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Abstract. A simple and interpretable way to learn a dynamical system from data is to interpolate
its vector-field with a kernel. In particular, this strategy is highly efficient (both in terms of
accuracy and complexity) when the kernel is data-adapted using Kernel Flows (KF) [34] (which
uses gradient-based optimization to learn a kernel based on the premise that a kernel is good if
there is no significant loss in accuracy if half of the data is used for interpolation). Despite its
previous successes, this strategy (based on interpolating the vector field driving the dynamical
system) breaks down when the observed time series is not regularly sampled in time. In this work,
we propose to address this problem by directly approximating the vector field of the dynamical
system by incorporating time differences between observations in the (KF) data-adapted kernels.
We compare our approach with the classical one over different benchmark dynamical systems and
show that it significantly improves the forecasting accuracy while remaining simple, fast, and robust.

1. Introduction

The ubiquity of time series in many domains of science has led to the development of diverse
statistical and machine learning forecasting methods. Examples include ARIMA [10], GARCH [5]
or LSTM [39]. Most of these methods require the time series to be regularly sampled in time. Yet,
this requirement is not met in many applications. Indeed, irregularly sampled time series commonly
arise in healthcare [29], finance [16] and physics [40] among other fields.

While adaptations have been proposed, these workarounds tend to consider the irregular sampling
issue as a missing values problem, leading to poor performance when the resulting missing rate is
very high. Such approaches include (1) the imputation of the missing values (e.g. with exponential
smoothing [23, 42] or with a Kalman filter [17]), and (2) fast Fourier transforms or Lomb-Scargle
periodograms [16, 2]. This issue has motivated the development of several recent deep learning-
based algorithms such as VS-GRU [27], GRU-ODE-Bayes [28, 15] or ODE-RNN [18].

Amongst various learning-based approaches, kernel-based methods hold potential for consider-
able advantages in terms of theoretical analysis, numerical implementation, regularization, guaran-
teed convergence, automatization, and interpretability [11, 32]. Indeed, reproducing kernel Hilbert
spaces (RKHS) [14] have provided strong mathematical foundations for analyzing dynamical sys-
tems [6, 21, 19, 20, 4, 24, 25, 1, 26, 7, 8, 9] and surrogate modeling (we refer the reader to [38] for a
survey). Yet, the accuracy of these emulators depends on the kernel, and the problem of selecting a
good kernel has received less attention. Recently, the experiments by Hamzi and Owhadi [22] show
that when the time series is regularly sampled, Kernel Flows (KF) [34] (an RKHS technique) can
successfully reconstruct the dynamics of some prototypical chaotic dynamical systems. KFs have
subsequently been applied to complex large-scale systems, including climate data [30, 41]. The

1 Department of Mathematics, Imperial College London, United Kingdom
2 ESAT-STADIUS, KU Leuven, Leuven, 3001, Belgium
3 Department of Computing and Mathematical Sciences, Caltech, CA, USA.
4Department of Computing and Mathematical Sciences, Caltech, CA, USA.
E-mail addresses: jonghyeonlee98@gmail.com, edward.debrouwer@esat.kuleuven.be,

boumediene.hamzi@gmail.com, owhadi@caltech.edu.

1

ar
X

iv
:2

11
1.

13
03

7v
1 

 [
st

at
.M

L
] 

 2
5 

N
ov

 2
02

1



2 LEARNING DYNAMICAL SYSTEMS FROM DATA, IRREGULARLY-SAMPLED TIME SERIES

nonparametric version of KFs has been extended to dynamical systems in [35]. A KFs version for
SDEs can be found in [36].

Despite its recent successes, we show in this paper that this strategy (based on approximating
the vector field of the dynamical system) cannot directly be applied to irregularly sampled time
series. Instead, we propose a simple adaptation to the original method that allows to significantly
improve forecasting performance when the sampling is irregular. The adaptation is to approximate
the vector field and can be reduced to adding time delays in between observations to the delay
embedding used to feed the method. We demonstrate the benefits of our approach on three pro-
totypical chaotic dynamical systems: the Hénon map, the Van der Pol oscillator, and the Lorenz
map. For all, our approach shows significantly improved forecasting accuracy (compared to the
original approach).

Specifically, our contributions are as follows:

• We show that learning the kernel in kernel ridge regression using our modified approach
significantly improves the prediction performance for irregular time series of dynamical
systems
• Using a delay embedding, we adapt the KF-adapted kernel method algorithm to make

multistep predictions

The outline of this paper is as follows. In Section 2, we review kernel methods for regularly
sampled time series and propose an extension of Kernel Flows to irregularly sampled time series.
Section 3 contains a description of our experiments with the Hénon, Van der Pol, and Lorenz
systems and a discussion. The appendix provides a summary of the theory of reproducing kernel
Hilbert spaces (RKHS).

2. Statement of the problem and proposed solution

2.1. The problem. Let x1, x2, ..., xn be observations from a deterministic dynamical system in Rd,
along with a vector t = (t1, . . . , tn) containing the time of observations. That is, the observation
xk is observed at time tk. Importantly, time differences in between observation tk+1 − tk are
not necessarily regular. Our goal is to predict xn+1, xn+2, . . . given the future sampling times
tn+1, tn+2, ... and the history of the irregularly observed time series (x1, ...xn and t1, ..., tn).

2.2. A reminder on kernel methods for regularly sampled time series. The simplest
approach to forecasting the time series (employed in [22]) is to assume that x1, x2, . . . is the solution
of a discrete dynamical system of the form

xk+1 = f †(xk, . . . , xk−τ†+1), (1)

with an unknown vector field f † and time delay τ ∈ N∗ (which we will call delay or delay embedding)
and approximate f † with a kernel interpolant f of the past data (a kernel ridge regression model
[13]) and use the resulting surrogate model xk+1 = f(xk, . . . , xk−τ†+1) to predict future state.

Given τ ∈ N∗ (see [22] for how τ can be learned in practice), the approximation of the dynamical
system can then be recast as that of interpolating f † from pointwise measurements

f †(Xk) = Yk for k = 1, . . . , N, (2)

with Xk := (xk, . . . , xk+τ−1), Yk := xk+1 and N = n − τ . Given a reproducing kernel Hilbert
space1 of candidates H for f †, and using the relative error in the RKHS norm ‖ · ‖H as a loss, the
regression of the data (Xk, Yk) with the kernel K associated with H provides a minimax optimal
approximation [33] of f † in H. This regressor (in the presence of measurement noise of variance
λ > 0) is

f(x) = K(x,X)(K(X,X) + λI)−1Y, (3)

1A brief overview of RKHSs is given in the Appendix.
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where X = (X1, . . . , XN ), Y = (Y1, . . . , YN ), k(X,X) is the N ×N matrix with entries k(Xi, Xj),
k(x,X) is the N vector with entries k(x,Xi) and I is the identity matrix. This regressor has
also a natural interpretation in the setting of Gaussian process (GP) regression: (i.) (3) is the
conditional mean of the centered GP ξ ∼ N (0,K) with covariance function K conditioned on

ξ(Xk) +
√
λZk = Yk where the Zk are centered i.i.d. normal random variables of variance λ.

2.3. A reminder on the Kernel Flows (KF) algorithm. The accuracy of any kernel-based
method depends on the kernel K, and [22] proposed (in the setting of Subsec. 2.2) to also learn
that kernel from the data (Xk, Yk) with the Kernel Flows (KF) algorithm [34, 44, 12] which we will
now recall.

To describe this algorithm, let Kθ(x, x
′) be a family of kernels parameterized by θ. Using

the notations from Subsection 2.2, the interpolant of the data (X,Y ) (X = (X1, . . . , XN ) and
Y = (Y1, . . . , YN )) obtained with the kernel Kθ (and a nugget λ > 0) admits the representer
formula

uN (x) = Kθ(x,X)(Kθ(X,X) + λI)−1Y (4)

A fundamental question is then: which θ should be chosen in (4)? KF answers that question by
learning θ from data based on the simple premise that a kernel (Kθ) is good if the interpolant (4)
does not change much under subsampling of the data. This simple cross-validation concept is then
turned into an iterative algorithm as follows.
1. Given M ≤ N , select a random subset {π1, . . . , πM} of {1, . . . , N} and a random subset
{β1, . . . , βM

2
} of {π1, . . . , πM}. WriteXπ and Y π for the sub-vectors (Xπ1 , . . . , XπM ) and (Yπ1 , . . . , YπM ).

Write Xβ and Y β for the sub-vectors (Xβ1 , . . . , XβM
2

) and (Yβ1 , . . . , YβM
2

).

2. Write uπ(x) = Kθ(x,X
π)(K(Xπ, Xπ)+λI)−1Y π and uβ(x) = Kθ(x,X

β)(K(Xβ, Xβ)+λI)−1Y β

for the regressors of (Xπ, Y π) and (Xβ, Y β) obtained with the kernel Kθ.
3. Write

ρ(θ) := 1− Y β,T (Kθ(X
β, Xβ) + λI)−1Y β

Y π,T (Kθ(Xπ, Xπ) + λI)−1Y π
. (5)

Note that (a) when λ = 0 then ρ(θ) is the relative square error
||uπ−uβ ||2Kθ
||uπ ||2Kθ

between the interpolants

uπ and uβ, (b) when λ ≥ 0 then ρ(θ) is the relative difference 1−
‖uβ ||2Kθ+λ

−1|uβ(Xβ)−Y β |2

||uπ ||2Kθ+λ
−1|uπ(Xπ)−Y π |2 between

the regression losses (c) ρ(θ) lies between 0 and 1 inclusive.
4. Move θ in the gradient descent direction of ρ: θ ← θ − η∇θρ
5. Repeat until the error reaches a minimum.

2.4. The problem with irregularly sampled time series. The model (1) fails to be accurate
for irregularly sampled series because it discards the information contained in the tk. When the
xk are obtained by sampling a continuous dynamical system, one could consider the following
alternative model:

xk+1 = xk + (tk+1 − tk)f †(xk), (6)

While this approach may succeed if the time intervals tk+1− tk are small enough, it will also break
down as these time intervals get larger. In our experiments section, we refer to this approach as
the Euler approach, as it consists in learning the Euler discretization of the vector field.

2.5. The proposed solution. To address this issue, we consider the model

xk+1 = f †(xk,∆k, . . . , xk−τ†+1,∆k−τ†+1), (7)

which incorporates the time differences ∆k = tk+1 − tk between observations. That is, we employ
a time-aware time series representations by interleaving observations and time differences. The
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proposed strategy is then to construct a surrogate model of (7) by regressing f † from past data
and a kernel Kθ learned with Kernel Flows as described in Subsec. 2.3. Note that the past data
takes the form (2) with Xk := (xk,∆k, . . . , xk+τ−1,∆k+τ−1), Yk := xk+1 and N = n− τ .

3. Experiments

We conduct numerical experiments on three well-known dynamical systems: the Hénon map,
the van der Pol oscillator, and the Lorenz map. We generate irregularly sampled time series from
these dynamical systems using numerical integration and subsequently split the time series into
training and test subsets. The time series are subsequently irregularly sampled according to the
following scheme. The time interval between each observation ∆k is taken to be a multiple of the
smallest integration setup used to generate the data δt. That is, ∆k = αkδt where αk is a random
integer between 1 and α. We train the kernel on the training part of the time series and evaluate
the forecasting performance of the model. We report both the mean squared error (MSE) and the
coefficient of determination (R2).

Given test samples xn+1, xn+2, ..., xN and the predictions x̂n+1, x̂n+2, ..., x̂N , the MSE and the
coefficient of determination are computed as follows:

MSE =
1

N − n
∑N

i=n+1
||xi − x̂i||22

R2 = 1−
∑N

i=n+1 ||xi − x̂i||22∑N
i=n+1 ||xi − x̄||22

.

where x̄ = 1
N−n

∑N
i=n+1 xi. The MSE should then be as low as possible and the R2 as high as

possible. We note that it is possible to have a negative R2, if the predictor performs worse than
the average of the samples.

To showcase the importance of learning the kernel parameters and to include the time difference
between subsequent observations, we proceed in three stages. We first report the results of our
method when the parameters of the kernel are not learned but rather sampled at random from a
uniform (U(0, 1)) distribution and when the time delays are not encoded in the input data. In this
setup, we distinguish the original KF case and the Euler version, as discussed in Subsection 2.4.
Second, to assess the importance of learning the Kernel parameters, we report the model perfor-
mance when the parameters are learned but the time delays are not encoded in the input data.
Lastly, we report the performance of our approach when we both learned the kernel parameters
and included the time delays.

For all models variants and dynamical systems, we use the training procedure as described in [22]
and used a mini-batch size of 100 temporal observations and minimize ρ(θ) as in Equation 5 using
stochastic gradient descent. To allow for a notion of uncertainty in the reported metrics, all our
experiments use a five repetition approach where five different kernel initialization are randomly
chosen.

In all of our examples, we used a kernel that is a linear combination of the triangular, Gaussian,
Laplace, locally periodic kernels, and the quadratic kernel.

K(x, y) = γ20 max(0, 1−||x− y||
2
2

σ20
)+γ21e

||x−y||21
σ21 +γ22e

−||x−y||2
σ22 +γ23e

−σ3 sin2(σ4π||x−y||22)e
−||x−y||22

σ25 +γ24 ||x−y||22
(8)

Multi-step predictions: By learning the dynamical systems of interest, we aim at delivering
accurate forecasting predictions over the longest horizon possible. However, due to the chaotic
nature of the studied dynamical systems, this horizon is intrinsically limited. To use most of the
testing section of the time series, we then predict the future of the time series in chunks. That
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Table 1. Test performance of the different datasets. We report the means along
with standard deviations of the mean squared error (MSE) and coefficient of deter-
mination (R2) on the forecasting task. As Hénon is not a time-continuous map, the
Euler version of KF is not applicable in this case. For readability, we abstain from
reporting the exact numbers when MSE is larger than one and R2 larger lower than
0.

Method Hénon Lorenz Van der Pol

MSE R2 MSE R2 MSE R2

(A) Kernel-IFlow 0.024±0.015 0.869±0.081 0.003±0.003 0.967±0.029 0.001±0.001 0.998±0.002
(B) KernelFlow 0.190±0.008 −0.050±0.041 0.026±0.015 0.700±0.170 >> 1 << 0
(C) KernelFlow (Euler) / / 0.005±0.002 0.947±0.023 >> 1 << 0

(D) - no learning >> 1 << 0 >> 1 << 0 >> 1 << 0
(E) - no learning >> 1 << 0 >> 1 << 0 >> 1 << 0

is, for a horizon h and for a delay embedding with delay d, we split the test time series in chunks
of lengths h + d. For each of these chunks, we use the d first samples as input to our model and
predict over the h remaining samples in the chunk. We eventually aggregate the predictions of all
samples overall chunks together to compute the reporting metrics.

Overview. Recapping, we will compare 5 approaches:

(A) Regressing model (7) with a kernel learnt using KF (which we call irregular KF).
(B) Regressing model (1) with a kernel learned using KF (which we call regular KF).
(C) Regressing model (6) with a kernel learned using KF (which we call the Euler version).
(D) Regressing model (7) without learning the kernel.
(E) Regressing model (1) without learning the kernel.

Table 1 summarizes results obtained in the following sections.

3.1. Hénon map. Consider the Hénon map with a = 1.4, b = 0.3

xn+1 = 1− ax2n + yn, yn+1 = bxn (9)

We have repeated our experiments five times with a delay embedding of 1, a learning rate η of
0.1, a prediction horizon h of 5, maximum time difference α of 3, and have trained the model on
600 points to predict the next 400 points. Fig. 1i shows that approach (E) cannot reconstruct the
attractor because it makes no attempt at learning the kernel and ignores time differences in the
sampling. Fig. 1ii shows that embedding the time delay in the kernel (approach (A)) significantly
improves the reconstruction of the attractor of the Hénon map. Table 1 displays the forecasting
performance of the different methods. We observe that if the kernel is not learned (if the kernel
is not data adapted), then the underlying method is unable to learn an accurate representation of
the dynamical system. However, if the parameters of the kernel are learned, then our proposed
approach (A) clearly outperforms the regular KF (approach (B)). As for the Euler version, it is not
applicable in this case as Hénon is not a continuous map.

3.2. Van der Pol oscillator. The second dynamical system of interest is the van der Pol oscillator
represented by
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(i) Approach (E). Attractor Reconstruction by
regressing model (1) without learning the kernel
(horizon has been reduced to 1).

(ii) Approach (E). Time series reconstruction by
regressing model (1) without learning the kernel
(horizon has been reduced to 1).

Figure 1. Hénon map reconstructions when the kernel parameters are not learnt
(regression of model (1) without learning the kernel).

(i) Approach (B). With regular Kernel Flows (re-
gression of model (1) with a kernel learnt using KF)

(ii) Approach (A). With irregular Kernel Flows (re-
gression of model (7) with a kernel learnt using KF)

Figure 2. Hénon map attractor reconstructions with learnt kernels.

(i) Approach (B). With regular Kernel Flows (ii) Approach (A). With irregular Kernel Flows

Figure 3. Reconstruction (prediction) of the test time series of the Hénon map.

dx

dt
=

1

ε
f(x, y) ,

dy

dt
= g(x, y) (10)

where f(x, y) = y − 27
4 x

2(x+ 1), g = −1
2 − x , ε = 0.01.



LEARNING DYNAMICAL SYSTEMS FROM DATA, IRREGULARLY-SAMPLED TIME SERIES 7

Here, we have used a prediction horizon h of 10, a learning rate η of 0.01, a maximum time
difference α of 5, and a delay embedding of 1. As evident from Table 1 and the following fig-
ures, our proposed approach (A) is the only one able to extract any meaningful representation of
the dynamical system (including predicting future critical transitions). Other approaches are not
accurate and/or exhibit forecasting instabilities.

(i) Attractor Reconstruction. (ii) Time series reconstruction.

Figure 4. Van der Pol oscillator without learning the kernel (horizon has been
reduced to 1).

(i) Approach (B): with regular Kernel Flows (the
horizon has been reduced to 4).

(ii) Approach (A): with irregular Kernel Flows

Figure 5. Van der Pol attractor reconstruction.

(i) Approach (B): with regular Kernel Flows (ii) Approach (A): With irregular Kernel Flows

Figure 6. Reconstruction of the test time series of the Van der Pol oscillator with
irregular and regular Kernel Flows.



8 LEARNING DYNAMICAL SYSTEMS FROM DATA, IRREGULARLY-SAMPLED TIME SERIES

3.3. Lorenz. Our third example is the Lorenz system described by the following system of differ-
ential equations:

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz , (11)

with standard parameter values σ = 10, ρ = 28 , β = 8
3

Our parameters include a delay embedding of 2, a learning rate η = 0.01, a prediction horizon
h = 20, a maximum time difference α = 5, 5000 points used for training and the 5000 for testing.
Fig. 7, 8 and 9 show that (1) not learning the kernel or not including time differences lead to poor
reconstructions of the attractor of the Lorenz system even if the time horizon is 1. However, as
observed in Table 1, the Euler version of KF leads to satisfying results, close to (but not as good
as) the ones obtained with our proposed approach (A).

(i) Attractor reconstruction. (ii) Time series reconstruction.

Figure 7. Lorenz map without learning the kernel (horizon has been reduced to
1).

(i) Approach (B): With regular Kernel Flows (ii) Approach (A): with irregular Kernel Flows

Figure 8. Lorenz map attractor reconstruction with learnt kernel.
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(i) Approach (B): with regular Kernel Flows (ii) Approach (A): with irregular kernel flows

Figure 9. Reconstruction of the test time series of the Lorenz map with irregular
and regular Kernel Flows.

Remark (Real-time learning and Newton basis): It is possible to include new measurements
when approximating the dynamics from data without repeating the learning process. This can be
done by working in Newton basis as in [37] (see also section 4 of [38]). The Newton basis is just
another basis for the space spanned by the kernel on the points, i.e., span{k(., x1), ...., k(., xN )} =
span{v1, ..., vN}.

The kernel expansion of f writes as f(x) =
∑N

i=1 ciK(x, xi) =
∑N

i=1 bivi(x) with < vi, vj >H= δij
(i.e., the basis is orthonormal in the RKHS inner product).

If we add a new point xN+1, ..., xN+m, we’ll have corresponding elements vN+1, ..., vN+m of
the Newton basis, still orthonormal to the previous ones. So we will have a new interpolant
fnew(x) =

∑N+m
i=1 bivi(x) that can be rewritten in terms of the old interpolant as

fnew(x) =
∑N+m

i=1
civi(x) = f(x) +

∑N+m

i=N+1
civi(x),

where f can still be written in terms of the basis K, but with different coefficients c′.
If A is the kernel matrix on the first N points, on can compute a Cholesky factorization A = LLT

with L lower triangular. Let B := L−T , then vj(x) =
∑N

i=1(B)ijK(x, xi).
When we add new points, we have an updated kernel matrix A′, and the Cholesky factor of A

can be easily updated to the one of A′.

4. Conclusion

Our numerical experiments demonstrate that embedding the time differences between the ob-
servations in the kernel considerably improves the forecasting accuracy with irregular time series.
Though we have focused on a few examples, the success of our proposed approach (A) has raised
the question of whether it can be extended to other systems, including those described by partial
and stochastic differential equations, as well as complex real-world data.

5. Appendix

5.1. Reproducing Kernel Hilbert Spaces (RKHS). We give a brief overview of reproducing
kernel Hilbert spaces as used in statistical learning theory [14]. Early work developing the theory
of RKHS was undertaken by N. Aronszajn [3].
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Definition 5.1. Let H be a Hilbert space of functions on a set X . Denote by 〈f, g〉 the inner

product on H and let ‖f‖ = 〈f, f〉1/2 be the norm in H, for f and g ∈ H. We say that H is a
reproducing kernel Hilbert space (RKHS) if there exists a function K : X × X → R such that
i. Kx := K(x, ·) ∈ H for all x ∈ X .

ii. K spans H: H = span{Kx | x ∈ X}.
iii. K has the reproducing property: ∀f ∈ H, f(x) = 〈f,Kx〉.
K will be called a reproducing kernel of H. HK will denote the RKHS H with reproducing kernel
K where it is convenient to explicitly note this dependence.

The important properties of reproducing kernels are summarized in the following proposition.

Proposition 5.1. If K is a reproducing kernel of a Hilbert space H, then
i. K(x, y) is unique.
ii. ∀x, y ∈ X , K(x, y) = K(y, x) (symmetry).
iii.

∑q
i,j=1 βiβjK(xi, xj) ≥ 0 for βi ∈ R, xi ∈ X and q ∈ N+ (positive definiteness).

iv. 〈K(x, ·),K(y, ·)〉 = K(x, y).

Common examples of reproducing kernels defined on a compact domain X ⊂ Rn are the (1)
constant kernel: K(x, y) = k > 0 (2) linear kernel: K(x, y) = x ·y (3) polynomial kernel: K(x, y) =

(1 + x · y)d for d ∈ N+ (4) Laplace kernel: K(x, y) = e−||x−y||2/σ
2
, with σ > 0 (5) Gaussian kernel:

K(x, y) = e−||x−y||
2
2/σ

2
, with σ > 0 (6) triangular kernel: K(x, y) = max{0, 1− ||x−y||

2
2

σ }, with σ > 0.

(7) locally periodic kernel: K(x, y) = σ2e−2
sin2(π||x−y||2/p)

`2 e−
||x−y||22

2`2 , with σ, `, p > 0.

Theorem 5.1. Let K : X×X → R be a symmetric and positive definite function. Then there exists
a Hilbert space of functions H defined on X admitting K as a reproducing Kernel. Conversely, let
H be a Hilbert space of functions f : X → R satisfying ∀x ∈ X ,∃κx > 0, such that |f(x)| ≤
κx‖f‖H, ∀f ∈ H. Then H has a reproducing kernel K.

Theorem 5.2. Let K(x, y) be a positive definite kernel on a compact domain or a manifold X.
Then there exists a Hilbert space F and a function Φ : X → F such that

K(x, y) = 〈Φ(x),Φ(y)〉F for x, y ∈ X.

Φ is called a feature map, and F a feature space2.

5.2. Function Approximation in RKHSs: An Optimal Recovery Viewpoint. In this
section, we review function approximation in RKHSs from the point of view of optimal recovery as
discussed in [33].
Problem P:. Given input/output data (x1, y1), · · · , (xN , yN ) ∈ X ×R, recover an unknown function
u∗ mapping X to R such that u∗(xi) = yi for i ∈ {1, ..., N}.

In the setting of optimal recovery, [33] Problem P can be turned into a well-posed problem by
restricting candidates for u to belong to a Banach space of functions B endowed with a norm || · ||
and identifying the optimal recovery as the minimizer of the relative error

minvmaxu
||u− v||2

||u||2
, (12)

where the max is taken over u ∈ B and the min is taken over candidates in v ∈ B such that
v(xi) = u(xi) = yi. For the validity of the constraints u(xi) = yi, B∗, the dual space of B, must
contain delta Dirac functions φi(·) = δ(· − xi). This problem can be stated as a game between

2The dimension of the feature space can be infinite, for example in the case of the Gaussian kernel.
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Players I and II and can then be represented as

(Player I) u ∈ B

max ��

v ∈ L(Φ,B)

min||

(Player II)

‖u−v(u)‖
‖u‖ .

(13)

If || · || is quadratic, i.e. ||u||2 = [Q−1u, u] where [φ, u] stands for the duality product between
φ ∈ B∗ and u ∈ B and Q : B∗ → B is a positive symmetric linear bijection (i.e. such that [φ,Qφ] ≥ 0
and [ψ,Qφ] = [φ,Qψ] for φ, ψ ∈ B∗). In that case the optimal solution of (12) has the explicit form

v∗ =
∑N

i,j=1
u(xi)Ai,jQφj , (14)

where A = Θ−1 and Θ ∈ RN×N is a Gram matrix with entries Θi,j = [φi, Qφj ].
To recover the classical representer theorem, one defines the reproducing kernel K as

K(x, y) = [δ(· − x), Qδ(· − y)]

In this case, (B, || · ||) can be seen as an RKHS endowed with the norm

||u||2 = supφ∈B∗
(
∫
φ(x)u(x)dx)2

(
∫
φ(x)K(x, y)φ(y)dxdy)

and (14) corresponds to the classical representer theorem

v∗(·) = yTAK(x, ·), (15)

using the vectorial notation yTAK(x, ·) =
∑N

i,j=1 yiAi,jK(xj , ·) with yi = u(xi), A = Θ−1 and

Θi,j = K(xi, xj).
Now, let us consider the problem of learning the kernel from data. As introduced in [34], the

method of KFs is based on the premise that a kernel is good if there is no significant loss in accuracy
in the prediction error if the number of data points is halved. This led to the introduction of

ρ =
||v∗ − vs||2

||v∗||2
(16)

which is the relative error between v∗, the optimal recovery (15) of u∗ based on the full dataset
X = {(x1, y1), . . . , (xN , yN )}, and vs the optimal recovery of both u∗ and v∗ based on half of the
dataset Xs = {(xi, yi) | i ∈ S} (Card(S) = N/2) which admits the representation

vs = (ys)TAsK(xs, ·) (17)

with ys = {yi | i ∈ S}, xs = {xi | i ∈ S}, As = (Θs)−1, Θs
i,j = K(xsi , x

s
j). This quantity ρ is directly

related to the game in (13) where one is minimizing the relative error of v∗ versus vs. Instead
of using the entire the dataset X one may use random subsets Xs1 (of X) for v∗ and random
subsets Xs2 (of Xs1) for vs. Writing σ2(x) = K(x, x) −K(x,Xf )K(Xf , Xf )−1K(Xf , x) we have
the pointwise error bound

|u(x)− v∗(x)| ≤ σ(x)‖u‖H, (18)

Local error estimates such as (18) are classical in Kriging [43] (see also [31][Thm. 5.1] for applica-
tions to PDEs). ‖u‖H is bounded from below (and, in with sufficient data, can be approximated

by) by
√
Y f,TK(Xf , Xf )−1Y f , i.e., the RKHS norm of the interpolant of v∗.

5.3. Code. All the relevant code for the experiments can be found at:
https://github.com/jlee1998/Kernel-Flows-for-Irregular-Time-Series
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