER grant 80NSSC19K1287.
Group:Space Radiation Laboratory
Funding AgencyGrant Number
Alexander von Humboldt FoundationUNSPECIFIED
Subject Keywords:Stellar mass black holes; Astrophysical black holes; Accretion
Issue or Number:1
Classification Code:Unified Astronomy Thesaurus concepts: Stellar mass black holes (1611); Astrophysical black holes (98); Accretion (14)
Record Number:CaltechAUTHORS:20220512-561107000
Persistent URL:
Official Citation:Jingyi Wang et al 2022 ApJ 930 18
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:114703
Deposited By: George Porter
Deposited On:13 May 2022 17:19
Last Modified:13 May 2022 17:19

Repository Staff Only: item control page