The Maintenance of Common Data in a Distributed System

Baruch Awerbuch *
M.LT.

Abstract

A basic task in distributed compulation is the mainte-
nance al each processor of the network, of a current
and accurale copy of a common database. A primary
ezample is the maintenance, for routing and other pur-
poses, of a record of the current topology of the system.

Such a database must be updated in the wake of lo-
cally generated changes to its contents. Due to previous
disconnections of parts of the network, a maintenance
protocol may need to update processors holding widely
varying versions of the database.

We provide a deterministic protocol for this prob-
lem, which has only polylogarithmic overhead in ils
time and communication complezities. Previous de-
terministic solutions required polynomial overhead in
at least one of these measures.

1 Introduction

1.1 Motivation

Many tasks in distributed computing deal with concur-
rently maintaining the “view” of a common object in
the separate sites of a distributed system. This object
may be the topology of a communication network (in
which case the view is a description of the underlying
network graph), or certain resources held at the sys-
tem sites (in which case the view is an inventory listing
the resources held at each site), or a general database.
These objects are subject to occasional changes (e.g.,
a link fails, a resource unit is consumed or released, a
database record is modified). It is thus necessary to

*Dept. of Mathematics and Lab. for Computer Science,
M.LT., Cambridge, MA 02139. Supported by Air Force Con-
tract TNDGAFOSR-86-0078, ARO contract DAAL03-86-K-
0171, NSF contract CCR8611442, and a special grant from IBM.

tDept. of Mathematics and Lab. for Computer Science,
M.LT., Cambridge, MA 02139. Supported by an ONR Grad-
uate Fellowship.

CH3062-7/91/0000/0505801.00 © 1991 IEEE

505

Leonard J. Schulman *
M.LT.

have an efficient mechanism for maintaining consistent
and updated views of the object at the different sites.

The most well known example of a task falling into
this category is that of Topology Update, whose essence
is updating at each node a local view of network topol-
ogy, which needs to be updated in response to topolog-
ical changes (failures and recoveries of network links)
that occur in the network. Topology update proto-
cols constitute a key component in handling various
control and management tasks (e.g. routing, band-
width reservations) in the major existing networks
such as the ARPANET [MRR8(0], DECNET [Wec80],
and SNA [BGJ*85], as well as in new network proto-
types [CG88, ACG*90]. Further note that topology-
dependent tasks such as Shortest Paths and Minimum
Spanning Tree can be solved locally in a network in
which current replicas of the topology are maintained
at each node. (Of course individual problems may haye
more efficient problem-specific protocols).

Due to possible partitions of the network, it may be
impossible to maintain identical views of the common
database at all the nodes, and some “disconnected”
nodes or subnetworks will have somewhat outdated
views. However, once the connectivity is restored, the
differences in views must be eliminated.

The most naive way of achieving this goal is simply
to broadcast the information to all the nodes. This
method, referred to as Full Broadcast, might be very
wasteful in communication since it fails to take advan-
tage of prior partial knowledge available in the sys-
tem. For, processors need be informed of relatively
few changes if they already hold nearly correct pictures
of the database. The Incremental Update strategy in
[ACK90, ACG*90] exploits this fact to the extreme,
sending each processor only one message per error.

While Incremental Update is clearly superior to Full
Broadcast in terms of communication complexity, it
can be significantly inferior in terms of time complex-
ity. This is due to the fact that the Full Broadcast
method takes advantage of message pipelining, while

the Incremental Update method does not [ACK191].
The problem of updating the views of all the proces-
sors, while taking advantage of prior knowledge and of
the possibility of pipelining, is formulated as Broadcast
with Partial Knowledge in [ACK+91].

1.2 The Problem

In the Broadcast with Partial Knowledge problem we
consider an asynchronous communication network con-
sisting of n 4 1 processors, each holding an m-bit local
input. One processor is distinguished as the source.
The problem requires all the processors to write in
their local output the value of the input at the source.
Note that we allow the inputs of the various processors
to differ in arbitrary ways. We make the neighbor-
knowledge assumption (justified in [ACK90]), namely
that each processor knows the inputs of each of its net-
work neighbors.

Throughout our discussion we will consider the case
in which the topology of the network is a tree, with the
source node being its root. This fits into the frame-
work of [ACK90, ACG*90] in which topology changes
are broadcast over a spanning tree. Furthermore it will
be sufficient to solve the problem on a chain, with the
source at one of its ends. (Reduce by using a depth-
first tour). For simplicity (although this could be dis-
pensed with) we will assume that that each processor
knows its own position in the chain.

We will picture the global input configuration as a
two-dimensional array of bits, with the source at the
left, machine index increasing to the right, and each
column vector representing a local input of a particu-
lar processor (see figure 1). In section 3 this picture
will be the setting for a geometric analysis of the time
complexity of our protocol.

The input stored at each processor is the local repre-
sentation of the database at this processor. The correct
description of the database is held by the source; the
local descriptions may differ from the correct one, and
from each other, as a result of changes in the database
and in the network topology. Our goal is to spread the
source’s view of the database throughout the network.

1.3 Complexity

The communication complexity of a protocol is defined
as the number of one-bit messages which it transmits.

We use the standard notion of time for asynchronous
systems, in which each link can at any time carry a
single one-bit message, and convey it from one end of
the link to the other in at most one unit of real time.

Another common model in the literature is the
“word” model, in a which each message in the above

0 1 0 1 0
Local |1 1 1 0 1
Inputs 19 0 0 1 1

o]] [f[o] |1

Machines @—O—O—0O—0O

506

0 1 2 3 4

Figure 1: Example illustrating the Broadcast with Partial
Knowledge problem. In this example, we have n +1 = 5 pro-
cessors maintaining a joint view with m = 4 items. The source
is processor 0. The incorrect entries of each processor are under-
lined. The local discrepancy is the number of underlined entries at
a processor. The total discrepancyis A = 7.

definitions is allowed to contain a logarithmic number
of bits (instead of one). We will present the time and
communication complexities of our protocol in both
models: the differences between the models will of
course be only logarithmic, a relatively minor effect
since the differences among the complexities of the var-
ious protocols discussed in this paper, are polynomial.

In order to quantify the possibility of exploiting local
knowledge, we use a measure that captures the level of
“correctness” of the knowledge held by each processor
[ACK*91]. Let the local discrepancy of a given proces-
sor be the number of bits in which the local input at
this processor differs from the source’s input. Define
also the total discrepancy A (which is not assumed to
be known to the processors) as the sum of the local
discrepancies.

We will express the communication and time com-
plexities of our solution as functions of m, n and A.

1.4 Existing Solutions

We have already mentioned the Full Broadcast solu-
tion to the Broadcast with Partial Knowledge problem,
which requires O(nm) messages without regard to A;
but which on the other hand terminates in the optimal
O(n + m) time.

In the Incremental Update [ACK90] solution, ma-
chines are brought one at a time into complete agree-
ment with the source’s database. Thanks to the
neighbor-knowledge assumption, a machine holding
the correct database can correct the errors in its
neighbor’s database with just one message per error.
Thus the communication complexity of this solution,
O(Alogm + n), is optimal. However since the correc-

[Reference | Commun. | Time
Full Broadcast mn m+n
Incr. Upd. [ACK90] Alogm +n Alogm+n
This paper (A +n)logm | (m+n) log® m
Tower Bd. [ACK¥91] | AlogZf +1n m+n

Figure 2: Complexity of deterministic protocols (bit model).

tions are made sequentially, the time complexity is also
O(A logm + n), which can be as bad as O(mnlogm).

An efficient randomized solution was given in
[ACK*91]. It achieves essentially optimal complexi-
ties in both time and communication, at the expense
of a small error probability.

1.5 Our Solution

In this paper we provide a deterministic solution to the
Broadcast with Partial Knowledge problem, that uses
O((A+n) log m) communication and O((m+n)log® m)
time. In other words, the multiplicative overheads of
our solution in communication and time are both poly-
logarithmic, in comparison with previous deterministic
solutions for which at least one of these overheads was
polynomial. See figure 2.

The intuition behind our work is as follows. We
place one “process”, a program that runs on the host
processors, in charge of the entire protocol — that is, in
charge of “cleaning up” the entire array of bits. Then,
in order to strive for good time complexity, we adopt
a very weak version of pipelining, by allowing this pro-
cess to work recursively and create “child” processes.
Each of the child processes is in charge of cleaning up
a smaller subarray, and they are staggered relative to
one another in their work. In order to clean their sub-
arrays the children run the same protocol as the main
process (with smaller parameters). In particular, they
can create children which are in charge of subarrays
of their subarray, and so forth, down to descendents
which are in charge of constant-size subarrays.

Now, if each process were to immediately delegate
all of its work to its children, the message complex-
ity of the protocol would be very poor. We avoid this
problem by allowing our processes to be lazy. For a
while they will try, themselves, to clean up the sub-
array that they are in charge of; only if this starts to
take a long time, will they create children, and del-
egate the work. In this manner the communication
costs associated with the creation of children, will not
actually be incurred by a process unless enough errors
are available to pay for these costs.

507

The time analysis is more involved. A straightfor-
ward induction on the size of a process will not suffice,
and instead a constructive insight will be to make a
correspondence between the length of a longest chain
of causally dependent messages in the protocol (a mea-
sure of its time complexity), and the “fractal” dimen-
sion of that chain viewed as a subset of the real unit
square. (Let m and n tend to infinity, and consider the
array of bits as an asymptotic object).

We will find that the dimension of this chain will
equal the exponent of the polynomial term in the run-
time of our protocol. Further, there is a correspon-
dence between the runtime of the protocol and the
limiting process that is used to define the fractal di-
mension: namely, that the rate of convergence of the
limiting sequence to the dimension, will dictate the
subpolynomial term in the runtime. (This term will
simply be the overhead, since the protocol is optimal
up to polynomial factors).

2 Algorithm

2.1 Preliminaries

For simplicity we will assume that m is a power of 2.
We will also suppose that n is a multiple of m. (If not
then let a = m([n/m] —n/m), and label the machines
M,, ..., My, 44; thus the source is M,, and the index of
the last machine is divisible by m).

Messages in our protocol will only be sent in the di-
rection away from the source (which we have taken to
be My), to the right in our diagrams. We will refer
to the right-hand neighbor of a machine as its succes-
sor. The incorrect bits at each machine will be cor-
rected one-by-one in order of increasing bit index, by
messages from the machine’s left-hand neighbor. No
machine will issue such a “correction” message for bit
j, until it knows that all its own bits 1,...,j are cor-
rect; thus the “clean” area of certified bits will have
the monotone appearance of figure 3.

Bits

Machines

Figure 3: A snapshot of the operation of the algorithm.

Our algorithm will be administered by the pro-
cesses, which “run” on their current host machine, and

progress from machine to machine. Each process Q is
responsible for cleaning some rectangle in the diagram,
which we will refer to as the Q-rectangle: for example,
the entire protocol will be started and maintained by
the main process, which is responsible for cleaning the
whole table.

Each process will have two parameters (see figure 4):
(a) Its altitude yg, and (b) Its height mg. The rectan-
gle that it is responsible for consists of bits yg ~mg +1
through yq, on the machines from its host’s successor
up through the next machine whose index is divisible
by mq. (In our diagrams a vertical line through such
a machine will be called an mg-column).

Height

m

Q-rectangle

Altitude]

Yo

m_-column m_-column
Y ° °)

Figure 4: The rectangle of a process Q.

2.2 Outline

A key observation to achieving a balance between the
two extreme strategies is this: suppose a process starts
correcting the errors in its Q)-rectangle itself, thus (as
in the incremental update algorithm) taking no risks
with the message cost. If it progresses quickly —
all is well. Conversely: slow progress is a sign that
it is encountering many errors — enough, so that it
can “pipeline” part of its task: it can generate a pair
of child processes, delegate to each the cleanup of a
subrectangle of Q, and pay for their travel costs. In
this case, essentially by induction, the process’s quick
progress will be guaranteed until the children termi-
nate.

By the time it is done, a process will have created
either 0, 2 or 4 children (see figure 5).

In addition to its height and altitude, which are fixed
from its creation, a process also maintains an “error
counter” variable 7 (in the range 0, ...,) with which
it counts the errors that it corrects itself.

508

[|
4
u U
o ’
L L
Y
mQ-column nb/Z -column mQ-column

Figure 5: The children of a process.

Every message we use will be labelled with an in-
dex between 1 and m, corresponding to its “altitude”
in the diagrams. The messages will satisfy a “local
monotonicity” condition:

o The messages sent by any machine to its succes-
sor over the course of the algorithm, will occur in
order of non-decreasing altitude.

We will use two kinds of messages in the algorithm:
corrections, and process-carriers. In a correction mes-
sage, a machine tells its successor to “flip bit j”, for
some 1 < j < m. There will be exactly A such mes-
sages during the algorithm. The “altitude” of such a
message is j. Note that it uses O(lgm) bits.

The other class of messages, the process-carriers, are
simply the way in which a process moves from its cur-
rent host machine, to that machine’s successor. Such
a message uses O(lgm) bits to encode the altitude,
height, and error counter of the process.

At any moment, a process will be in one of two
modes: open mode or split mode. In open mode, the
process issues corrections itself; in split mode, it dele-
gates the cleanup to its children and tags along behind
them. (See figure 6).

The first thing a process does when it is born is to
start an open mode.

The entire protocol begins when the main process,
with height m and altitude m, starts an open mode at
the source machine Mp.

2.3 Open Mode

When a process @ starts an open mode, it initializes
its “error counter” 7 to 0, and then starts correcting

Figure 6: The operation of a process (correction messages
marked).

every error it sees in its host’s successor, in order of in-
creasing altitude. Once the successor’s vector is clean
throughout the segment that the process is responsible
for, the process moves on to the successor, and contin-
ues operating in open mode there. With each error
that it corrects, it increments 7).

The process (of height mg) continues in this man-
ner until either: it reaches an mg-column, and termi-
nates; or it reaches an mq/2-column which is not an
mg-column, in which case it resets 7 to 0, effectively
beginning a new open mode; or 7 = mq, in which case
it immediately starts a split mode (to continue until
the nearest mgq/2-column).

2.4 Split Mode

In split mode, the process itself does not correct any
errors. Rather, it creates two child processes, each
responsible, in each machine they encounter until the
end of the split mode, for cleaning half of the vector-
segment that their parent process is responsible for.
After creating them, the parent process just tags along
behind them.

If the parent is of height mg and altitude yq, then
the height of each child is mq/2, the altitude of the
upper one is yg, and the altitude of the lower one is
yqg—mq/2. Both children terminate at the next mq/2-
column. Thus each is responsible for a rectangle of
width at most mgq/2. .

In accordance with the local monotonicity condition
(section 2.2) on the order of messages, all operations
of the upper child will be staggered behind the lower
child. All that remains to be specified is that the

509

parent process itself tags along just behind the up-
per child. (Note that they are at the same altitude,
8o their order is not dictated by local monotonicity. It
is convenient to think of a parent as having “slightly”
higher altitude than its upper child.) Observe that the
parent proceeds from M, to M4 as soon as it sees,
by virtue of the fact that both its lower and upper
children have proceeded, that the successor’s vector is
clean up to altitude yq.

When the child processes terminate at an mq/2-
column then, if the parent process does not itself ter-
minate (i.e. if this is not an mg-column), it simply
resets 7 to 0 and starts a new open mode.

2.5 Base Case

A process with m = 1 will simply proceed from ma-
chine to machine, correcting the bit that it is in charge
of, as it goes. Thus it traverses z links in time z. (Note
that z < m = 1 unless this is the main process.)

3 Analysis

It will be easiest to make both the message analysis
and the time analysis in the “word model”, where each
message consists of O(lg m) bits, and requires up to a
unit of time. Qur main theorem summarizes the results
of the analysis:

Theorem 3.1 In the word model our algorithm has
message complezity O(A + n) and time complezity
O((m + n)1g* m).

Conversion to the bit model is straightforward:

Corollary 3.2 In the bit model our algorithm has
message complezity O((A+n)lgm) and time complez-
ity O((m + n)1g>m).

3.1

First consider the correction messages: there is exactly
one of these per error.

Second, consider the process-carrier messages. The
main process travels across the entire chain, thus cost-
ing n messages.

Each other process, of height m' < m, uses at most
m' process-carriers, and is created as either the upper
or lower child of a process of height 2m’, after that
process encountered 2m’ errors in open mode. We use
these errors to pay for both of the children. The cost
per error is thus 1.

The total number of messages is therefore 2A+n =
O(A +n).

In the bit model this comes to O((A + n)lgm).

Message Analysis

3.2 Time Analysis

The standard model of time complexity in an asyn-
chronous setting involves the following assumptions:
(a) We ignore the computation time at each node. (b)
We assume that each message traverses its link in at
most one unit of real time.

The quiescence time T™ of a protocol is defined as the
maximum over all combinations of link-traversal times,
of the real time required for the protocol to terminate.
We will bound the quiescence time of our protocol with
another quantity that we shortly define.

The Dependency Graph

First we describe the dependency graph D among mes-
sages in a protocol. This is a directed acyclic graph,
whose vertices are the messages sent from the various
machines to their successors; and in which arc (v,w)
indicates that the transmission of message w is contin-
gent upon that of message v. (D may also be thought
of as a Hasse diagram on the set of messages).
There are two types of dependencies in D:

1. Machine-internal dependence, implied by the rel-
ative priorities among the messages exiting a par-
ticular machine. »

2. The dependence of a message exiting a particular
machine, on messages reaching that machine.

These categories can arise in various distributed pro-
tocols. Here is how they occur in ours (see figure 7 for
some examples):

1. Upward: v and w are both messages from M, to
M_z41, and v has higher priority than w.

(a) A process in open mode will need to wait for
either: a process at a lower altitude; or the last
correction it has to issue at the current machine.
(b) A process in split mode will follow its upper
child.

(c) A correction issued by process P will need to
wait for either: the previous correction issued by
P at the same machine; or the last process of lesser
altitude than P.

2. Forward: v is a message from M,_; to M,, and
w is from My to Myp4;.

(a) The very first process-carrier for a new process,
can only be created after its parent has arrived at
the originating machine.

(b) A carrier for a continuing process is depen-
dent on the previous carrier: i.e. the carrier from
M, to M4, can only leave after the carrier from
M,_, to M, has arrived.

510

(c) A correction message is dependent on the pro-
cess that issues it.

Figure 7: Some dependencies among m

Upward arcs always point straight up, while forward
arcs point either across, or down and across. Note that
every message has at most one dependence of each of
these categories, i.e. every vertex of D has at most one
incoming edge of each kind.

Properties of the Dependency Graph
Now: let T be the length of a longest path in D.

Claim 3.3 The time complezity T* of our algorithm
18 less than or equal to T'.

Proof Outline: One must observe that a processor
can indeed transmit a message as soon as that mes-
sage’s predecessors in D have been transmitted. u]

This will allow us to discuss our time bound entirely
in terms of path lengths in D.

Although it does not, strictly speaking, matter for
our result, we point out that in fact there is no loss
suffered in the bounding of T* by T'.

Claim 3.4 In our algorithm, T* is greater than or
equal to T'.

Proof Outline: Our algorithm has the property that
its “life history” — the sequence of messages received
and transmitted at each machine — does not depend
on the link traversal times. O

If Q is a process, denote the process-carrier which
takes it from machine M, to Mr41 by Q(z).

Claim 3.5 A path through D can cross the time-line
of any process ai most once, and that is while going

up.

Proof: Observe the following fact regarding D. Let @
be a process which splits at some machine Mz, creating
a lower child L and and an upper child U. Then the
forward arc from Q (i.e. from the process-carrier Q(z—
1)) extends to the first message generated by L, which
will be either L(z), or the first correction in the L-
rectangle. Thus the forward arc into L(z) comes from
Q(z—1). Next observe that for ' > z, the forward arc
into L(z') comes from L(z'—1). These two facts, along
with our earlier note that there is only one forward arc
into any message, lead to the following conclusion: No
event in the U-reclangle has any bearing on evenls in
the L-rectangle. Let us say precisely, that a message is
in the Q-rectangle if it is generated by Q or by a process
that is a descendent of Q. (Thus, its altitude will be
between yg — mq + 1 and yq, where yg and mq are
the altitude and height of Q). Then, more formally:
No message in the L-rectangle is a descendant of a
message in the U-rectangle. Pictorially this can be
viewed as saying that no path crosses the time-line of
a process, going down. The claim follows. O

On the other hand note, that events in U are de-
pendent on those in L. In particular, no message in
the U-rectangle can depart a machine M, until after
L(z') does so.

In figure 8 we have illustrated a path through a de-
pendency graph, and the time-lines of three genera-
tions of processes.

Proof of the Main Theorem

First we make an observation which will allow us to
make our time analysis separately for the stages during
which the main process is in open and in split mode.

Observation 3.6 (See figure 9):

1. Suppose Q is a process which starts a split mode at
machine M;. Suppose v is a message in the open
subreciangle preceding M;, and w is a message in
the following split subrectangle. Then all paths in
D from v to w, pass through the message Q:-1).

2. Suppose Q is a process which finishes a split mode
at machine M;. Suppose w is a message in the

511

|

.---5‘ 9"" [
é L.b i oé
] L]
+ —_—p— ———
a TUTT)

Figure 8: Time-lines of processes, and a path through D.

split subrectangle preceding M;, and z is a mes-
sage in the following open subrectangle. Then all
paths in D from w to z, pass through the message

QG -1).

An examination of the algorithm shows that the
main process undergoes [2n/m) iterations of the open
mode — split mode sequence, each iteration ending at
an m/2-column. (Recall that even if no split is created,
the error counter is reinitialized at the m/2-column
anyway). Thus in view of observation 3.6, we can
multiply a bound on the algorithm in the special case
n = m/2 by the factor [2n/m] to obtain a bound for
the general case. This is how our main result, the-
orem 3.1, follows from theorem 3.8 (the analysis for
n=m/2).

Thanks to this simplification we will now work
with the dependency graph D among the messages
in an (m/2) x m rectangle (i.e. involving machines
My, ..., Mpy3). For each m!, a power of 2 between 1
and m, let us introduce a system of rectangles, which
we will call the m/-rectangles, partitioning the array of
bits. Each m'-rectangle will be of height m’, and (for
some k) will include bit indices km’ +1, ..., (k+1)m;
it will be of width m’/2 and extend between adjacent
m' /2-columns. Observe that the rectangle of a process
of height m' intersects at most two m'-rectangles.

The central idea of the analysis will now be to con-
sider any path v through D, and to assign the messages

Mi Mj

Figure 9: The constraints on paths between consecutive open
and split modes.

in ¥ to m'-rectangles of various sizes, that vy passes
through. Then we will bound the number of messages
that might be assigned to any m'-rectangle. In this
way the total length of 4 will be related to the number
of m/-rectangles of each size that it encounters. We
will bound these numbers with a recurrence relation
derived from the properties that ¥ must satisfy. The
combination of these elements will give us a bound on
the length of +.

We proceed with this program. First we de-
scribe how to assign messages (vertices of D) to m'-

rectangles. Let w be a message issued by a process Q -

of height m’. We assign w to the m’-rectangle that
contains it (which is one of those that the Q-rectangle
intersects). This assignment actually has two cases: w
is either a a correction message issued by @ in an open
mode, or a process-carrier for (in either mode).

Now, there is at most one process of height m' inter-
secting any given m'-rectangle. This process will use
at most m'/2 process-carriers in the m'-rectangle, and
issue at most m’ corrections. Hence an m'-rectangle is
assigned at most 3m’/2 messages.

Now we consider just the vertices of y. We will say
precisely that v encounters an m'-rectangle, if it con-
tains a w that is assigned to that rectangle by the above
rule.

Since D is acyclic, no vertex appears more than once
in 4. Therefore, with m’ = m/2”, we find that the
number of edges of v is at most:

512

Igm
g “2 2#

Our definition of “encountering” vacuously demon-
strates that no edges of v are charged to m’-rectangles
it does not encounter. It also implies that 4 cannot
encounter an m'-rectangle without also encountering
the enveloping 2m’-rectangle. For, let w be a vertex of
7 in the m’-rectangle. Then above w lies the time-line
of the process P of height 2m’, which is the parent of
the process that issued w, and which is currently in
split mode. If vy exits the P-rectangle upward during
this split mode, then it passes through a carrier for
P; while observation 3.6.2 implies that this is also the
case even if y exits the split mode on forward edge.

Let a, denote the number of m/2#-rectangles that
7 encounters. In accordance with our program we now
study the {a,}. We will view 7 as if it were some limit-
ing object, a subset of the unit square in the Euclidean
plane; and then consider both its fractal dimension
(which is defined via a limiting process), and the rate
at which the finite approximations approach the frac-
tal dimension. Essentially, the fractal dimension will
dictate the polynomial exponent of our time analysis
— e.g. whether our runtime is linear or quadratic in
m; while the rate of convergence toward the dimension
will dictate the size of the subpolynomial term multi-
plying the polynomial term.

In the continuous case, m is infinite, and a measure
of the rate of growth of the a,, lim,_, o]—5—“"—, is known
as the Pontrjagin-Schnirelman dimension of ¥ [KT59,
Man82, PS32).

If we use the last term of (1) (with g = lgm) as
a very rough representation of the entire summation,
then we obtain an estimate of m#m(1)+°(1) on the
length of v. In particular a length of m'+°(1) corre-
sponds to a dimension of 1. Furthermore: establishing
that the length of y is m!+0U8lem/lgm) — py(1g y)O(1)
corresponds to boundmg the convergence to the dimen-
sion by 1 + O(&£).

From now on we will think of 4 as a worst-case path,
and speak of exact values for the a,, instead of bound-
ing them.

)

Proposition 3.7 a, = 2#(4 +1).

Before proving this result, let us apply it to obtain a
bound on the running time of our algorithm:
Theorem 3.8 T = O(m(lgm)?).

Proof: T < zlg_"(; 0,38 = ImYE™L +1) =
3m(1+lgm)(4+lgm)/8 0

Proof of proposition 3.7: The main step is to es-
tablish the following recurrence relation among the a,,.

Lemma 3.9 For every p > 1, a, = 2a,-1 + 2#71.

Proof: Throughout the proof of this lemma let m’ =
m/2+-1,

Recall that + can encounter a m'/2-rectangle only if
it encounters the enveloping m’-rectangle.

Now consider any m’-rectangle that v encounters.
We claim that 4 can encounter only three of the
four m'/2-rectangles it contains: for, to encounter the
upper-left one means that the process of height m' has
split before the m’/4-column running down the mid-
dle of the m'-rectangle. Now, v never proceeds to the
left, so the lower-right subrectangle can only be en-
countered after the upper-left one. However as ob-
served earlier, no arcs descend from an upper child’s
rectangle into the time-line of a lower one. Hence 7y
cannot encounter both the upper-left and lower-right
subsquares.

Next, examine any of the 2¢~! vertical swaths of m'-
rectangles, into which the array is partitioned by the
m’/2-columns. 7 enters this swath from the left, and
leaves it to the right.

~ encounters some subset of the m/-rectangles of this
swath, and we claim that it visits them in order of in-
creasing altitude. That is, if v and w are messages
issued by two different processes of height m’' in this
swath, and v is issued by that of lower altitude, then
~ cannot visit w before v. For, let @ be the process
which is the first common ancestor of the two pro-
cesses. Then, since @ itself issues neither v nor w, it
must be in split mode at least as early (i.e. as far to
the left) as the earliest of v and w. But then for ¥
to go from w to v, it would have to descend past the
time-line of Q’s lower child L: this it cannot do. See
figure 10.

Finally, we claim that in all but one of the m'-
rectangles of the swath, ¥ can visit only two (rather
than three) of the subrectangles. For, since v never
travels leftwards, it has only one edge which crosses the
m' /4-column running down the middle of this swath. If
this edge occurs within some m’-rectangle, then 7 can
encounter three of its subrectangles; but in lower m’-
rectangles v can encounter only the lefthand subrect-
angles, and in higher m'-rectangles it can encounter
only the righthand subrectangles. See figure 11.

Therefore if v encountered s m'-rectangles in this
swath, it can encounter within it at most 25+1 m’/2-
rectangles. The lemma follows by summing over all
2#-1 swaths. m]

Now we rewrite the recurrence we obtained in the

lemma, in matrix form:
ay-1
) ()

(5)=(3 3

513

m’ /2-column

Figure 10: The m’-rectangles in a swath are visited in ascending
order.

Both eigenvalues of the transition matrix are 2,
therefore a, has a closed form expression as 2* times
a polynomial in p. The exact solution, taking into ac-
count the boundary condition aq = 1, is given in the
statement of the proposition. v}

Acknowledgments

We thank Rainer Gawlick for his helpful comments.

References

[ACG*90] Baruch Awerbuch, Israel Cidon, Inder Gopal,
Marc Kaplan, and Shay Kutten. Distributed
control for paris. In Proc. 9th ACM Symp. on
Principles of Distributed Computing, 1990.

Baruch Awerbuch, Israel Cidon, and Shay Kut-
ten. Optimal maintenance of replicated infor-
mation. In Proc. 81st IEEE Symp. on Founda-
tions of Computer Science, 1990.

Baruch Awerbuch, Israel Cidon, Shay Kutten,
Yishay Mansour, and David Peleg. Broadcast
with partial knowledge. In Proc. 11th ACM
Symp. on Principles of Distributed Computing,
1991. to appear.

A. E. Baratz, J. P. Gray, P. E. Green Jr,
J. M. Jaffe, and D.P. Pozefski. SNA networks
of small systems. IEEE Journal on Selected

[ACK90]

[ACK191]

[BGI*85]

Figure 11: The subrectangles encountered in a swath.

[CG88]

[KT59]

[Man82]

[MRR80]

[PS32]

[Wec80]

Areas in Communications, SAC-3(3):416-426,
May 1985.

I. Cidon and I. S. Gopal. Paris: An approach
to integrated high-speed private networks. In-
ternational Journal of Digital & Analog Cabled
Systems, 1(2):77-86, April-June 1988.

A. N. Kolmogorov and V. M. Tihomirov.
Epsilon-entropy and epsilon-capacity of sets in
functional spaces. Uspekhi Matematicheskikh
Nauk (N. S.), 14:3-86, 1959. Translated in
American Mathematical Society Translations
(Series 2) 17:277-364 (1961).

B. Mandelbrot. The Fractal Geometry of Na-
ture. W. H. Freeman and Company, San Fran-
cisco, 1982.

John McQuillan, Ira Richer, and Eric Rosen.
The new routing algorithm for the arpanet.
IEEE Trans. on Commun., 28(5):711-719, May
1980.

L. Pontrjagin and L. Schnirelman. Sur une
propriété métrique de la dimension. Annals of
Mathematics, 33:156-162, 1932.

S. Wecker. DNA: the digital network architec-
ture. IEEE Transactions on Communication,
COM-28:510-526, April 1980.

514

