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Abstract

The improvement of sensitivity to gravitational waves (GWs) at lower frequencies is still challenging on account
of displacement noise. One of the solutions is the neutron displacement-noise-free interferometer (DFI). We focus
on a simplification of the detector configuration by taking advantage of the ability to adjust the neutron speed
depending on the configuration. The new configuration consists of two beamsplitters and two mirrors, which
constitute a single Mach-Zehnder interferometer (MZI). It is simpler than the configuration with two MZIs in
previous research. All displacement noise of mirrors and beamsplitters can be canceled in the frequency domain.
This cancellation can be explained intuitively using a phasor diagram.

keywords: Gravitational wave ; Neutron interferometer ; Displacement-noise free interferometer ; Mach-Zehnder
interferometer

1 Introduction

Ground-based gravitational wave (GW) detectors, such as LIGO and Virgo [1][2], have contributed to the
development of GW observations. These detectors have already detected 90 GW signals from compact binary
coalescences [3], and Einstein Telescope [4] and Cosmic Explorer [5] were proposed as next-generation ground-based
GW detectors. Improvement of the sensitivity at lower frequencies is still challenging on account of displacement
noise sources, such as thermal noise, seismic noise, and radiation pressure noise. One of the solutions for this
problem is observation with space-based GW detectors, which are free from seismic noise, to increase the sensitivity
at lower frequencies. For example, LISA [6] and DECIGO [7][8] are planned as space-based GW detectors. However,
developing GW detectors for space is expensive and time consuming. Therefore, it is crucial to reduce displacement
noise significantly for the ground-based detectors, because GWs at lower frequencies are important science targets.
For example, detection of primordial GWs will probably enable us to determine which cosmic inflation model is
correct.

One of the ideas to remove this obstacle to observations at lower frequencies is the displacement-noise-free inter-
ferometer (DFI), which was proposed in [9]. The DFI is based on the idea that, in the transverse-traceless gauge of a
GW, GW perturbations can be distinguished from displacement perturbations [10][11]. The DFI signal is composed
of an appropriate combination of several interferometer signals. This combination can remove displacement noise
while maintaining the GW signals [12][13]. At frequencies lower than 1Hz, however, the DFI has less sensitivity
to GWs because the propagation time of light is much shorter than the period of the GWs. When interferometer
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signals are combined to cancel displacement noise at these low frequencies, the combination also cancels most of
the GW signals. The DFI has highest sensitivity to GWs with periods comparable to the light propagation time
in the DFI. For instance, an interferometer with arm lengths of 3 × 108 m has the highest sensitivity to the GWs
at 1Hz, yet this long arm length is not practical for ground-based detectors. For this problem, various options
such as Fabry-Perot cavities have been considered, but they have proven to be problematic [14]. To resolve this
problem, DFI with neutrons, which is called a neutron displacement-noise-free interferometer, was proposed in
[15]. In a neutron DFI with neutrons propagating much more slowly than light, the neutron propagation time can
be comparable to the period of GWs at lower frequencies. This enables us to cancel displacement noise without
cancellation of the GW signals. Accordingly, a neutron DFI has high sensitivity to GWs at lower frequencies.

In this paper, we discuss simplification of the configuration of a neutron DFI. Generally, a simpler detector
configuration is better from various perspectives. For example, a detector that has more components experiences
more alignment difficulty. Furthermore, a detector that has a more complicated mechanical configuration suffers
from more structural obstacles such as mechanical resonances. For these reasons, we focus on a simplification of
the detector configuration by taking advantage of adjusting the neutron speed. We discuss the neutron DFI config-
uration in Section 2.1, the cancellation of mirror displacement noise in Section 2.2, the cancellation of beamsplitter
displacement noise at Section 2.3, a phasor diagram of the noise cancellation in Section 2.4, the neutron trajectory
in the neutron DFI in Section 2.5, and finally the GW response in a neutron DFI in Section 3.

2 Neutron DFI using a single Mach-Zehnder configuration with two
pairs of bidirectional neutrons at different speeds

2.1 Configurations of neutron DFIs

The concept of the neutron DFI is based on the laser DFI [9]. The straightforward neutron DFI has the configuration
shown in Figure 1 (a). In this configuration, a pair of counter-propagating neutrons comprises one Mach-Zehnder
interferometer (MZI). In this paper, a pair of counter-propagating neutrons is called a “bidirectional neutron.” Two
bidirectional neutrons, which are four counter-propagating neutrons with the same speed, comprise configuration
(a), which is composed of One large MZI and one small MZI. Instead of a laser, this configuration uses neutrons
for improving the sensitivity to GWs at lower frequencies [15]. For simplifying the neutron DFI configuration,
configuration (a) is modified to configuration (b). The large and small MZIs using two bidirectional neutrons with
the same speed are replaced with a single MZI using two bidirectional neutrons with slow and fast speeds. This
neutron DFI configuration is possible with neutrons, but not possible with laser light because the speed of neutrons
can be adjusted arbitrarily.
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Figure 1: Configurations of the neutron DFI. Configuration (a) consists of two beamsplitters A and B and four
mirrors C1, C2, D1, and D2, which constitute one large and one small MZIs. In configuration (a), two pairs of
counter-propagating neutrons with the same speed enter one large and one small MZIs. Configuration (b) consists
of two beamsplitters A and B and two mirrors C and D, which comprise a one MZI. In configuration (b), two
bidirectional neutrons with slow (red) and fast (blue) velocities enter the single MZI. In this figure, the solid lines
show the neutron trajectory incident from beamsplitter A and the dashed lines show the neutron trajectory incident
from beamsplitter B.

2.2 Cancellation of mirror displacement noise in the time domain

In configuration (b) of Figure 1, two bidirectional neutrons with speeds v1 and v2 (v1 > v2) enter the single MZI.
We consider the case where they hit each mirror at the same time t = t′. Fast and slow neutrons spend the
times T1 and T2 (T1 < T2), respectively, transmitting through one side of the MZI. Signals from GWs and other
noise sources are registered as neutron phase shifts. Each phase shift from displacement noise is denoted by φli(t)
(l = A,B,C,D and i = 1, 2), as shown in Table 1.

The signal combination that cancels mirror displacement noise is defined as

V1(t) = φBA1
(t)− φAB1

(t), (1)

V2(t) = φBA2
(t)− φAB2

(t). (2)

The mirror displacement noise in these combinations can be canceled because each bidirectional neutron hits
mirrors at the same time. Each neutron receives the same displacement noise at each point. As a result, the mirror
displacement noise in a single MZI is canceled by the combinations of each bidirectional neutron in the time domain.

Table 1: Phase shift resulting from displacement noise when four counter-propagating neutrons hit mirrors at the
same time t = t′. The subscripts indicate the routes of the neutrons. For example, subscript BA (φBA2) indicates
the route (B→ C→ A and B→ D→ A). The subscript 2 indicates slow and the subscript 1 indicates fast neutrons.

Signal C D B A

φBA2
(t) φC2

(t′) φD2
(t′) φB2

(t′ − T2) φA2
(t′ + T2)

φBA1
(t) φC1

(t′) φD1
(t′) φB1

(t′ − T1) φA1
(t′ + T1)

φAB2(t) φC2(t′) φD2(t′) φB2(t′ + T2) φA2(t′ − T2)

φAB1(t) φC1(t′) φD1(t′) φB1(t′ + T1) φA1(t′ − T1)

2.3 Cancellation of beam splitter displacement noise in the frequency domain

In Eq. (1) and (2), these combinations still have the displacement noise of the beamsplitters. This is because the
neutrons do not hit the beamsplitters at the same time. With regard to displacement noise, a displacement can be
represented as an exponential function. The amplitude and initial phase are given by Xl and ϕl (l = A,B,C,D).
With them, a beamsplitter displacement xl is given by

xl(t) =
∑
ω

Xl(ω)ei(ωt+ϕl(ω)). (3)
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In the frequency domain of Eq. (3), an arbitrary term with an arbitrary frequency ω′ is written as

xl(ω
′) = Xl(ω

′)ei(ω
′t+ϕl(ω

′)). (4)

Using the de Broglie wavelength, the phase shift φli (l = A,B,C,D and i = 1, 2) from displacement noise is given
by

φli(ω
′) = 2m

~ vixl(ω
′)

= 2m
~ viXl(ω

′)ei(ω
′t+ϕl(ω

′)). (5)

Defining ki (i=1,2), a coefficient to simplify the equation, as

ki = 2m
~ vi, (6)

Eq. (5) can be written as

φli(ω
′) = Xl(ω

′)kie
i(ω′t+ϕl(ω

′)). (7)

For the signal combinations of V1 and V2, the phase shifts from the displacement of the beamsplitters are shown in
Table 2.

Signal B A

V2 φB2
(ω′){e−iω′T2 − eiω′T2} φA2

(ω′){eiω′T2 − e−iω′T2}

V1 φB1
(ω′){e−iω′T1 − eiω′T1} φA2

(ω′){eiω′T1 − e−iω′T1}

Table 2: Displacement noise of the beamsplitters in the Fourier domain when neutrons hit beamsplitters at the
same time, t = t′.

We define κ1 and κ2 as the coefficients that cancel displacement noise of the beamsplitters. With these coeffi-
cients, the combination VDFI is given by

VDFI = κ1V1/k1 − κ2V2/k2. (8)

Here, we normalized Vi with ki. With regard to the displacement noise at beamsplitter B, coefficients κ1 and κ2

are given by

κ1V1/k1 − κ2V2/k2 = XB(ω′)eϕB [κ1{e−iω
′T1 − eiω

′T1} − κ2{e−iω
′T2 − eiω

′T2}]
= XB(ω′)eϕB [κ1{−2i sinω′T1} − κ2{−2i sinω′T2}]
= 0. (9)

∴ κ1 = sinω′T2. (10)

κ2 = sinω′T1. (11)

Eq. (8) can be written as

VDFI = sinω′T2 · V1/k1 − sinω′T1 · V2/k2. (12)

Although we discuss the displacement of beamsplitter B in Eq. (9), this combination can also cancel the displacement
noise at beamsplitter A. In Eq. (12), the displacement noise of the beamsplitters can be canceled by the combination
of different neutrons with frequency-dependent coefficients that are real. This cancellation is based on the symmetry
condition for a neutron DFI. The neutron DFI configuration is symmetrical with respect to the mirrors, as the
criteria. This symmetry means that the neutron propagation times between a beamsplitter and a mirror are also
symmetrical. As a result, this condition of symmetry leads to cancellation with the frequency-dependent coefficients
defined by the propagation time of the neutrons.
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2.4 Phasor diagram showing cancellation of beam splitter displacement noise

In this section, we show the mechanism for the cancellation of beamsplitter displacement noise using a phasor
diagram. As shown in Eq. (12), the neutron DFI signal combination can cancel all the displacement noise in a
single MZI. Provided that bidirectional neutrons hit each mirror at the same time, t = 0, displacement noise at
beamsplitters A and B are shown in Table 3.

Signal B A

V2 XBk2e
ϕB{e−iω·T2 − eiω·T2} XAk2e

ϕA{eiω·T2 − e−iω·T2}

V1 XBk1e
ϕB{e−iω·T1 − eiω·T1} XAk1e

ϕA{eiω·T1 − e−iω·T1}

Table 3: Displacement noise of the beamsplitters when a neutron hits the beamsplitter at time t = 0. XA and XB

are the amplitudes of the position variations of beamsplitters, A and B. ϕA and ϕB are the initial phases of the
beamsplitter position variations.

This cancellation can be explained intuitively, using a phasor diagram. Figure 2 shows a phasor diagram of
displacement noise at the beamsplitters when two bidirectional neutrons enter the MZI and hit the mirrors at t = 0.

Figure 2: Phasor diagram of displacement noise at beamsplitters A and B in a neutron DFI. Arrow lengths show
the noise amplitude. Angles of arrow rotation show the phase of the noise. Solid lines show the displacement
noise of beamsplitter B. Dashed lines show the displacement noise of beamsplitter A. The displacement noise of
the beamsplitters at t = 0 are illustrated by black arrows, which are references for the blue and red arrows. The
displacement noise, φA,V1 and φB,V1 , when faster neutrons hit A and B, are illustrated by the blue arrows. The
phase difference between the black and blue arrows is ωT1. The displacement noise, φA,V2

and φB,V2
, when slower

neutrons hit beamsplitters A and B are illustrated by the red arrows. The phase difference between the black
and blue arrows is ωT2. The displacement noise in the DFI combination VDFI are φA,VDFI

and φB,VDFI
, which are

illustrated by orange arrows.

In Fig 2, the φB,VDFI
and φA,VDFI

arrows are parallel, the difference between them is only their lengths. The
arrow length indicates the amplitude of the noise. The parallelism of these arrows is attributed to the symmetry
of the neutron DFI. In this condition, the ratio of the arrow lengths about beamsplitter B is equal to that about
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beamsplitter A. As shown in Eq. (12), the frequency-dependent coefficients κ1 and κ2 equalize the amplitudes of
these arrows. Accordingly, the combination of a fast and a slow neutron can cancel beamsplitter displacement noise
in a neutron DFI.

2.5 Gravitational effect on neutron trajectory

A neutron trajectory in a single MZI is parabolic because of gravity. In Figure 3, the neutron DFI configuration is
shown in three dimensions. The angles between the neutron trajectories and the x-y plane are α1 and α2 for the
neutrons with the fast and slow speeds, respectively. Under the condition that all neutrons hit the same points on
beamsplitters A and B at z = 0, the angles α1 and α2 are constrained by

sin 2αi =
2gL

v2
i

. (13)

Figure 3: Neutron trajectories in three dimensions. The dashed lines connect A, B, C, and D on the x-y plane.
The trajectory of each neutron is shown by the blue (fast neutron) and red (slow neutron) lines. The initial angles
between the neutron trajectories and the x-y plane are α1 and α2.

In Fig 3, the fast and slow neutrons hit different points on the mirrors, although they hit the same points on
the beamsplitters. Mirror noise cancellation is possible because of the combination of signals from the bidirectional
neutrons.
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3 Response of a neutron DFI to gravitational waves

The neutron DFI configuration and parameter definitions are shown in Fig 4. The time each neutron spends
transiting between the beamsplitters and the mirrors is Ti, which is given by

Ti =
L

vi cosαi
. (14)

Figure 4: Definition of parameters in the neutron DFI configuration.

The coordinates of the neutron incidence point on beamsplitter B are given by

xB = {−L cosβ, 0, 0}. (15)

The neutron trajectory (B→C) is given by

xBCi
(t) = {vit cosαi cosβ, vit cosαi sinβ, vit sinαi −

g

2
t2} (0 ≤ t ≤ Ti), (16)

and the coordinates of the impact points on mirror C for each neutron are given by

xCi
= xB + xBCi

(Ti)

= {0, L sinβ,
g

2
T 2

i }. (17)

The neutron trajectory (C→A) is given by

xCAi
(t) = {vit cosαi cosβ,−vit cosαi sinβ,−g

2
t2} (0 ≤ t ≤ Ti), (18)

and the coordinate of the incidence points on the beamsplitter are given by

xAi = xC + xCAi(Ti)

= {L cosβ, 0, 0}. (19)

The neutron trajectory (B→D) is given by
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xBDi
(t) = {vit cosαi cosβ,−vit cosαi sinβ, vit sinαi −

g

2
t2} (0 ≤ t ≤ Ti), (20)

and the coordinates of the impact points on mirror D for each neutron are given by

xDi
= xB + xBDi

(Ti)

= {0,−L sinβ, viTi sinαi −
g

2
T 2

i }. (21)

The neutron trajectory (D→A) is given by

xDAi
(t) = {vit cosαi cosβ, vit cosαi sinβ,−g

2
t2} (0 ≤ t ≤ Ti). (22)

The wavenumbers of the neutrons propagating from B to A are given by

kBCi
(t) =

m

~
{vi cosαi cosβ, vi cosαi sinβ, vi sinαi − gt}, (23)

kCAi(t) =
m

~
{vi cosαi cosβ,−vi cosαi sinβ,−gt}, (24)

kBDi
(t) =

m

~
{vi cosαi cosβ,−vi cosαi sinβ, vi sinαi − gt}, (25)

kDAi
(t) =

m

~
{vi cosαi cosβ, vi cosαi sinβ,−gt} (0 ≤ t ≤ Ti). (26)

In the same way, the wavenumbers of the neutrons propagating from A to B are given by

kACi
(t) =

m

~
{−vi cosαi cosβ, vi cosαi sinβ, vi sinαi − gt}, (27)

kCBi
(t) =

m

~
{−vi cosαi cosβ,−vi cosαi sinβ,−gt}, (28)

kADi(t) =
m

~
{−vi cosαi cosβ,−vi cosαi sinβ, vi sinαi − gt}, (29)

kDBi
(t) =

m

~
{−vi cosαi cosβ, vi cosαi sinβ,−gt} (0 ≤ t ≤ Ti). (30)

For the first half of the parabolic trajectory, the initial speed of the neutrons is vi. On the other hand, for the
second half of the parabolic trajectory, the initial speed the of neutrons is vi cosαi. The normalized wavenumbers
of the neutrons are given by

k̃BCi
(t) = kBCi

/vi, k̃BDi
(t) = kBDi

/vi, k̃ACi
(t) = kACi

/vi, k̃ADi
(t) = kADi

/vi, (31)

k̃CAi(t) = kCAi/vi cosαi, k̃DAi(t) = kDAi/vi cosαi, k̃CBi(t) = kCBi/vi cosαi, k̃DBi(t) = kDBi/vi cosαi. (32)

The phase shift of the neutrons caused by GWs is φgw, which is derived from the Klein-Gordon equation [15]. The
phase shift φgw is defined by

∂φgw

∂t
≈ −h

ijkikj
2m

. (33)

In this neutron DFI configuration, when a fast neutron propagates from B to A, the phase shift due to GWs is
given by

φgw
BCi

(t) = − v2
i

2m

∫ t+Ti

t

hij [t′ − t,xBCi
(t′ − t)]k̃BCii(t

′ − t)k̃BCij(t
′ − t)dt′. (34)
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We define the timing noise φclock
BC1

(t) and the displacement noise φdisp
BC1

(t) as

φclock
BCi

(t) ≈ m{τC(t+ Ti)− τB(t)}, (35)

φdisp
BCi

(t) = φCi
(t+ Ti)− φBi

(t). (36)

Here, τl is the clock noise at location l (l = A,B,C,D). At the GW angular frequency Ω, the Fourier transform of
hij is defined as

Hij(Ω) ≡
∫ ∞
−∞

dteiΩthij [t′,xi(t
′)]. (37)

In the Fourier domain, the GW signal Φgw
BCi

(Ω) is given by

Φgw
BCi

(Ω) = − v2
i

2m

{
P0(Ω)k̃BCiI k̃BCiJH

IJ(Ω)

+
m

~

(
sinαiP0(Ω) +

g

vi
P1(Ω)

)
k̃BCiIH

Iz(Ω)

+
(m
~

)2
(

sin2 αiP0(Ω) + 2
g

vi
sinαiP1(Ω) +

g2

v2
i

P2(Ω)

)
Hzz(Ω)

}
, (38)

and the clock noise Φclock
BCi

(Ω) and the detector noise Φdisp
BCi

(Ω) are given by

Φclock
BCi

(Ω) ≈ ωi(Ω)m{τC(Ω)− τB(Ω)} and (39)

Φdisp
BCi

(Ω) = ωi(Ω)φCi
(Ω)− φBi

(Ω). (40)

We define the following parameters

ωi(Ω) ≡ e−iΩTi , (41)

P0(Ω) ≡ − i

Ω
{1− ωi(Ω)}, (42)

P1(Ω) ≡ 1

Ω2
{1− ωi(Ω)(1 + iΩTi)}, (43)

P2(Ω) ≡ 2i

Ω3

{
1− ωi(Ω)

(
1 + iΩTi −

1

2
Ω2T 2

i

)}
. (44)

With Eq. (38)-(40), the signal resulting from propagation from B to C is given in the Fourier domain by

ΦBCi
(Ω) = − v2

i

2m

{
P0(Ω)k̃BCiI k̃BCiJH

IJ(Ω)

+
m

~

(
sinαiP0(Ω) +

g

vi
P1(Ω)

)
k̃BCiIH

Iz(Ω)

+
(m
~

)2
(

sin2 αiP0(Ω) + 2
g

vi
sinαiP1(Ω) +

g2

v2
i

P2(Ω)

)
Hzz(Ω)

}
,

+ Φclock
BCi

(Ω) + Φdisp
BCi

(Ω). (45)

The GW response function is given by
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RBCi
(Ω) =

1

|H|

(
~
m

)2 ∣∣∣P0(Ω)k̃BCiI k̃BCiJH
IJ(Ω)

+
m

~

(
sinαiP0(Ω) +

g

vi
P1(Ω)

)
k̃BCiIH

Iz(Ω)

+
(m
~

)2
(

sin2 αiP0(Ω) + 2
g

vi
sinαiP1(Ω) +

g2

vi
2
P2(Ω)

)
Hzz(Ω)

∣∣∣. (46)

Signals for the detector shown in Figure 4 are given by

φBAi
(t) =φBCi

(t) + φCAi
(t+ Ti)

− φBDi
(t)− φDAi

(t+ Ti), (47)

φABi
(t) =φACi

(t) + φCBi
(t+ Ti)

− φADi
(t)− φDBi

(t+ Ti). (48)

In the Fourier domain, these signals are given by

ΦBAi
(Ω) =ΦBCi

(Ω) + ωi(Ω)ΦCAi
(Ω)

− ΦBDi
(Ω)− ωi(Ω)ΦDAi

(Ω), (49)

ΦABi
(Ω) =ΦACi

(Ω) + ωi(Ω)ΦCBi
(Ω)

− ΦADi
(Ω)− ωi(Ω)ΦDBi

(Ω). (50)

From Eq. (1)-(2), the signal combination that cancels mirror displacement noise is given by

ΦVi
(Ω) = ΦBAi

(Ω)− ΦABi
(Ω). (51)

Accordingly, the neutron DFI signal in the Fourier domain is given by

ΦDFI(Ω) =
1

2ΩT̄
{γ1(Ω)ΦV1(Ω)− γ2(Ω)ΦV2(Ω)} , (52)

γ1(Ω) =
sin ΩT2

v1 cosα1 sinβ
, γ2(Ω) =

sin ΩT1

v2 cosα2 sinβ
. (53)

Here, γi(Ω) contains the frequency-dependent coefficients required to cancel the displacement noise and nor-
malization terms. The division by 2ΩT̄ plays a role in maintaining the neutron DFI response at lower frequencies.
When a GW with a strain hij and a polarization angle ψ propagates from an arbitrary direction (φ, θ), the rotation
matrix is given by

R =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 , (54)

and the GW strain h′ij is written as

h′ij = RiaRibhab = (RhRT )ij . (55)
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When a GW with the polarization of the cross mode (ψ = π/4) propagates along the z axis (θ = 0, φ = 0),
the response to GWs in a single MZI with two different-speed bidirectional neutrons is shown in Figure 5. For
L = 75 m, v0,1 = 100 m/s, v0,2 = 75 m/s, and β = π/4 rad, the other parameters derived from Eq.(13) and (14)
are T1 = 0.75 s, T2 = 1.00 s, α1 = 4.23 deg, and α2 = 7.57 deg.

The single-MZI signal of the fast or slow bidirectional neutrons, which is given by Eq.(51), cancels only mirror
displacement noise. In the left panel of Figure 5, the GW response in each combination is proportional to f1

gw at
lower frequencies. The peak of each response curve is located around 1Hz and these curves are proportional to f−1

gw

at higher frequencies. This GW response of the signal combination with fast or slow bidirectional neutrons has dips
at frequencies determined by T1

−1 or T2
−1.

The DFI signal that combines the two single MZI signals of the fast and slow bidirectional neutrons, which is
shown in Eq.(52), cancels all displacement noise of the mirrors and beamsplitters. In the right panel of Figure 5,
the GW response in the neutron DFI combination is proportional to f3

gw at lower frequencies and has a peak around
0.6 Hz. The neutron DFI response at higher frequencies is proportional to f−2

gw and has dips in the same manner
as the combination of the V1 and V2 curves, which are shown in the left panel of Figure 5.

Figure 5: Response to GWs with the polarization of the cross mode (ψ = π/4). The left panel shows the response
of a single MZI with a fast (blue solid curve) and a slow (red dashed curve) bidirectional neutron. In the left panel,
the solid and dashed black lines are proportional to f1

gw and f−1
gw . The right panel shows the neutron DFI response

of a single MZI with two bidirectional neutrons. The solid and dashed black lines are proportional to f3
gw and f−2

gw .

It should be noted that the GW response function in this configuration is similar to that in the two-MZI
configuration (large and small MZIs) in the previous research [15]. The attainable sensitivity and technical challenges
with this configuration are also similar to those with the two-MZI configuration, which are discussed in [15].

4 Conclusions

In this research, we have simplified the neutron DFI configuration by replacing bidirectional neutrons with the same
speed in two MZIs with bidirectional neutrons with different speeds in a single MZI. This simplification is possible
because the speed of a neutron can be changed arbitrarily, which is not possible with laser light. In the time domain,
mirror displacement noise can be canceled when the bidirectional neutrons hit the mirrors at the same time. In
the frequency domain, beamsplitter displacement noise can be canceled with the frequency-dependent coefficients
defined by the propagation time of the neutrons. This cancellation is based on the condition that the neutron DFI
has a configuration that is symmetrical with respect to orientation in which bidirectional neutrons hit the mirrors
at the same time. This cancellation can be explained visually in a phasor diagram, which makes it possible to
understand the noise cancellation mechanism intuitively. This simplification of the neutron DFI configuration will
increase the possibility of detecting primordial GWs by a neutron DFI in the future.
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