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Abstract 
We proposed earlier an optimization approach to reactive 
flow control where the objective of the control is to maxi- 
mize the aggregate utility of all sources over their transmis- 
sion rates. The control mechanism is derived as a gradi- 
ent projection algorithm to solve the dual problem. In this 
paper we extend the algorithm to a scaled gradient projec- 
tion. The diagonal scaling matrix approximates the diago- 
nal terms of the Hessian and can be computed at individual 
links using the same information required by the unscaled 
algorithm. We prove the convergence of the scaled algo- 
rithm and present simulation results that illustrate its supe- 
riority to the unscaled algorithm. 

1 Introduction 
We have proposed previously an optimization approach to 
flow control where the control mechanism is derived as a 
gradient projection algorithm to solve the dual of a global 
optimization problem [14, 13, 171. The solution is decom- 
posed into simple algorithms that are executed at individ- 
ual links and sources using ‘local’ information. It is well 
known that Newton method, where the gradient is scaled 
by the inverse of the second derivative matrix, typically en- 
joys a much faster convergence than gradient projection al- 
gorthim. For us, however, the exact Newton method will 
require non-local information and hence cannot be easily 
implemented in a large network. The purpose of this paper 
is to describe an approximate Newton method to solve the 
dual optimization problem using only diagonal scaling, and 
illustrate its behavior with preliminary simulation results. 

Specifically consider a network that consists of a set L of 
unidirectional links of capacities cl, 1 E L. The network is 
shared by a set S of sources, where source s is characterized 
by a utility function U,(z,) that is concave increasing in its 
transmission rate x g .  The goal is to calculate source rates 
that maximize the sum of the utilities CsES Us(z,)  over 
x, subject to capacity constraints. Solving this problem 
centrally would require not only the knowledge of all util- 
ity functions, but worse still, complex coordination among 
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potentially all sources due to coupling of sources through 
shared links. The key is to solve the dual problem that de- 
composes the task into simple local computations at indi- 
vidual links and sources. 

The algorithm takes the familiar form of reactive flow con- 
trol. Based on the local aggregate source rate each link 1 E 
L calculates a ‘price’ pl for a unit of bandwidth. A source 
s is fed back the scalar price ps = p l ,  where the sum is 
taken over all links that s uses, and it chooses a transmis- 
sion rate x, that maximizes its own benefit U,(z,) - p s z , ,  
utility minus the bandwidth cost. These individually opti- 
mal rates (x, (p”) s E S )  may not be socially optimal for a 
general price vector ( p l ,  1 E L) ,  i.e., they may not maximize 
the aggregate utility. The algorithm iteratively approaches 
a price vector (p; 1 E L)  that aligns individual and social 
optimality. 

The basic algorithm to solve the dual problem presented in 
[ 141 is a gradient projection method. A preliminary proto- 
type based on this algorithm is discussed in [13]. Its con- 
vergence is proved in [18] in both synchronous and asyn- 
chronous settings. The basic algorithm requires commu- 
nication of link prices to sources and source rates to links 
and is thus not implementatble in the current Internet. In 
[15], we describe a Random Early Marking (REM) scheme 
which can be regarded as a practical implementation of the 
basic algorithm in [14, 181 using binary feedback. It can 
be implemented, e.g., with the proposed explicit congestion 
notification (ECN) bit in the IP (Internet Protocol) header 
[6,201. 

In this paper, we generalize the basic algorithm of gradient 
projection to an approximate Newton algorithm that has a 
better convergence property. 

There is a tremendous literature on flow control, including 
early schemes based on practical experiences, e.g., [lo, 71, 
and recent schemes based on control theory, e.g., [ l ,  3, 41. 
Optimization based flow control have been proposed in 
[9, 5, 1 1 ,  12, 8, 14, 16, 181 All these works motivate flow 
control by an optimization problem and derive their control 
mechanisms as solutions to the optimization problem. They 
differ in their choice of objective functions or their solution 
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approaches, and result in rather different flow control mech- 
anisms to be implemented at the sources and the network 
links. 

The present paper is structured as follows. In Section 2 we 
review our optimization framework and describe the New- 
ton like algorithm. In Section 3 we first show that the al- 
gorithm converges and then show, through simulations, that 
it converges significantly faster than the gradient projection 
algortihm of [14, 161. All proofs are omitted due to space 
limitation. 

2 Model and algorithm 
2.1 Model 
Consider a network that consists of a set L = (1,. . . , L }  
of unidirectional links of capacities cl, 1 E L. ' The net- 
work is shared by a set S = { 1, . . . , S} of sources. Source 
s is characterized by four parameters (L(  s), U,, m,, Ms). 
The path L(s)  L is a subset of links that source s uses, 
U, : ?J?+ ?J? is a utility function, m, 2 0 and M ,  5 CO 

are the minimum and maximum transmission rates, respec- 
tively, required by source s. Source s attains a utility U,(z,) 
when it transmits at rate z, that satisfies m, 5 z, 5 Ms.  
Let I ,  = [m,, M,] denote the range in which source rate 
2, must lie and I = (I,,s E S) be the vector. We as- 
sume that U, is increasing, strictly concave, and twice con- 
tinuously differentiable on I,[m,, M,]. For each link I let 
S(1) = {s E S 1 1 E L ( s ) )  be the set of sources that use 
link 1. Note that 1 E L(s)  if and only i f s  E S(1). 

Our objective is to choose source rates z = (xs, s E S) so 
as to: 

p: max&€I. C U s ( z s )  (1) 
S 

subject to z, 5 CI, E = 1, ..., L. (2) 
SES(1) 

The constraint (2) says that the aggregate source rate at any 
link 1 is less than the capacity. A unique maximizer, called 
the primal optimal solution, exists since the objective func- 
tion is strictly concave, and hence continuous, and the fea- 
sible solution set is compact. 

Though the objective function is separable in z,, the source 
rates 2, are coupled by the constraint (2). Solving the pri- 
mal problem (1-2) directly requires coordination among 
possibly all sources and is impractical in real networks. The 
key to a distributed and decentralized solution is to look at 

We abuse notation and use the same symbol to denote both a set and 
its cardinality when there is no danger of confusion. 

its dual, e.g., [2, Section 3.4.21, [19]: 

The first term of the dual objective function D(p) is decom- 
posed into S separable subproblems (4-5). If we interpret 
pi as the price per unit bandwidth at link 1 then p s  is the 
total price per unit bandwidth for all links in the path of s. 
Hence z s p s  represents the bandwidth cost to source s when 
it transmits at rate z,, and Bs(pS) represents the maximum 
benefit s can achieve at the given price p s .  A source s can be 
induced to solve maximization (4) by bandwidth charging. 
For each p ,  a unique maximizer, denoted by z,(p), exists 
since U, is strictly concave. 

In general ( z s ( p ) ,  s E S) may not be primal optimal, but 
by the duality theory, there exists a p* 2 0 such that 
( z , ( p * ) ,  s E S )  is indeed primal optimal. Hence we will 
focus on solving the dual problem (3). Once we have ob- 
tained the minimizing prices p* the primal optimal source 
rates x* = z ( p * )  can be obtained by individual sources s 
by solving (4), a simple maximization (see below). The im- 
portant point to note is that, given p * ,  individual sources s 
can solve (4) separately without the need to coordinate with 
other sources. In a sense p* serves as a coordination signal 
that aligns individual optimality of (4) with social optimal- 
ity of(1)2. 

Indeed the unique maximizer z ( p )  for (4) can be given ex- 
plicitly, from the Kuhn-Tucker theorem, in terms of the 
marginal utility3: 

where [z]: = max{a,min{b,z}}. Here U:-' is the in- 
verse of U:, which exists over the range [Ui(M,), Ui(rn,)] 
if U: is continuous and U, strictly concave. Let z ( p )  = 
(ES(P),S E SI. 

'Despite the notation, a source s does not require the vector price p ,  but 
only a scalar p" = clEL.(s) pl  that represents the sum of link prices on 
its path; see below. 

3We abuse notation and use zs (.) both as a function of scalar price 
p E R+ and of vector price p E d:'. When p is a scalar, zs (p) is given 
by (6). When p is a vector, z s ( p )  = z , ( p s )  = z s ( c l c L ( s ) p l ) .  The 
meaning should be clear from the context. 
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2.2 Algorithm 

gradient projection algorithm where link prices are adjusted 
in opposite direction to the gradient V D ( p ( t ) ) :  

zs( t )  = [U;-l(p"(t - l))]:: is the source rate at time 

as each link Z requires the path price p " ( t )  of all sources 
s E S(1) going through 1. Instead we use link price p l ( t )  as 
a substitute: 

In [14, 161 we propose to solve the dual problem using the t' This approximation is however to imp1ement 

assumption, the utility functions are stiictly concave and 
hence VD(p) indeed exists with its Z-th component given 
by: 

Simulation results suggest that using pl ( t )  in place of p"(t) 
has a similar behavior. Finally we ensure that H ( t )  is 
strictly positive definite by making its diagonal terms at 
least as large as an 6 > 0: 

(8) 

where z1 (p) := CsEs(l) z, (p) is the aggregate source rate 
at link 1. Hence the algorithm is decentralized: each link 
1 can individually carry out the price adjustment given the 
aggregate source rates d ( t )  at its link, and each source can 

d D  
dP1 
-b) = Cl - .YP) 

(10) rnax(6, i fk  = z 
otherwise 

Hkl(t)  = 

individually compute its rate using (6) given the scalar price we summarize. 
PS(t) = C&L.(") Pl(t). 

It is well known that Newton method, where the gradient is 
scaled by the inverse of the Hessian, 

*korithm: 

At update times t = 1,2 , .  . .: 
gradient Projection 

P ( t  -k 1) = b(t) - r[v2D@(t))l- 'VD(p(t))1+ (9) Link 1's algorithm: 

typically converges much than the gradient projection 
algorithm (7). This price adjustment however is difficult 
to implement in a large network since the Hessian V 2 D ( p )  
computation cannot be distributed to individual links, as a 
link may require the rates or the second derivatives of utili- 
ties of sources at other links [16, Lemma21. This is clearly 
not scalable. We propose instead an approximating positive 
definite diagonal scaling matrix H ( t )  that can be computed 

Given Source rates 2, ( t ) ,  s E S( l ) ,  at ljnk 1, compute a new 
price 

P l ( t  + 1) = [P&) + rHi ' (z" t )  - C l ) ] + .  

wherezl(t) = Cscs( i )  zs(t) andHll is given bY (10)- 

Source "' 
at individual links using the same information available un- 
der the gradient projection algorithm. 

Given path price p " ( t )  = &L(8)pl(t), choose a new 
source rate z, (t + 1) : 

zs(t + 1) = arg max Us(zs) - p s ( t ) z s  First H ( t )  retains only the diagonal terms of the Hessian 
and has zero off-diagonal terms. Second the diagonal terms 
are approximated by finite differences. From (8) the diago- 

x . a .  

= [U;-'(P"(t))lmM," 
nal terms are 

3 Performance 
In this section we first prove that the scaled gradient projec- 
tion algorithm given in the last section converges. Then we 
illustrate through simulation studies that its convergence is 
superior to the unscaled algorithm. 

zs(t) - zs(t - 1) 
= - c p " ( t )  - p " ( t -  1) 3.1 Convergence 

The scaled algorithm generates a sequence that approaches 
the optimal rate allocation, provided the following condi- 
tions are satisfied: 

sES(1) 

where s',(P"(t)) is the total derivative of the scalar func- 
tion xs(-) evaluated at the path price p " ( t )  at time t ,  and 
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h t 2  Unt3 U n k I  

0 +p+ 

C1: On the interval I ,  = [m,,M,], the utility functions 
U, are increasing, strictly concave, and twice continu- 
ously differentiable. 

C2: The curvatures of U ,  are bounded away from zero on 
I,: -Ui(x,) 2 l / ~ ,  > 0 for all x, E I,. 

lbo- 

m- I . -  p i .  
1 :  sc.nca 

I :  
I I 4, 01 

I "  a- 

These conditions imply the VD is Lipschitz which 
leads to the convergence of the algorithm. Define 
L := maxSEs IL(s)I, 3 :=-maqEL IS(l)l, and Z := 
max {E,, s E S}. In words X is the length of a longest 
path used by the sources, 7 is the number of sources shar- 
ing a most congested link, and E is the upper bound on all 

- 

4 J i ( X 8 ) .  

Theorem 1 Suppose assumptions CI-C2 hold and the step 
size satisjes 0 < y < 2~/%%. Then starting from any 
initial rates m 5 x(0)  5 M and prices p ( 0 )  2 0, every 
limit point (x*,p*) of the sequence ( x ( t ) , p ( t ) )  generated 
by the algorithm are primal-dual optimal. That is, x * gives 
the source rates that maximize aggregate utility and p* the 
shadow bandwidth prices. 

Note that x* is unique but p* may not be unique. We have 
found from our simulation experience that, in practice, a 
step size y much larger than the bound in the theorem can be 
used, e.g., in the simulation reported below, y = 1. More- 
over the scaled algorithm seems much less sensitive to y 
than the unscaled algorithm. 

3.2 Simulation results 
We now present simulation study carried out for the net- 
work in Figure 1 shared by five connections, with sources 
Si and destinations Di, i = 1,. . . , 5. Connection SI-Dl 

time 40s  S3 at time  OS, S4 at time 120s, S5 at time 160s. 
Once turned on, sources S2, S3, and S4 remained active un- 
til time 240s, and S5 turned off earliest at time 200s. This 
enabled us to observe the dynamic behaviour of the algo- 
rithm as demand for bandwidth varies. The utility functions 
of the sources were set to a,log(l + x,), with a, equal 
to 1 x lo4, 5 x lo4, 7 x lo4, 6 x lo4, 2 x lo4 for sources 
S 1 ,S2,S3,S4 and S5 respectively. Notice that the longest 
connection S1-Dl was set to have the smallest marginal 
utility. The step size y used to adjust the link prices was 
set to 1. A new link bandwidth price was calculated every 
1s. The target bandwidth was'set at 200 packets per 1s mea- 
suring interval. 

Figure 2 shows the source rates for each source under the 
unscaled gradient projection algorithm. From time WOs, 
only source S1 was active. Its rate climbed steadily to the 
target bandwidth of 200 packetsh. From time 40s, source 
S2 became active whose rate, after an initial overshoot, sta- 
bilized to about 167 packet&. This squeezed source Sl's 
rate to about 33 packetds. At these rates sources S1 and S2 
had the same marginal utility. At times  OS, 120s, and 160s 
when sources S3, S4, S5 became-active, similar dynamics 
were observed. Sl's rate bounced back to 200 packetds af- 
ter all other sources had turned off. 

Figure 3 shows the source rates under the scaled gradient 
projection algorithm. While the same kind of interaction 
among the sources occurred as under the unscaled algo- 
rithm, we see that the convergence to optimal rates was 
achieved much faster under the scaled algorithm, though the 
magnitude of rate fluctuation was also much larger. The 
faster convergence rate implied less overloading of, and 
hence much less buffer requirement at, the links. Figure 
4 shows the buffer occupancy at each link under the two 
schemes. Figure 3 shows the source rates under the scaled 
gradient projection algorithm. 

times of the other sources are staggered with S2 starting at 
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Figure 3: Source rates under scaled gradient projection. 

4 Conclusion 
The flow control mechanism of [14, 161 is derived as a 
gradient projection algorithm to solve a dual optimization 
problem. In this paper we have extended the algorithm to a 
scaled gradient projection, using a diagonal scaling that can 
be implemented with the same information as that is avail- 
able under the basic algorithm of [14, 161. We have proved 
the convergence of the algorithm and have presented sim- 
ulation results that illustrate its superior performance com- 
pared to the unscaled algori 
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