CaltechAUTHORS
  A Caltech Library Service

Synergistic HNO₃–H₂SO₄–NH₃ upper tropospheric particle formation

Wang, Mingyi and Xiao, Mao and Bertozzi, Barbara and Marie, Guillaume and Rörup, Birte and Schulze, Benjamin and Bardakov, Roman and He, Xu-Cheng and Shen, Jiali and Scholz, Wiebke and Marten, Ruby and Dada, Lubna and Baalbaki, Rima and Lopez, Brandon and Lamkaddam, Houssni and Manninen, Hanna E. and Amorim, António and Ataei, Farnoush and Bogert, Pia and Brasseur, Zoé and Caudillo, Lucía and De Menezes, Louis-Philippe and Duplissy, Jonathan and Ekman, Annica M. L. and Finkenzeller, Henning and Gonzalez Carracedo, Loïc and Granzin, Manuel and Guida, Roberto and Heinritzi, Martin and Hofbauer, Victoria and Höhler, Kristina and Korhonen, Kimmo and Krechmer, Jordan E. and Kürten, Andreas and Lehtipalo, Katrianne and Mahfouz, Naser G. A. and Makhmutov, Vladimir and Massabò, Dario and Mathot, Serge and Mauldin, Roy L. and Mentler, Bernhard and Müller, Tatjana and Onnela, Antti and Petäjä, Tuukka and Philippov, Maxim and Piedehierro, Ana A. and Pozzer, Andrea and Ranjithkumar, Ananth and Schervish, Meredith and Schobesberger, Siegfried and Simon, Mario and Stozhkov, Yuri and Tomé, António and Umo, Nsikanabasi Silas and Vogel, Franziska and Wagner, Robert and Wang, Dongyu S. and Weber, Stefan K. and Welti, André and Wu, Yusheng and Zauner-Wieczorek, Marcel and Sipilä, Mikko and Winkler, Paul M. and Hansel, Armin and Baltensperger, Urs and Kulmala, Markku and Flagan, Richard C. and Curtius, Joachim and Riipinen, Ilona and Gordon, Hamish and Lelieveld, Jos and El-Haddad, Imad and Volkamer, Rainer and Worsnop, Douglas R. and Christoudias, Theodoros and Kirkby, Jasper and Möhler, Ottmar and Donahue, Neil M. (2022) Synergistic HNO₃–H₂SO₄–NH₃ upper tropospheric particle formation. Nature, 605 (7910). pp. 483-489. ISSN 0028-0836. PMCID PMC9117139. doi:10.1038/s41586-022-04605-4. https://resolver.caltech.edu/CaltechAUTHORS:20220602-284995800

[img] PDF - Published Version
See Usage Policy.

3MB
[img] PDF (Peer Review File) - Supplemental Material
See Usage Policy.

451kB
[img] MS Excel (Source Data Fig. 1) - Supplemental Material
See Usage Policy.

339kB
[img] MS Excel (Source Data Fig. 2) - Supplemental Material
See Usage Policy.

11kB
[img] MS Excel (Source Data Fig. 3) - Supplemental Material
See Usage Policy.

15kB
[img] MS Excel (Source Data Fig. 4) - Supplemental Material
See Usage Policy.

16kB
[img] MS Excel (Source Data Extended Data Fig. 1) - Supplemental Material
See Usage Policy.

128kB
[img] MS Excel (Source Data Extended Data Fig. 2) - Supplemental Material
See Usage Policy.

50kB
[img] MS Excel (Source Data Extended Data Fig. 3) - Supplemental Material
See Usage Policy.

47kB
[img] MS Excel (Source Data Extended Data Fig. 4) - Supplemental Material
See Usage Policy.

845kB
[img] MS Excel (Source Data Extended Data Fig. 5) - Supplemental Material
See Usage Policy.

19kB
[img] MS Excel (Source Data Extended Data Fig. 8) - Supplemental Material
See Usage Policy.

564kB
[img] Image (JPEG) (Extended Data Fig. 1: Enhancement of HNO3–NH3 particle formation by sulfuric acid) - Supplemental Material
See Usage Policy.

197kB
[img] Image (JPEG) (Extended Data Fig. 2: Enhancement of H2SO4–HNO3 nucleation by ammonia) - Supplemental Material
See Usage Policy.

185kB
[img] Image (JPEG) (Extended Data Fig. 3: Particle formation rates at 1.7 nm (J1.7) versus ammonia concentration at 223 K and 25% relative humidity) - Supplemental Material
See Usage Policy.

95kB
[img] Image (JPEG) (Extended Data Fig. 4: Measurement of the ice nucleation ability of HNO3–H2SO4–NH3 particles versus sulfate-to-nitrate ratio) - Supplemental Material
See Usage Policy.

217kB
[img] Image (JPEG) (Extended Data Fig. 5: Parameterization of the HNO3–H2SO4–NH3 particle formation rate) - Supplemental Material
See Usage Policy.

169kB
[img] Image (JPEG) (Extended Data Fig. 6: Modelled contribution of HNO3–H2SO4–NH3 nucleation to upper tropospheric particles) - Supplemental Material
See Usage Policy.

187kB
[img] Image (JPEG) (Extended Data Fig. 7: Modelled annual mean ammonia mixing ratios at 250 hPa (11 km, about 223 K)) - Supplemental Material
See Usage Policy.

250kB
[img] Image (JPEG) (Extended Data Fig. 8: Modelled transport of ammonia to the upper troposphere in deep convective clouds) - Supplemental Material
See Usage Policy.

248kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20220602-284995800

Abstract

New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN). However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO₃–H₂SO₄–NH₃ nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1038/s41586-022-04605-4DOIArticle
https://rdcu.be/cOQT3PublisherFree ReadCube access
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117139PubMed CentralArticle
https://doi.org/10.5281/zenodo.5949440DOIData
https://www.messy-interface.org/Related ItemMESSy Consortium
http://homepages.see.leeds.ac.uk/%7elecmc/tomcat.htmlRelated ItemTOMCAT model
ORCID:
AuthorORCID
Wang, Mingyi0000-0001-5782-2513
Xiao, Mao0000-0002-2790-4443
Bertozzi, Barbara0000-0003-2571-6585
Marie, Guillaume0000-0003-1454-0908
Rörup, Birte0000-0001-8755-9453
Schulze, Benjamin0000-0002-6405-8872
He, Xu-Cheng0000-0002-7416-306X
Scholz, Wiebke0000-0003-2617-620X
Marten, Ruby0000-0003-0417-4350
Dada, Lubna0000-0003-1105-9043
Baalbaki, Rima0000-0002-4480-2107
Lamkaddam, Houssni0000-0001-5166-6353
Manninen, Hanna E.0000-0002-0419-4020
Amorim, António0000-0003-0638-2321
Ataei, Farnoush0000-0001-8038-649X
Brasseur, Zoé0000-0001-5387-018X
Duplissy, Jonathan0000-0001-8819-0264
Ekman, Annica M. L.0000-0002-5940-2114
Finkenzeller, Henning0000-0002-8349-3714
Guida, Roberto0000-0001-8413-9672
Heinritzi, Martin0000-0002-9171-8127
Hofbauer, Victoria0000-0001-9036-4446
Höhler, Kristina0000-0001-5503-9816
Korhonen, Kimmo0000-0002-4027-3121
Krechmer, Jordan E.0000-0003-3642-0659
Kürten, Andreas0000-0002-8955-4450
Lehtipalo, Katrianne0000-0002-1660-2706
Mahfouz, Naser G. A.0000-0002-7097-1430
Makhmutov, Vladimir0000-0002-2242-1055
Massabò, Dario0000-0001-7445-0328
Mathot, Serge0000-0002-4802-8251
Mauldin, Roy L.0000-0002-8569-8561
Mentler, Bernhard0000-0003-3852-0397
Müller, Tatjana0000-0001-6453-9134
Onnela, Antti0000-0001-9946-9762
Petäjä, Tuukka0000-0002-1881-9044
Philippov, Maxim0000-0003-4302-0020
Piedehierro, Ana A.0000-0002-1900-8139
Pozzer, Andrea0000-0003-2440-6104
Ranjithkumar, Ananth0000-0002-6780-456X
Schobesberger, Siegfried0000-0002-5777-4897
Simon, Mario0000-0002-4900-7460
Stozhkov, Yuri0000-0003-1917-0328
Tomé, António0000-0001-9144-7120
Umo, Nsikanabasi Silas0000-0002-2571-163X
Wagner, Robert0000-0001-7365-8020
Wang, Dongyu S.0000-0001-7549-1578
Weber, Stefan K.0000-0001-7408-9069
Welti, André0000-0002-3549-1212
Zauner-Wieczorek, Marcel0000-0002-0867-665X
Sipilä, Mikko0000-0002-8594-7003
Winkler, Paul M.0000-0001-6861-6029
Hansel, Armin0000-0002-1062-2394
Baltensperger, Urs0000-0003-0079-8713
Kulmala, Markku0000-0003-3464-7825
Flagan, Richard C.0000-0001-5690-770X
Curtius, Joachim0000-0003-3153-4630
Riipinen, Ilona0000-0001-9085-2319
Gordon, Hamish0000-0002-1822-3224
Lelieveld, Jos0000-0001-6307-3846
El-Haddad, Imad0000-0002-2461-7238
Volkamer, Rainer0000-0002-0899-1369
Worsnop, Douglas R.0000-0002-8928-8017
Christoudias, Theodoros0000-0001-9050-3880
Kirkby, Jasper0000-0003-2341-9069
Möhler, Ottmar0000-0002-7551-9814
Donahue, Neil M.0000-0003-3054-2364
Alternate Title:Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
Additional Information:© 2022 Nature Publishing Group. Received 28 July 2021; Accepted 02 March 2022; Published 18 May 2022. We thank the European Organization for Nuclear Research (CERN) for supporting CLOUD with important technical and financial resources. This research has received funding from the US National Science Foundation (nos. AGS-1801574, AGS-1801897, AGS-1602086, AGS-1801329, AGS-2132089 and AGS-1801280), the European Union’s Horizon 2020 programme (Marie Skłodowska-Curie ITN no. 764991 ‘CLOUD-MOTION’), the European Commission, H2020 Research Infrastructures (FORCeS, no. 821205), the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie no. 895875 ‘NPF-PANDA’), a European Research Council (ERC) project ATM-GTP contract (no. 742206), an ERC-CoG grant INTEGRATE (no. 867599), the Swiss National Science Foundation (nos. 200021_169090, 200020_172602 and 20FI20_172622), the Academy of Finland ACCC Flagship (no. 337549), the Academy of Finland Academy professorship (no. 302958), the Academy of Finland (nos. 1325656, 316114 and 325647), Russian MegaGrant project ‘Megapolis – heat and pollution island: interdisciplinary hydroclimatic, geochemical and ecological analysis’ (application reference 2020-220-08-5835), Jane and Aatos Erkko Foundation ‘Quantifying carbon sink, CarbonSink+ and their interaction with air quality’ INAR project, Samsung PM2.5 SRP, Prince Albert Foundation ‘the Arena for the gap analysis of the existing Arctic Science Co-Operations (AASCO)’ (no. 2859), the German Federal Ministry of Education and Research (CLOUD-16 project nos. 01LK1601A and 01LK1601C), the Knut and Alice Wallenberg Foundation Wallenberg Academy Fellows project AtmoRemove (no. 2015.0162), the Portuguese Foundation for Science and Technology (no. CERN/FIS-COM/0014/2017) and the Technology Transfer Project N059 of the Karlsruhe Institute of Technology (KIT). The FIGAERO-CIMS was supported by a Major Research Instrumentation (MRI) grant for the US NSF AGS-1531284, as well as the Wallace Research Foundation. The computations by R.Bardakov were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Center (NSC). I.R. thanks the Max Planck Society for a sabbatical award. M.W. thanks Siebel Scholars Foundation for financial support. Data availability: The full dataset shown in the figures is publicly available at https://doi.org/10.5281/zenodo.5949440. Source data are provided with this paper. Code availability: The EMAC (ECHAM/MESSy) model is continuously further developed and applied by a consortium of institutions. The use of MESSy and access to the source code is licensed to all affiliates of institutions that are members of the MESSy Consortium. Institutions can become a member of the MESSy Consortium by signing the MESSy Memorandum of Understanding. More information can be found on the MESSy Consortium website (https://www.messy-interface.org). All code modifications presented in this paper will be included in the next version of MESSy. The TOMCAT model (http://homepages.see.leeds.ac.uk/~lecmc/tomcat.html) is a UK community model. It is available to UK (or NERC-funded) researchers who normally access the model on common facilities or who are helped to install it on their local machines. As it is a complex research tool, new users will need help to use the model optimally. We do not have the resources to release and support the model in an open way. Any potential user interested in the model should contact Martyn Chipperfield. The model updates described in this paper are included in the standard model library. The cloud trajectories model is publicly available at https://doi.org/10.5281/zenodo.5949440. Codes for conducting the analysis presented in this paper can be obtained by contacting the corresponding author, Neil M. Donahue (nmd@andrew.cmu.edu). Contributions: M.W., B.B., J.K. and N.M.D. planned the experiments. M.W., B.B., G.M., B.R., B.S., X.-C.H., J.S., W.S., R.M., B.L., H.L., H.E.M., F.A., P.B., Z.B., L.C., L.-P.D.M., J.D., H.F., L.G.C., M.G., R.G., V.H., A.K., K.L., V.M., D.M., S.M., R.L.M., B.M., T.M., A.O., T.P., M.P., A.A.P., A.P., M.Simon, Y.S., A.T., N.S.U., F.V., R.W., D.S.W., S.K.W., A.W., Y.W., M.Z.-W., M.Sipilä, P.M.W., A.H., U.B., M.K., R.C.F., J.C., R.V., I.E.-H., J.K., K.K. O.M., S.S. and N.M.D. prepared the CLOUD facility or measuring instruments. M.W., B.B., G.M., B.R., B.S., X.-C.H., J.S., W.S., R.M., B.L., H.E.M., A.A., L.C., L.G.C., M.G., M.H., V.H., J.E.K., N.G.A.M., D.M., R.L.M., B.M., A.R., M.Schervish, M.Simon, A.T., N.S.U., F.V., D.S.W., S.K.W., A.W., M.Z.-W., P.M.W., J.K. and K.K. collected the data. M.W., M.X., B.B., G.M., B.R., B.S., R.Bardakov, J.S., W.S., L.D., R.Baalbaki, B.L., D.S.W., S.K.W., A.W., I.R., T.C. and N.M.D. analysed the data. M.W., M.X., B.B., R.Bardakov, X.-C.H., J.S., W.S., R.M., L.D., R.Baalbaki., B.L., H.L., H.E.M., A.M.L.E., H.F., M.H., K.H., A.K., N.S.U., R.W., A.W., A.H., U.B., M.K., R.C.F., J.C., R.V., I.R., H.G., J.L., I.E.-H., D.R.W., T.C., J.K., O.M., S.S. and N.M.D. contributed to the scientific discussion. M.W., B.B., R.Bardakov, W.S., R.M., B.L., H.L., K.H., A.K., U.B., R.C.F., J.C., R.V., I.R., H.G., J.L., I.E.-H., T.C., J.K., O.M. and N.M.D. wrote the manuscript. The authors declare no competing interests. Peer review information: Nature thanks Bernd Kärcher and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.
Funders:
Funding AgencyGrant Number
CERNUNSPECIFIED
NSFAGS-1801574
NSFAGS-1801897
NSFAGS-1602086
NSFAGS-1801329
NSFAGS-2132089
NSFAGS-1801280
Marie Curie Fellowship764991
European Research Council (ERC)821205
Marie Curie Fellowship895875
European Research Council (ERC)742206
European Research Council (ERC)867599
Swiss National Science Foundation (SNSF)200021_169090
Swiss National Science Foundation (SNSF)200020_172602
Swiss National Science Foundation (SNSF)20FI20_172622
Academy of Finland337549
Academy of Finland302958
Academy of Finland1325656
Academy of Finland316114
Academy of Finland325647
Russian MegaGrant2020-220-08-5835
Jane and Aatos Erkko FoundationUNSPECIFIED
SamsungPM2.5 SRP
Prince Albert Foundation2859
Bundesministerium für Bildung und Forschung (BMBF)01LK1601A
Bundesministerium für Bildung und Forschung (BMBF)01LK1601C
Knut and Alice Wallenberg Foundation2015.0162
Fundação para a Ciência e a Tecnologia (FCT)CERN/FIS-COM/0014/2017
Karlsruhe Institute of TechnologyUNSPECIFIED
NSFAGS-1531284
Wallace Research FoundationUNSPECIFIED
Max Planck SocietyUNSPECIFIED
Siebel Scholars FoundationUNSPECIFIED
Subject Keywords:Atmospheric chemistry; Atmospheric science; Climate change
Issue or Number:7910
PubMed Central ID:PMC9117139
DOI:10.1038/s41586-022-04605-4
Record Number:CaltechAUTHORS:20220602-284995800
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20220602-284995800
Official Citation:Wang, M., Xiao, M., Bertozzi, B. et al. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 605, 483–489 (2022). https://doi.org/10.1038/s41586-022-04605-4
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:115007
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:03 Jun 2022 17:27
Last Modified:03 Jun 2022 17:27

Repository Staff Only: item control page