Shallow CalciumCarbonate Cycling in the North Pacific Ocean

Adam V. Subhas1, Sijia Dong2, John D. Naviaux3, Nick E. Rollins4, Patrizia Ziveri5,6, William Gray7, James W.B. Rae8, Xuewu Liu9, Robert H. Byrne9, Sang Chen10, Christopher Moore9, Loraine Martell-Bonet9, Zvi Steiner11, Gilad Antler12, Huanting Hu10, Abby Lunstrum4, Yi Hou13, Nathaniel Kemnitz4, Johnny Stutsman14, Sven Pallacks5, Mathilde Dugenne15, Paul D. Quay14, William M. Berelson4, and Jess F. Adkins2

1Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. 3Four Twenty Seven Inc., Sunnyvale, CA, USA. 4Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA. 5Institut de Ciencia I Tecnologia Ambientals, Universitat Autonoma de Barcelona, Barcelona, Spain. 6Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
7Laboratoire des Sciences du Climat et de l’Environnement, (LSCE/IPSL), Universite Paris-Saclay, Gif-sur-Yvette, France 8School of Earth and Environmental Sciences, University of St Andrews, St Andrews, Scotland 9College of Marine Science, University of South Florida, St. Petersburg, FL, USA 10School of Oceanography, Shanghai Jiao Tong University, Shanghai, China 11GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 12Department of Earth and Environmental Sciences, Ben-Gurion University, Israel 13Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, USA 14School of Oceanography, University of Washington, Seattle, WA, USA 15School of Ocean and Earth Science and Technology, University of Hawaii, HI, USA

Corresponding author: Adam V. Subhas (asubhas@whoi.edu)

Key Points:

- High resolution carbonate chemistry, δ13C-DIC, and particle flux measurements in the NE Pacific sheds light on the upper ocean calcium carbonate and alkalinity cycles.
- Based on this sampling campaign, there is evidence for substantial CaCO3 dissolution in the mesopelagic zone above the saturation horizon.
- Dissolution experiments, observations, and modeling suggest that shallow CaCO3 dissolution is coupled to the consumption of organic carbon, through a combination of zooplankton grazing and oxic respiration within particle microenvironments.
Abstract

The cycling of biologically produced calcium carbonate (CaCO$_3$) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO$_3$ sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO$_3$ dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid-phase CaCO$_3$ flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO$_2$) and the base (CaCO$_3$) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO$_3$. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.

Plain Language Summary

The marine carbon cycle is made of organic carbon and calcium carbonate (CaCO$_3$) components. While the organic carbon cycle has received much attention, the CaCO$_3$ cycle is relatively understudied. Through a dedicated research expedition to the North Pacific Ocean, we demonstrate here a coupling of these two cycles, stemming from the fact that all organisms that produce CaCO$_3$ also produce intimately associated organic carbon. We suggest that the mechanisms responsible for the formation and sinking of organic carbon particles in the ocean are likely as important for CaCO$_3$ export, and that the respiration of organic carbon is responsible for the dissolution of a substantial portion of CaCO$_3$ in the upper ocean.

1.1 Introduction

The marine calcium carbonate (CaCO$_3$) cycle is integral to the global carbon cycle. The production of biogenic CaCO$_3$ tends to raise atmospheric CO$_2$ due to consumption of surface ocean alkalinity, while the ballasting of organic matter and export into the deep ocean provided by this material tends to lower CO$_2$ (De La Rocha et al., 2008, Passow et al., 2006, Klaas and Archer, 2002). In addition to these roles, solid CaCO$_3$ is crucial to the neutralization of CO$_2$ through its dissolution and associated production of ocean alkalinity (Archer et al., 1998). Despite consensus on the general dynamics of marine CaCO$_3$ cycling, rates of CaCO$_3$ production and dissolution are poorly constrained (Dunne et al., 2012, Berelson et al., 2007, Battaglia et al., 2016). If a substantial amount of alkalinity is regenerated in the shallow ocean where precipitation is thermodynamically favored, then the traditional relationship between water column CaCO$_3$ dissolution rates and mineral saturation state must be reexamined.

The formation and dissolution of calcium carbonate minerals is canonically described as a function of seawater saturation state ($\Omega = [\text{Ca}^{2+}][\text{CO}_3^{2-}]/K'_\text{sp}$), where K'_sp is the in situ apparent solubility product of the CaCO$_3$ mineral of interest (e.g. calcite or aragonite). The dissolution
rate R is empirically related to Ω using the equation $R = k(1-\Omega)^n$, where k is the specific dissolution rate constant, and n is a fit parameter describing the nonlinearity of dissolution rate as a function of undersaturation (Keir, 1980). In brief, calcite dissolution is a highly nonlinear function of seawater undersaturation across a wide range of saturation states, an observation that dates back to early experiments by Peterson (1966) and Berner and Morse (1974).

This high degree of nonlinearity can be explained by applying kinetic crystal growth models to calcite dissolution, as summarized in Adkins et al. (2021) for inorganic calcite. As saturation state decreases, inorganic calcite dissolution goes through distinct rate transitions at “critical” Omega values (Ω_{crit}, Naviaux et al., 2019b, Dong et al., 2020a). At colder temperatures, a single break in slope in log(rate) versus log(1-\Omega) is observed at an $\Omega_{\text{crit}} \sim 0.75$-

Figure 1: A schematic of surface area-normalized log(rate) as a function of log(1-\Omega) at 5°C, for inorganic calcite (black) and aragonite and biogenic calcites (red), adapted from Naviaux et al. (2019a,b), Subhas et al. (2018), and Dong et al. (2019). The dashed line denotes Ω_{crit}, the value of Ω at which the dissolution mechanism shifts from near-equilibrium step-edge retreat to far-from-equilibrium 2-dimensional, homogenous dissolution. All biogenic calcites, and aragonite, demonstrate a rate transition at the same Ω_{crit} as inorganic calcite, but demonstrate a shallower far-from-equilibrium slope compared to inorganic calcite. The larger red envelope is intended to illustrate the larger range in dissolution rates of biogenic materials. Logarithmically spaced ticks for 1-\Omega are shown at the top of the plot for clarity.
0.8, marking the transition between dissolution at step-edges and dissolution on the 2D mineral surface (Figure 1 black envelope, Peterson, 1966, Naviaux et al., 2019a,b, Dong et al., 2019). Practically, two dissolution regimes mean that calcite dissolution in seawater is best described by two rate equations, uniquely defined between 1>Ω>Ω_{crit} and Ω_{crit}>Ω>0, each with distinct k-n pairs. Near equilibrium, dissolution rate is slow and relatively insensitive to saturation state with a small k and n<1. Far from equilibrium, dissolution rapidly increases as a function of undersaturation, leading to a large k and n>>1. Several in situ water column dissolution experiments with inorganic calcite have documented this sharp increase in dissolution rate below Ω_{crit} (Peterson, 1966, Honjo and Erez, 1978, Naviaux et al., 2019a).

Like inorganic calcite, biogenic calcites and aragonite demonstrate a rate transition at the same Ω_{crit} as inorganic calcite (Subhas et al., 2018, Dong et al., 2019). Biogenic calcite dissolution rates demonstrate k and n values that are distinct from the inorganic calcite curve (Figure 1, red envelope). Coccolith dissolution rates appear to behave similarly to calcite near equilibrium, but are less sensitive to saturation state far-from-equilibrium (n=2.2, Subhas et al., 2018). Foraminifera also demonstrate a far-from-equilibrium n~2. They appear to dissolve faster than coccoliths normalized by both mass and by surface area, suggesting that foraminifera require their own specific k values (Subhas et al., 2018, Subhas et al., 2019a, Gehlen et al., 2005). Aragonite dissolves more slowly than biogenic calcite, and also has the lowest n~1.8 (Dong et al., 2019). Compared to inorganic calcite, the lower sensitivity of biogenic calcite dissolution to saturation state, particularly farther from equilibrium, is potentially due to the presence of organic templates and matrices within the calcite structure (e.g. Subhas et al., 2018, Walker and Langer, 2021). Differences in specific k and n values aside, it appears that all calcium carbonates dissolve slowly near equilibrium, and only rapidly increase their dissolution rates once Ω drops below Ω_{crit}~0.8 for the colder temperatures of the modern water column.

Contrary to these experiments, most oceanographic observations of CaCO_3 dissolution argue for a large dissolution flux in the shallow ocean, where waters are typically supersaturated, followed by relatively little dissolution in the deep ocean, where waters are more deeply undersaturated. The mechanisms driving this large shallow dissolution flux are confusing, because they cannot be explained by rate relationships relating saturation state to dissolution rate. This conundrum was posed explicitly by Milliman et al. (1999), who postulated that balancing global CaCO_3 production and burial required a large shallow dissolution flux. This shallow dissolution flux was then matched to the appearance of excess alkalinity in the Pacific (Feely et al., 2002) and Atlantic basins (Chung et al., 2003). Later, some researchers argued that the appearance of excess alkalinity above the calcite saturation horizon is complicated by water mass transport and mixing processes (Friis et al., 2006, Battaglia et al., 2016, Carter et al., 2020). Recent modeling efforts have shown that a supersaturated alkalinity signal is due to a combination of circulation and dissolution, lending support to the presence of a shallow CaCO_3 cycle (Carter et al., 2020, Sulpis et al., 2021).

Numerous observations of particulate CaCO_3 loss in the upper water column serve as a complement to the appearance of dissolved alkalinity (Bishop et al., 1980, Bishop et al., 1986, Troy et al., 1997, Milliman et al., 1999, Wong et al., 1999, Bishop and Wood, 2008, Timothy et al., 2013, Barrett et al., 2014, Dong et al., 2019). Some authors have attempted to explain these observations through the production and dissolution of more soluble CaCO_3 polymorphs such as aragonite (Feely et al., 2002, Buitenhuis et al., 2019), and pelagic fish-produced Mg-calcite, and amorphous carbonates (Wilson et al., 2009, Woosley et al., 2012). The total production of these
“missing” highly soluble phases remains poorly constrained, and therefore their contribution to the shallow CaCO₃ cycle remains an open question.

An alternate hypothesis is that the aggregation of marine snow and the grazing activity of zooplankton create hotspots of calcium carbonate dissolution (Milliman et al., 1999, Bishop, 1980). The interiors of marine snow aggregates and zooplankton guts both exhibit lower pH, and therefore lower Ω, than ambient seawater, due to the production of respiratory CO₂ and digestive acids (Alldredge and Cohen, 1987, Pond et al., 1995). These grazing and aggregation processes are recognized as fundamental to total carbon export from the euphotic zone through the mesopelagic (Henson et al., 2019, Boyd et al., 2019, Grabowski et al., 2019), and they would allow more abundant phases like coccolith and foraminiferal calcite to play a role in shallow water column dissolution.

Here, we present new results and analyses from the CDisK-IV research expedition, occupying five stations in the North Pacific from Hawaii to Alaska in the summer of 2017. We present new in situ dissolution rate measurements of coccolith and foraminiferal calcite using a ¹³C-tracer approach (Subhas et al., 2015, Naviaux et al., 2019). The quantification of in situ dissolution rates across a wide range of saturation states allows us to estimate the magnitude of ambient Ω-driven water column CaCO₃ dissolution, with explicit contributions from the three main calcifier groups (coccoliths, foraminifera, and pteropods) to the total CaCO₃ dissolution flux. In order to assess the significance of dissolution above the saturation horizon, we present new analyses of dissolved water column carbonate chemistry and oxygen data that complement the canonical excess alkalinity approach. Finally, we attempt to reconcile these in situ dissolution rate measurements and our own analyses with historical observations of a large, shallow dissolution cycle in the North Pacific ocean.

Table 1: Station locations and flux data for the CDisK-IV cruise. Floating sediment trap PIC fluxes (F) are in units of mmol m⁻² d⁻¹, subscript is trap depth. PIC fluxes, and the fraction of total calcium carbonate as aragonite (f_arag), are from Dong et al. (2019). The fraction of calcite is calculated as 1-f_arag. The mixed layer calcite inventory is further split into coccolith and foraminiferal fractions, with f_cocco representing the coccolith calcite fraction (Ziveri et al., in revision). †Station 1 was located at Station ALOHA (22 45°N, 158° W). ‡Station 5 was located near Ocean Station Papa (OSP; 50 06°N, 144 54° W).

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date Occupied</th>
<th>F_{PIC,100m}</th>
<th>F_{PIC,200m}</th>
<th>f_arag</th>
<th>f_cocco</th>
</tr>
</thead>
<tbody>
<tr>
<td>1†</td>
<td>22 45'</td>
<td>157 59'</td>
<td>2-4 Aug, 2017</td>
<td>0.71</td>
<td>N.A.</td>
<td>0.44</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>27 45'</td>
<td>155 15'</td>
<td>6-10 Aug, 2017</td>
<td>0.50</td>
<td>0.32</td>
<td>0.75</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>35 16'</td>
<td>150 59'</td>
<td>12-15 Aug, 2017</td>
<td>0.13</td>
<td>N.A.</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>41 45'</td>
<td>148 16'</td>
<td>16-19 Aug, 2017</td>
<td>2.23</td>
<td>0.82</td>
<td>0.10</td>
<td>0.83</td>
</tr>
<tr>
<td>5‡</td>
<td>49 50'</td>
<td>149 39'</td>
<td>21-26 Aug, 2017</td>
<td>1.03</td>
<td>0.75</td>
<td>0.09</td>
<td>0.90</td>
</tr>
</tbody>
</table>

2 Materials and Methods

2.1 Study Area
The North Pacific is a key region for constraining CaCO$_3$ cycling, due to the large portion of the water column that is undersaturated for calcite and aragonite (Figure 2A), and the foundational studies on changes in saturation horizon and degree of carbonate dissolution performed there (Peterson, 1966, Feely et al., 2002, Fris et al., 2006, Sabine et al., 2004). We conducted the CDisK-IV cruise on the R/V Kilo Moana in the North Pacific Ocean during August 2017, on a transect from Honolulu, HI to Seward, AK. At five survey stations (Fig. 2 gray points, Table 1) we measured an extensive range in saturation states (Ω, defined as [Ca$^{2+}$][CO$_3^{2-}$]/K’$_{sp}$, where K’$_{sp}$ is the apparent solubility of the carbonate mineral; Fig. 2A), and established a spatial gradient in CaCO$_3$ production ecology. Quantitative CaCO$_3$ mineralogy, ecology, standing stock, production, and export flux measurements along this transect are presented elsewhere (Dong et al., 2019, Ziveri et al., in revision). We complemented these solid-phase measurements by sampling the full water column for its dissolved inorganic carbon (DIC), total alkalinity (Alk), pH, and δ13C of DIC; and deployed custom-built in situ incubators to measure biogenic calcite dissolution rates as a function of water column chemistry. The dissolution rates of aragonite and inorganic calcite are presented in detail elsewhere (Dong et al., 2019, Naviaux et al., 2019a).

2.1 Sediment Traps

Figure 2 Carbonate chemistry of the upper 1000m of the North Pacific Ocean. A) Depth-latitude zonal section of in situ Ω calculated using Alk and DIC data from the GLODAPv2.2019 database. Color bar indicates Ω$_{calcite}$. Red and black dashed lines denote the aragonite and calcite saturation horizons (defined as Ω=1), respectively. Gray points indicate sampling locations during our 2017 research expedition (Table 1). Yellow stars indicate the location of NPIW (main text for details). B) a calculation of Ω$_{met}$ for calcite along the section in A. The 0.75 calcite “isosat” is shown to demonstrate the potential for deep undersaturation within confined environments in the upper water column.

The North Pacific is a key region for constraining CaCO$_3$ cycling, due to the large portion of the water column that is undersaturated for calcite and aragonite (Figure 2A), and the foundational studies on changes in saturation horizon and degree of carbonate dissolution performed there (Peterson, 1966, Feely et al., 2002, Fris et al., 2006, Sabine et al., 2004). We conducted the CDisK-IV cruise on the R/V Kilo Moana in the North Pacific Ocean during August 2017, on a transect from Honolulu, HI to Seward, AK. At five survey stations (Fig. 2 gray points, Table 1) we measured an extensive range in saturation states (Ω, defined as [Ca$^{2+}$][CO$_3^{2-}$]/K’$_{sp}$, where K’$_{sp}$ is the apparent solubility of the carbonate mineral; Fig. 2A), and established a spatial gradient in CaCO$_3$ production ecology. Quantitative CaCO$_3$ mineralogy, ecology, standing stock, production, and export flux measurements along this transect are presented elsewhere (Dong et al., 2019, Ziveri et al., in revision). We complemented these solid-phase measurements by sampling the full water column for its dissolved inorganic carbon (DIC), total alkalinity (Alk), pH, and δ13C of DIC; and deployed custom-built in situ incubators to measure biogenic calcite dissolution rates as a function of water column chemistry. The dissolution rates of aragonite and inorganic calcite are presented in detail elsewhere (Dong et al., 2019, Naviaux et al., 2019a).

2.1 Sediment Traps
Sediment trap protocols can be found in companion papers by Subhas et al. (2019a) and Dong et al. (2019) and are outlined briefly here. Two sediment traps positioned at 100 and 200 meters on a single line were deployed at each station as a floating array. Each trap consisted of 12 polycarbonate particle interceptor tubes (70 cm long, 10 cm diameter) mounted on a circular frame, with a baffle grid to screen for macrofauna (Haskell et al., 2016, Fig S1 for picture). Sinking material was funneled into a 50 mL falcon tube at the base of each tube. Falcon tubes were filled with 30 mL of buffer solution, prepared following US JGOFS protocol. Six random tubes were combined, and “swimmers” (mostly large copepods, amphipods and larvae) were picked out. The samples were filtered onto a pre-weighed glass fiber filter (Whatman glass GF/F, 1825-047), which was then used to calculate mass flux and mineralogy via X-ray diffraction. Particulate inorganic carbon (PIC) and total carbon fluxes were calculated using established methods (Dong et al., 2019).

2.2 Dissolved Carbonate System and Nutrient Measurements
Methods for total alkalinity, pH, \(\delta^{13}C_{\text{DIC}} \), silica, and nutrient measurements are well established, and have been reported previously (Naviaux et al., 2019a, Dong et al., 2019). DIC and secondary measurements of \(\delta^{13}C \) were measured on Niskin rosette samples using a custom Picarro-based system developed at the University of South Florida (USF) and at University of Southern California (USC). Samples were collected in 300 ml biological oxygen demand (BOD) bottles in a manner similar to that used for alkalinity samples, with the exception that the bottle had a 5 ml headspace and was poisoned using a saturated HgCl\(_2\) solution. The DIC instrument was housed in a 15 gallon insulated cooler that was capable of accommodating 10 samples including a certified reference material (CRM). After a brief tubing rinse, the sample was pumped from the BOD bottle to a 20 ml glass bulb that was submerged in a thermostatted water bath. An acid pump injected 3 ml of 17% H\(_3\)PO\(_4\) into the top of the glass bulb. A three-way valve was then switched, allowing carrier gas to push the acidified sample into the purging tube, and the CO\(_2\) gas evolved was measured on a Picarro 2131-i instrument. The software first recorded a baseline reading while N\(_2\) was flowing in the system, and a threshold signal of 70 ppm triggered the peak detection. Once a signal was detected, the peak integration continued until the signal returned to the baseline. The DIC purging time was set to be longer than the required integration time to ensure all CO\(_2\) was detected. Total counts of both \(^{12}C\) and \(^{13}C\) were obtained. The \(^{13}C / ^{12}C \) ratio was calculated based on total peak integrations. Since ratios are based on total \(^{12}C\) and \(^{13}C\), potential fractionation of carbon during purging is avoided. Sample \(^{13}C / ^{12}C\) ratios and total DIC concentrations were linked to measured CRM solutions, and agree within error to Niskin \(\delta^{13}C \) values measured by the CalTech/USC group (Naviaux et al., 2019a). We use the Caltech/USC \(\delta^{13}C \) and USF DIC values here.

2.3 Biogenic CaCO\(_3\) dissolution experiments
Dissolution experiments were conducted \textit{in situ} using modified Niskin incubators, described in detail by Naviaux et al. (2019a) and Dong et al. (2019). In this study, we report dissolution rates of bleached, \(^{13}C\)-labeled \textit{E. huxleyi} liths. A total of 20 coccolith dissolution experiments were conducted at depths between 240-1000m at Stations 2-5 with temperatures ranging from 2.4-4.8 \(^\circ\)C and \(\Omega_{\text{calcite}} \) from 0.96 to 0.67. We conducted one experiment with a planktic foraminiferal assemblage, cultured and \(^{13}C\) -labeled as described in Subhas et al. (2018). Roughly 0.5-1.5 mg of labeled biogenic calcite was sealed in between 47mm diameter “Nuclepore” polycarbonate membrane filters (0.8 um pore size). This preparation has no effect
on net dissolution rates, as documented by Naviaux et al. (2019a). These packets were then mounted inside the Niskin incubators. The incubators were hung on a hydrowire, sent down to depth, and triggered closed. As a closed system, a pump continuously circulated water from the housing holding the packets into the Niskin. The Niskin reactors remained closed at depth for 24–58 h and were sampled for silica, soluble reactive phosphorus (SRP), nitrate, alkalinity, pH, and δ^{13}C-DIC upon recovery. Niskin data were quality checked by comparing SRP, silica, and nitrate to ambient water-column values obtained via CTD/rosette deployments on the same cruise. Saturation states in the Niskin reactors were determined from Alk- pH pairs, input into CO2SYS along with the temperature, salinity, depth, SRP, and silica concentrations at which the reactor was deployed. Dissolution rates were calculated by taking the difference between the final incubator and ambient water column ^{13}C/^{12}C ratios, multiplied by the [DIC] and the mass of seawater (1.126 kg) inside the incubators, and divided by the incubation time (Naviaux et al., 2019a). Biogenic materials were not 100% labeled and rates were scaled for the extent of isotope labeling following Subhas et al. (2018). Briefly, when the amount of ^{13}C in the dissolving material is greatly enriched above natural abundance (^{13}C/^{12}C~0.01), isotope ratio differences can be multiplied by a correction factor of (R_s+1)/R_s, where R_s is the ^{13}C/^{12}C ratio of the dissolving solid (i.e. a reduced form of Eq. 3 from Subhas et al., 2018). One batch of ^{13}C-labeled E. huxleyi was used for all dissolution rates shown here (R_s = 0.928), except for one experiment that used an older batch (R_s = 20, Subhas et al. 2018). The planktic foraminifera assemblage from Subhas et al. (2018) was used (R_s = 1.6). Adjusting the rates using these R_s values gives mass-normalized rates in units of g CaCO_3 g^{-1} d^{-1}. Mass-normalized dissolution rates were further divided by the specific surface areas of E. huxleyi liths (105,000 cm^2 g^{-1}) and planktic foraminifera (43,000 cm^2 g^{-1}, Subhas et al., 2018) and the molar mass of calcium carbonate (100 g mol^{-1}) to generate specific dissolution rates for each calcite type in units of mol CaCO_3 cm^{-2} d^{-1}.

2.4 1-D CaCO_3 flux and dissolution calculations
We constructed a one-dimensional model of particulate CaCO_3 sinking and dissolution, combining our measurements of CaCO_3 export fluxes and export mineralogy (Table 1); ambient seawater Ω; and aragonite, foraminiferal, and coccolith dissolution kinetics (Table 2). This model extends the analysis of Dong et al. (2019) to coccolith, foraminifera, and aragonite dissolution at all five survey stations. The model was initiated with our measured 100m sinking PIC fluxes, partitioned into aragonite and calcite:

\[F_{arag} = F_{tot} f_{arag}; \]
\[F_{calc} = F_{tot} (1 - f_{arag}), \]

where F_{tot} is the total PIC export flux at 100 meters, and f_{arag} is the fraction of total CaCO_3 as aragonite measured in the sinking flux (Table 1, Dong et al., 2019). The dissolution flux for each phase was then calculated at all depths for which we acquired water column dissolution data (at least 24 vertical points, usually more) in a similar way to Dong et al. (2019):

\[F_{z_i} = F_{z_{i-1}} \left(1 - R_{diss} f(\Omega_{z_{i-1}}) \frac{z_i - z_{i-1}}{w} \right), \]

where F_{z_i} is the mineral flux at depth z_i, R_{diss} is the dissolution rate of the mineral and is a function of the measured mineral saturation state at depth z_{i-1}, and w is the particle sinking rate.

This article is protected by copyright. All rights reserved.
For aragonite fluxes \((F_{\text{arag}})\) and dissolution \((R_{\text{arag}})\), we use the aragonite dissolution kinetic rate law generated from in situ data on the same cruise (Dong et al., 2019, Table 2). For calcite fluxes \((F_{\text{calc}})\), we assume that the calcite rain is exclusively foraminifera and coccoliths \((f_{\text{cocco}} + f_{\text{foram}} = 1, \text{Table 1})\). The dissolution rate of coccoliths, \(R_{\text{cocco}}\), uses the parameters derived from the data in Figure 3, described in Table 2. The dissolution rate of foraminifera, \(R_{\text{foram}}\), is assumed to follow the same functional form as the dissolution rate of coccoliths, \(R_{\text{cocco}}\), but dissolves a factor of 1.6 faster, when normalized by mass \((R_{\text{foram}} = 1.6R_{\text{cocco}}; \text{Figure 3, Table 2, Section 3.2})\). This assumption yields a calcite dissolution rate of:

\[
R_{\text{calc}} = f_{\text{foram}}R_{\text{foram}} + f_{\text{cocco}}R_{\text{cocco}}; \\
= (1 - f_{\text{cocco}})1.6R_{\text{cocco}} + f_{\text{cocco}} R_{\text{cocco}}; \\
= (1.6 - 0.6f_{\text{cocco}})R_{\text{cocco}}.
\]

Errors in regression parameters were propagated through the dissolution model (shaded envelopes in Figure 3A) by using the linearized log-log fits as “linear model” variables in MATLAB and the “predict” function. Aragonite and calcite fluxes were then summed together to calculate the total PIC flux at each depth.

The appearance of regenerated alkalinity, normalized to the mass of seawater (e.g. Feely et al., 2002, Battaglìa et al., 2016, Carter et al., 2014, Carter et al., 2020) is linked to the dissolution of particulate \(\text{CaCO}_3\). Although Feely et al. (2002) divided their TA* tracer by 2 to convert into moles of \(\text{CaCO}_3\) dissolved, we leave all tracer results in units of alkalinity equivalents per kg of seawater to distinguish between the solid and dissolved sides of the process. It follows that the alkalinity regeneration rate at each depth \(z\), \(R_{\text{Alk},z}\), in units of \(\mu\text{mol kg}^{-1}\text{yr}^{-1}\), is calculated as:

\[
R_{\text{Alk},z} = \frac{2FzR_{\text{diss}}(f(\Omega z))}{\rho w},
\]

Where \(\rho\) is the density of seawater. To account for along-isopycnal mixing, we averaged the \(R_{\text{Alk}}\) profiles from each of the five stations, binned by potential density \((\sigma_\theta)\) in 0.1 kg m\(^{-3}\) bins. This construction yields an approximation of the basin-wide alkalinity regeneration rate profile.

We compared our alkalinity regeneration model to the water column tracer Alk* - derived rates (e.g. Feely et al., 2002). We used GLODAP v2.2019 water chemistry data to calculate both TA* (Feely et al., 2002) and Alk* (Carter et al., 2014), and regressed these quantities against Time Transit Distribution ages (Jeansson et al., 2021, Supplemental Information for calculation details). These TTD ages are thought to provide more accurate water mass age estimates than apparent CFC ages, because they take into account a distribution of mixing and other transport processes that can lead to artificially young apparent ages (Waugh et al., 2006, Olsen et al., 2021, Sulpis et al., 2021).

2.5 Calculation of a respiratory effect on \(\Omega\)

To illustrate the potential effect of locally confined metabolic acidification on saturation state, we assume that organic carbon and \(\text{CaCO}_3\) are closely associated and packaged together in marine particulate material. It follows that the consumption and degradation of this \(\text{CaCO}_3\)-associated organic matter will drive a localized decrease in saturation state, providing an increased driving force for dissolution. We further assume that this metabolic activity is aerobic, and therefore limited by ambient oxygen concentrations. We make a first attempt at constraining the potential for aerobic metabolism to drive undersaturation and dissolution by “metabolizing”...
all ambient oxygen and proportionally modifying ambient DIC and alkalinity values in close proximity to particulate CaCO₃:

\[
\begin{align*}
\text{DIC}_{\text{met}} &= \text{DIC}_{\text{meas}} + [O_2]_{\text{meas}} \times R_{\text{CO}}; \\
\text{Alk}_{\text{met}} &= \text{Alk}_{\text{meas}} - [O_2]_{\text{meas}} \times R_{\text{NO}}; \\
\text{PO}_{4}\text{met} &= \text{PO}_{4\text{meas}} + [O_2]_{\text{meas}} \times R_{\text{PO}};
\end{align*}
\]

where the subscripted “meas” quantities are the reported measurements in the GLODAP v2.2019 database for the North Pacific basin (Olsen et al., 2019). R_{CO}, R_{NO}, and R_{PO} are the Redfield ratios of carbon to oxygen (0.688), nitrate to oxygen (0.0941), and phosphate to oxygen (0.0059), respectively (Anderson and Sarmiento, 1994). We then use DIC_{met}, Alk_{met}, and PO_{4met} to recalculate the Ω influenced by in situ metabolism, Ω_{met} (Fig 2B).

3 Results and Discussion

3.1 Water Column Setting

All water column, sediment trap, and dissolution rate data can be found in the BCO-DMO Data Repository for the CDisK-IV cruise (https://www.bco-dmo.org/project/824992). Figure 2A shows the zonally averaged Pacific water column saturation state, calculated using GLODAP v2.2019 DIC and total alkalinity data. For our CDisK-IV data, we use alkalinity and pH pairs to calculate saturation states that result in systematically lower Ω values throughout the water column (see Naviaux et al., 2019a for a thorough discussion of this topic). Nevertheless, the trends that we observe are consistent with this zonal mean: a shoaling saturation horizon moving northward, along with a collapsing of the distance between the aragonite and calcite saturation horizons. Figure 2B shows the potential metabolic effect on Ω, demonstrating that Ω_{met} is always lower than ambient Ω (Fig. 2A) due to the confined consumption of oxygen and associated production of respiratory CO₂ and/or digestive acids. In general, Ω_{met} is about the same or slightly lower than the ambient aragonite saturation state, i.e. the black line in Fig 2B sits at or above the red line in Fig. 2A. This calculation is independent of particle size or sinking speed, and metabolism will influence the local saturation state long as metabolic products (e.g. respired CO₂ or digestive acids) are confined in close proximity to particulate CaCO₃. We further investigate the relevance of Ω_{met} in section 3.5.

3.2 Dissolution rates

The *E. huxleyi* lith data (purple circle) and foraminiferal calcite data (yellow symbols) are presented in Figure 3, and we interpret these data using the framework presented in Figure 1. Panels A and B show the same underlying rate data with different normalizations. The surface area-normalized rates are included for those readers most interested in the mechanistic aspects of calcite dissolution (Fig. 3A). Chemical oceanographers may find the mass-normalized rates most useful (Fig. 3B). The coccolith and foraminifera data are modeled independently, as they are distinct forms of biogenic calcite with well-documented differences in their mineralogy, surface area, and dissolution rate (Honjo and Erez, 1978, Keir, 1980, Subhas et al., 2018). We observe a
break in slope in the coccolith data at $\Omega_{\text{crit}}=0.78$ consistent with previous mechanistic determinations and interpretations of Ω_{crit} (Naviaux et al., 2019a,b, Dong et al. 2019, Subhas et al., 2018). We fit $E.\text{huxleyi}$ dissolution rates in each regime ($1>\Omega>0.78$ and $0.78>\Omega>0$) to a rate law of the form: $R = k(1-\Omega)^n$. These fits result in a unique set of k and n values for each regime. Regression parameters for $E.\text{huxleyi}$ are shown in Table 2, with k values normalized by both mass (k_{mass}) and surface area (k_{sa}).

The calculated $E.\text{huxleyi}$ n values for both near- and far-from-equilibrium regimes are within error of laboratory values (Table 2). The agreement between laboratory and $in\text{ situ}$ n values is consistent with previous comparisons between lab and $in\text{ situ}$ dissolution rates for inorganic calcite and aragonite (Naviaux et al., 2019a, Dong et al., 2019). Although the $E.\text{huxleyi}$ n values are consistent between laboratory and $in\text{ situ}$ experiments, the absolute $E.\text{huxleyi}$ $in\text{ situ}$ dissolution rates are ~10x slower than those measured in the laboratory, leading to k values that are about an order of magnitude lower than lab-determined k values (Table 2).

There are two potential drivers of slow $in\text{ situ}$ rates. First, low $in\text{ situ}$ temperature leads to slower dissolution kinetics (Naviaux et al., 2019b), so we should expect our $in\text{ situ}$ rates (determined at 2.4-4.8°C) to be slower than laboratory rates (determined at 21°C). Second, adsorption of naturally occurring dissolved organic carbon (DOC) onto the calcite surface was shown to inhibit calcite dissolution in the ocean by a factor of ~4 (Naviaux et al., 2019a). Combined, the temperature and DOC effects explain the factor of 10 decreased dissolution rate across the entire saturation range measured here (Fig. 3, Table 2). The single previous $E.\text{huxleyi}$ dissolution rate measurement from the Atlantic basin fits well within our more complete dataset, suggesting that these rate parameters are broadly applicable to $E.\text{huxleyi}$ dissolution rates in the ocean (Figure 3 light green circle, Honjo and Erez, 1978).

Our single planktic foraminiferal assemblage dissolution rate is broadly consistent with the sparse and foraminiferal data from the North Atlantic and the Pacific (Honjo and Erez, 1978,
Table 2: Regression parameters for the rate equation Rate = k(1-Ω)^n for the dissolution rate data shown in Figure 3, and used in the dissolution rate model (Section 2.4). We report k_mass (dissolution rate constant normalized to mass), k_sa (k_mass further normalized to specific surface area) and n (reaction exponent) for the regions near equilibrium above Ω_crit (= 0.78), and far from equilibrium below Ω_crit. Laboratory data¹ are from Subhas et al., 2018. Aragonite field data² are from Dong et al., 2019. To estimate foraminiferal dissolution rates, the in situ mass-normalized E. huxleyi mass was multiplied by a factor of 1.6 (see text for details).

<table>
<thead>
<tr>
<th></th>
<th>1 > Ω > 0.78</th>
<th>0.78 > Ω > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log_10 k_mass</td>
<td>log_10 k_sa</td>
</tr>
<tr>
<td></td>
<td>g g⁻¹ d⁻¹</td>
<td>mol cm⁻² s⁻¹</td>
</tr>
<tr>
<td>E. hux lab 21°C</td>
<td>-1.8±0.1</td>
<td>-13.7±0.1</td>
</tr>
<tr>
<td>E. hux in-situ</td>
<td>-2.5±0.1</td>
<td>-14.5±0.1</td>
</tr>
<tr>
<td>Foramin assemblage lab 21°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. hux in-situ x 1.6</td>
<td>-2.3±0.1</td>
<td>-14.3±0.1</td>
</tr>
<tr>
<td>Aragonite in-situ</td>
<td>-2.7±0.2</td>
<td>-14.0±0.2</td>
</tr>
</tbody>
</table>

Fukuhara et al., 2008, Figure 3). The larger spread in foraminiferal dissolution rates at a given 1-Ω makes it difficult to fit a curve to these data, and this range in reactivity may be related to foraminiferal calcite Mg content (Subhas et al., 2019b). In the absence of more foraminiferal data, we rely on the observation that foraminifera appear to dissolve ~60% (1.6x) faster than coccoliths per unit mass (Chiu and Broecker, 2008, Subhas et al., 2018, Subhas et al., 2019b). Multiplying the near- and far-from-equilibrium E. huxleyi k_mass values by 1.6 does a reasonable job of approximating the sparse foraminiferal data (Figure 3, yellow line, Table 2). We use this factor of 1.6 in the sinking-dissolution model formulation (Section 2.4). The resulting far-from-equilibrium log k_sa (-12.8±0.3 mol cm⁻² s⁻¹) is encouragingly consistent with previous determinations of foraminiferal calcite dissolution (-12.5 < log k_sa < -13.2 mol cm⁻² s⁻¹, Gehlen et al., 2005). Despite the large range in foraminiferal dissolution rates, our use of the approximated foraminiferal dissolution rate curve likely does not contribute to a large uncertainty in water column calcite dissolution rates, because foraminifera only comprise 1-10% of the calcite production (and thus water column calcite dissolution) across the entire transect (Table 1, Ziveri et al., in revision).

These new in situ data suggest slow mass-normalized dissolution rates (<1% per day, Figure 3B) across the entire range of saturation states, slower than some previous parameterizations of dissolution rate (Friis et al., 2006, Battaglia et al., 2016). Given the agreement between these new results and previous biogenic data, and the further agreement between studies of in situ and laboratory inorganic calcite dissolution (Naviaux et al., 2019a), we suggest our rate law parameters (Table 2) can be used to model the dissolution behavior of these select biogenic phases in the ocean. Furthermore, they bear out the decades-old observation that calcite dissolution is slow, and relatively invariant, until Ω drops below Ω_crit (Peterson, 1966, Honjo and Erez, 1978).

3.3 A 1D model of CaCO₃ export and dissolution

Although previous studies did not assign significance to the functional form and magnitude of dissolution rate constants (e.g. Greenwood, 2009; Battaglia et al., 2016), the direct quantification of in situ CaCO₃ dissolution rates presented here and elsewhere (Dong et al., 2019, Naviaux et al., 2019a, Adkins et al., 2021) remove one source of uncertainty in the modeling of
carbonate mineral dissolution in the ocean. Combined with calcifier ecology and export, we are now equipped to ask whether these dissolution rates can explain tracer-based and solid-phase dissolution signals in the North Pacific water column.

To understand the magnitude of dissolution, we first ask how much, and what type, of CaCO$_3$ is being produced and exported. A documented northward increase of CaCO$_3$ production and export across the North Pacific reflects the ecological shift between limited (low-CaCO$_3$) picophytoplankton production in the oligotrophic subtropics, and high, coccolithophore- and diatom-dominated, high-CaCO$_3$ production in the subpolar region (Table 1, Dong et al., 2019, Juranek et al., 2012, Hou et al., 2019, Endo et al., 2018). We found that calcite production is overwhelmingly dominated by coccolithophores across the entire transect (Table 1, Ziveri et al., in revision). Although the subtropical CaCO$_3$ export flux contains a large fraction of aragonite (Dong et al., 2019), CaCO$_3$ export is highest in the subpolar gyre and is >90% calcite (Dong et al., 2019). Our Station 1 and Station 5 floating trap fluxes fall within the range of fluxes - and

![Figure 4](image)

Figure 4: Particulate inorganic carbon (PIC) flux generated by the particle sinking model run at Station 5, close to Ocean Station Papa (OSP). The aragonite and calcite saturation horizons are located at 102m (red dotted line) and 128m (blue dotted line), respectively. A Model results are shown for a sinking rate of 100 m d$^{-1}$ (purple dashed line) and 10 m d$^{-1}$ (orange line). Model results are compared to our 100m and 200m PIC fluxes (green points); Summer-Fall OSP fluxes, (dark blue points, Timothy et al., 2013), and Annual OSP fluxes (light blue points, Wong et al., 1999). B Model results driven by Ω_{met} (solid black line) are compared to the same sediment trap data shown in panel A.

close to the mean values - measured at the Hawaii Ocean Timeseries (HOT) and Ocean Station Papa (OSP) long-term monitoring stations, respectively (Fig. S2). We acknowledge that our sediment trap fluxes are a single point in time; future work could focus on increasing the number of shallow PIC flux observations, and the construction of a seasonally resolved particulate export model.

We compare our sinking-dissolution model results from Station 5 to historical data from Ocean Station Papa (Figures 4 and S3, S4). The aragonite and calcite saturation horizons (red
and blue horizontal lines, respectively) are very shallow at Station 5 such that CaCO$_3$ will start dissolving soon after organisms die and begin to sink through the water column. As do historical OSP fluxes, our sediment trap PIC data demonstrate a strong attenuation in the upper 200m (Figure 4, Dong et al., 2019, Timothy et al., 2013, Wong et al., 1999). In contrast, running the model with a canonical sinking rate of 100 m d$^{-1}$ dissolves so little CaCO$_3$ that the sinking flux is essentially constant in the upper 1000 m (dashed purple line, Fig 4A). The flux at 4000m is almost identical to the surface flux (Fig S4A), indicating that our dissolution rates, combined with a sinking rate of 100 m d$^{-1}$, generates minimal dissolution over the entire water column. As an end-member case, reducing the sinking rate to 10 m d$^{-1}$ dissolves ~0.2 mmol CaCO$_3$ m$^{-2}$ d$^{-1}$ in the upper 1000m (solid orange line, Fig 4A). The resulting modeled PIC export is still higher at all depths than seasonal and annual sediment trap fluxes. The model also cannot reproduce PIC fluxes from a high-resolution shallow sediment trap array deployment at OSP (Wong et al., 1999, Fig. S4B). Regardless of sinking rate, CaCO$_3$ dissolution driven by ambient water-column Ω is simply not fast enough to explain solid-phase PIC loss (Greenwood, 2009, Jensen et al., 2002).

Complementing the solid-phase results, Figure 5 shows basin-wide calcite (blue), aragonite (red), and total (black) alkalinity regeneration rate profiles for a sinking rate of 100 m d$^{-1}$ (Fig 5A) and 10 m d$^{-1}$ (Fig 5B). Model estimates are compared to the TA*-CFC derived rates of Feely et al. (2002) and to the TA*-Alk*-TTD derived rates (blue points and orange shaded regions, respectively, Fig 5B). A model sinking rate of 100 m d$^{-1}$ produces a steadily increasing alkalinity regeneration rate as a function of potential density (Fig. 5A). The resulting deep-ocean regeneration rates are very slow, and while they are similar in magnitude to previous estimates of deep-water dissolution rates (0.006-0.05 μmol CaCO$_3$ kg$^{-1}$ yr$^{-1}$, or 0.012 – 0.1 μeq TA* kg$^{-1}$ yr$^{-1}$, Feely et al., 2002), they are about an order of magnitude slower than TA*-based rate estimates at $\sigma_0 < 27.5$. The dissolution profile modeled with a reduced sinking rate of 10 m d$^{-1}$ (Fig. 5B) is about 5x slower than the TA*-CFC rates, but is similar in magnitude to the TTD-based rates. As with the solid-phase comparison, driving the model with ambient Ω cannot produce enough alkalinity to match observations, nor can it produce alkalinity above the saturation horizon.
Aragonite is often suggested as a potential driver of shallow dissolution due to its greater solubility (Feely et al., 2002). Here we explicitly include aragonite export and dissolution in our model, and yet calcite dissolution regenerates most of the alkalinity at all density classes except for the shallowest isopycnals where only aragonite is undersaturated (Fig. 5). Aragonite represents a small fraction of the total modeled dissolution flux and alkalinity regeneration rate, for the following reasons: 1) Calcite dominates the CaCO₃ export flux in the subpolar gyre (Dong et al., 2019); 2) The aragonite saturation horizon is only ~50-200 m shallower than the calcite saturation horizon (Fig S5), meaning that calcite and aragonite begin to dissolve at close to the same depth and thus at the same time; 3) At the same degree of undersaturation, aragonite dissolves more slowly than calcite because of its low reaction order and rate constant (Table 2, Dong et al., 2019). As evidence for their slow dissolution kinetics (and/or fast sinking rate), aragonite particles are found at depths of 4,000m in highly undersaturated Subtropical waters (Dong et al., 2019, Boeuf et al., 2019).

Our model results demonstrate that CaCO₃ dissolution rates driven by ambient Ω, combined with best estimates of calcifier ecology, production, and export, cannot generate the location or magnitude of dissolution signals observed in the shallow ocean, either in the dissolved or particulate phase (Figs. 4,5). One reason for the data-model mismatch may be our simple treatment of particle dynamics. Large particles make up a majority of export and sink quickly, but smaller sized, slow-sinking particles constitute a majority of particle number and mass (Guidi et al, 2008). Our use of a very slow average sinking rate (10 m d⁻¹) is an end-member attempt at capturing the dissolution rate of both the sinking and suspended pools.

Figure 5: Basin-wide alkalinity regeneration rates estimated by the sinking-dissolution model, binned and averaged over all 5 stations at 0.05 kg m⁻³ potential density intervals. A shows our model run at a sinking rate of 100 m d⁻¹ (lines) for calcite (blue) aragonite (red) and total CaCO₃ (black). Horizontal dashed red and blue lines indicate the shallowest depth at which aragonite and calcite become undersaturated in the section, respectively, denoting the depth at which thermodynamically-controlled dissolution begins. B shows our model run for a sinking rate of 10 m d⁻¹. Note the change in x-axis scale. North Pacific excess alkalinity-based rates from Feely et al. (2002) (blue points), and new calculated rates using TTD ages (Jeansson et al., 2021) combined with TA* (Feely et al., 2002) and Alk* (Carter et al., 2014), are plotted for comparison, multiplied by two to convert back to alkalinity regeneration rates. The orange envelope shows the range in these TTD-based estimates. C Results from the PIC sinking-dissolution model run at a sinking rate of 10 m d⁻¹ and driven by Ω_met rather than Ω_ambient.
However, even slowing sinking rates down to 10 m d\(^{-1}\) does not bring our model into agreement with sediment trap fluxes or alkalinity regeneration rates. Particle formation and destruction processes are likely important for PIC dynamics and export. For instance, Lam et al. (2018) documented a consistent decrease in small size fraction [PIC] directly below the euphotic zone indicating aggregation of smaller material into larger particles, followed by an increase in [PIC] below this depth around 500m, indicative of disaggregation. Similarly, Dong et al. (2019) showed a “bullseye” pattern of small size fraction [PIC] between ~200-800m in the N. Pacific. These patterns suggest a net transfer of PIC from larger (sinking) particle sizes to smaller (suspended) ones due to disaggregation in the mesopelagic, and that a nontrivial amount of PIC is either slowly sinking or effectively non-sinking. Indeed, individual coccoliths and spheres sink very slowly, sometimes <1 m d\(^{-1}\) (Honjo, 1976, Zhang et al., 2018, Rosas-Navarro et al., 2018). Most importantly, disaggregation in the mesopelagic is thought to be driven by biological processes such as zooplankton grazing and microbial respiration (Burd and Jackson, 2009, Stemmann et al., 2004). For example, particulate barium demonstrates a similar subsurface maximum to PIC that is interpreted as the disaggregation of particles due to biological processing of sinking and suspended material (Bishop et al., 1988, Bishop and Wood, 2008). In addition to transferring material between the sinking and suspended pools, these biological processes may lead to locally decreased saturation states with respect to ambient seawater via metabolic activity (e.g. Fig. 2B), and thus can provide a mechanism to couple the dissolution of CaCO\(_3\) to the packaging and cycling of organic carbon.

3.4 Water column chemistry analysis:
Our water column data set allows us to investigate the coupling of shallow CaCO\(_3\) dissolution to organic carbon remineralization across the North Pacific basin. Previous basin-wide estimates of dissolution rates were estimated using alkalinity-based tracers that are sensitive to CaCO\(_3\) production and dissolution (TA*, Feely et al, 2002; Alk*, Carter et al., 2014). We complement this approach by using DIC, δ\(^{13}\)C, Apparent Oxygen Utilization (AOU), and pH relationships to identify the balance of organic matter respiration and CaCO\(_3\) dissolution in the shallow North Pacific (Figure 6). We focused our examination on a single water mass, North Pacific Intermediate Water (NPIW, Fig. S6, Talley, 1993) to minimize the impact of water mass mixing on seawater properties. Subsetting the data in this way eliminated all data points from Station 5 and left only two data points from below the calcite saturation horizon, but all points fall within the zone of potential metabolic undersaturation (yellow stars, Fig 1).

The regression of 1/DIC versus its δ\(^{13}\)C defines a “Keeling Plot” (Pataki et al., 2003) where the intercept represents the isotopic composition of DIC being added to that water mass (δ\(^{13}\)C\(_{add}\)), from a combination of oxic respiration and carbonate dissolution. In this simple treatment, we assume end member δ\(^{13}\)C values for organic carbon and calcium carbonate of -23.1‰ and +1‰ respectively, constrained by the composition of our sediment trap material. Assuming two end-member mixing (\(f_{oilg}+f_{carrb} = 1\)) and rearranging for \(f_{oilg}\), we recover the equation:

\[
f_{oilg,13C} = \frac{\delta^{13}C_{add}-\delta^{13}C_{carrb}}{\delta^{13}C_{oilg}-\delta^{13}C_{carrb}} = \frac{\delta^{13}C_{add}-1}{-24.1}.
\]

(2)

The intercept shown in Figure 6A of -6.7‰ translates to an \(f_{oilg,13C}\) of 0.35 for DIC added to NPIW. Performing the same calculation with salinity-normalized DIC gives an intercept of -
6.9‰. In other words, this calculation suggests that only 35% of regenerated DIC is sourced from respiratory CO$_2$ in NPIW, implying that the other 65% comes from CaCO$_3$ dissolution.

As an independent test, the slopes of AOU vs. DIC in this water mass should also trace the fraction of carbon added to the system from oxic respiration (Figure 6B). Recent analyses suggest that AOU is erroneously high in this region (Carter et al., 2021). We circumvent this issue by analyzing the change in AOU rather than its absolute value, and compare it to the change in DIC. Slopes of AOU vs. DIC (S_{oc}), i.e. the change in AOU per unit change in DIC, were calculated to assess the fraction of organic carbon:

$$f_{org,AOU} = \frac{\Delta AOU}{\Delta DIC_{tot}} \cdot \frac{C_{org}}{O_2}_{Redfield} = S_{oc} \cdot \frac{117}{170},$$

(3)

where $-O_2/C_{org} = 170/117 = 1.47\pm0.19$ based on the global variation in this ratio suggested by Anderson and Sarmiento (1994). The large error envelope used encompasses the historical “Redfield” ratio of 138/106 = 1.30. This regression gives an S_{oc} of 0.94, well below any $-O_2/C_{org}$ remineralization ratio estimate. Substituting this value into Eq. (3) yields an $f_{org,AOU}$ of 0.65±0.08, significantly higher than the f_{org} recovered from isotope balance (0.35), but still much lower than 100%. As a third independent measure, our measured NPIW pH decreases from 7.58 to 7.32 over the range of DIC addition. DIC generated solely from oxic respiration would drive pH much lower, to 7.21 (Fig 6C, Fig 2, SI methods), demonstrating that pH buffering of respiratory CO$_2$ is occurring in NPIW.

Figure 6: Water mass analysis of the shallow N. Pacific, restricted to North Pacific Intermediate Water identified between Stations 1-4 (26.4<σ$_\theta$<26.8 and 33.9<S<34.1). The sigma-theta color scale on the right is for all plots. **A:** Keeling-style plot of inverse DIC versus δ13C, where the intercept describes the isotopic composition of DIC added to the water mass. The linear regression, uncertainty envelope, and its intercept are shown in red. **B:** AOU versus DIC for the same water mass. The linear regression is shown in red along with its uncertainty envelope and the calculated slope. The black line illustrates the slope of a respiration-only process with a Redfield C:O of 170:116 (Anderson and Sarmiento, 1994). **C:** pH (total scale, referenced to 25°C and atmospheric pressure) versus DIC. The black line illustrates the slope of a respiration-only process. The offset between this line and the data suggest buffering.
Complicating these interpretations is the invasion of anthropogenic CO$_2$, which increases the amount of DIC and decreases its isotopic composition (i.e. the Suess Effect). We did not measure transient tracer concentrations (e.g. CFC-12 and SF$_6$) on our CDisK-IV cruise but we used recent GOSHIP North Pacific data to estimate the invasion of Anthropogenic CO$_2$ along the P16 transect and its influence on the δ^{13}C, DIC, and AOU relationships presented here. Cruise information and calculations are shown in the Supplemental Information (Table S1, Figure S7), and follow established protocols (Eide et al., 2017a,b).

Keeling plots and AOU:DIC analysis for these recalculation are compared to our CDisK-IV cruise data in Figure 7. After correction for anthropogenic CO$_2$, a regression-based δ^{13}C$_\text{add}$ value of $-12.8\pm0.5‰$ for the three GOSHIP cruises corresponds to an f_{org} of $56\pm5\%$ for the DIC budget of NPIW (Fig. 7A). The AOU:DIC slope in our data is similarly adjusted (Fig 7B), giving an f_{org} of $59\pm8\%$ for NPIW DIC. We note that the Suess effect and AOU:DIC corrections go in opposite directions (flipped right-hand axes in Fig. 7A,B). This is because the Suess Effect outweighs the accumulation of anthropogenic DIC, whereas for AOU:DIC, the AOU is unaffected and the DIC gradient shrinks. Therefore, anthropogenic CO$_2$ correction adjusts these independent estimates in opposite directions, bringing them into excellent agreement with a consistent, average f_{org} of $57\pm8\%$. In terms of the contribution of CaCO$_3$ ($1-f_{\text{org}}$), we find $43\pm8\%$ of regenerated DIC is sourced from CaCO$_3$ dissolution in a water mass that exists almost exclusively above the calcite saturation horizon. The consistency of this signal over time in all of the P16 data from the last 30 years implies that dissolution in waters that are clearly

Figure 7: Keeling intercepts and AOU:DIC slopes for the P16 cruises and the 2017 CDisK-IV cruise. Preindustrial calculations were made as described in the SI text. The Keeling intercepts do not change significantly between each cruise, and our 2017 intercept is identical to the intercept measured on raw 2015 P16 data. The AOU:DIC relationships show a broadly similar pattern, although AOU:DIC may be shifting towards lower values through time. We do not interpret this change here, as we cannot unequivocally diagnose the same change in the 13C balance.

supersaturated with respect to calcite is a fundamental component of the shallow carbon cycle in the North Pacific.
3.5 Modeling metabolically driven CaCO$_3$ dissolution:

These analyses bring into question the utility of relating CaCO$_3$ dissolution to ambient water column saturation state. We tested the effect of metabolic activity on shallow CaCO$_3$ dissolution by running our sinking-dissolution model with Ω_{met} instead of ambient Ω (i.e. using Fig 2B, rather than Fig. 2A, as the driving force for dissolution). While we do not suggest that oxygen is fully consumed within confined environments such as particle aggregates or zooplankton guts, this calculation illustrates the possibility of metabolic dissolution in the mesopelagic North Pacific and gives a maximum rate by assuming all O$_2$ is consumed. We again use the 10 m d$^{-1}$ sinking rate as an end-member attempt to capture the dynamics of the entire PIC pool, with the assumption being that metabolic activity can influence all particle sizes regardless of sinking speed. Running the model in this configuration generates enough dissolution to match the 1000m sinking flux, although it still overpredicts the 200m flux (Fig. 4B). The complement to this calculation is a comparison of our model to observations of alkalinity regeneration in the North Pacific. Driving the model with Ω_{net} generates basin-wide alkalinity at the same density classes that demonstrate excess alkalinity above the saturation horizon, and even shows the two peaks in alkalinity regeneration at $\sigma_0 \approx 26$ and 26.54 (Fig. 5C). These model results are in quantitative agreement with Alk*-TTD regeneration rate estimates, with alkalinity regeneration initiating at $\sigma_0 \approx 25.8$ and reaching a maximum rate of ≈ 0.6 ueq kg$^{-1}$ yr$^{-1}$.

Our water column data allow us to interrogate the mechanisms behind the shape and magnitude of alkalinity regeneration rates. The overall magnitude of the signal is driven by high transition zone and Subpolar CaCO$_3$ export at Stations 4 and 5 (Fig. 4B, S8B). The shallowest alkalinity regeneration peak is driven not from particularly low ambient saturation state, but from recently ventilated, high oxygen subpolar gyre waters (Figs. 8A, S8) across this range of density classes above the ambient saturation horizon. Shallow North Pacific waters become denser at higher latitudes, and the $\sigma_0 \approx 26$ and 26.54 density demonstrate a strong influence of O$_2$-rich Subpolar waters (Fig. 8A). At $\sigma_0 = 26$ this high O$_2$ is able to drive Ω_{met} below Ω_{crit} (0.78, Table 2, Fig 8B, Fig 3), generating a rapid increase in dissolution rate because of the mechanistic rate transition from step-edge to homogenous 2D dissolution (Adkins et al., 2021, Figure 8C, 3A). The second peak at $\sigma_0 = 26.54$ is generated by a local minimum in Ω_{met} through a combination of low ambient Ω and relatively high O$_2$. Below this peak, modeled alkalinity generation decreases because even though dissolution rates are fast (Fig 8C), the PIC flux is strongly attenuated by this point.

The envelope of our modeled dissolution rates appears to overpredict dissolution in the deeper ocean below $\sigma_0 = 26.75$, likely because the model maintains a constant, slow sinking rate throughout the water column. This is unrealistic and contrary to sediment trap sinking rate observations that generally record an increase in sinking rate with depth (Berelson et al., 2001). Instead, after passage through the upper water column and the Twilight Zone, PIC is likely delivered rapidly to the sediment-water interface where, in the case of the North Pacific, it dissolves before it is buried (Feely et al., 2002, Berelson et al., 2007, Timothy et al., 2013).

3.6 Dissolved and solid-phase evidence for shallow CaCO$_3$ cycling

The appearance of alkalinity above the saturation horizon is undisputed (Feely et al. 2002, Battaglia et al., 2016, Carter et al., 2021, Sulpis et al., 2021), but attempts to transform these tracer observations into models of the calcium carbonate cycle have proven difficult. Models of the CaCO$_3$ cycle, while broadly similar to observations, cannot match TA*, and TA*-CFC observations in detail due to uncertainties in the modeled distribution of saturation state,
water circulation, CaCO₃ production, and until now, CaCO₃ dissolution rate (Friis et al., 2006, Dunne et al., 2012, Battaglia et al., 2016). These uncertainties have left models with no mechanistic explanation for the apparent decoupling of dissolution rate and ambient saturation state (e.g. Battaglia et al., 2016, Carter et al., 2020).

In this work the combination of a complete understanding of the physical chemistry of dissolution, the measured rates and polymorph partitioning of CaCO₃ production, and the presence of high [O₂] along shallow isopycnals is able to reproduce the two peaks in alkalinity regeneration observed by Feely et al. (2002) and the magnitude of TA*-TTD age-based rates (Fig. 5C, Sulpis et al., 2021). We attribute the peaked structure of dissolution as a function of seawater density to an interplay between ambient saturation state, metabolic oxygen consumption, and the mechanistic rate transition at Ω_{critical} = 0.78 (Figs. 5C, 8). Modeled peaks are generally sharper than the TA*-CFC features (Fig 6C), suggesting that diapycnal mixing could smooth and broaden locally generated signals across potential density surfaces.

Water mass transport more generally is a nontrivial consideration, especially in the North Pacific (Holzer et al., 2021). Studies using updated estimates of water mass age and transport have all found slower alkalinity regeneration rates compared to the original TA*-CFC approach, due to mixing effects on CFC distributions (Feely et al., 2002; Battaglia et al., 2016, Carter et al., 2021, Sulpis et al., 2021). Alkalinity produced on the shelves or in the deep ocean, and its subsequent transport to the mesopelagic, could also lead to artificially high estimates of shallow dissolution (Friis et al., 2006, Battaglia et al., 2016). However, the similarity between our model results and Alk*-TTD analyses suggest that in situ metabolic CaCO₃ dissolution is the primary source of alkalinity accumulating in the mesopelagic North Pacific. In Section S9 we present simple calculations that suggest transport is a secondary, rather than primary, contributor to shallow alkalinity anomalies. The ideal approach to studying this transport issue is to embed updated dissolution rate equations (Table 2) within an ocean circulation and biogeochemistry model; ideally with accurate representations of shelf alkalinity sources;

Figure 8: Water column data from the CDisK-IV cruise, binned and averaged by potential density. Alkalinity regeneration rates from Fig. 9 are shown in the background and on the bottom axis. A Mean oxygen profile, demonstrating a well-ventilated peak at the same location as the peak in dissolution (Peak 1). B Ambient (purple) and respiration-driven (orange) calcite saturation state, with the same dissolution rate profile shaded for comparison. The first peak in dissolution represents the first time that Ω_{met} drops below Ω_{crit}=0.78. C shows the CaCO₃ dissolution rate generated by either Ambient Ω or Ω_{met}, showing the two peaks in dissolution generated by shallow Ω_{met} dropping below Ω_{crit}=0.78. Subsequent transport to the mesopelagic, could also lead to artificially high estimates of shallow dissolution (Friis et al., 2006, Battaglia et al., 2016). However, the similarity between our model results and Alk*-TTD analyses suggest that in situ metabolic CaCO₃ dissolution is the primary source of alkalinity accumulating in the mesopelagic North Pacific. In Section S9 we present simple calculations that suggest transport is a secondary, rather than primary, contributor to shallow alkalinity anomalies. The ideal approach to studying this transport issue is to embed updated dissolution rate equations (Table 2) within an ocean circulation and biogeochemistry model; ideally with accurate representations of shelf alkalinity sources;
aggregation/disaggregation; microbial respiration; and zooplankton grazing processes. We leave this effort for future work.

Attribution of an excess alkalinity signal above the saturation horizon solely to transport ignores the substantial and growing body of solid-phase evidence for rapid CaCO₃ dissolution across multiple oceanic regimes. From 0-55° N in the Atlantic Ocean, particulate CaCO₃ declines between 200-1000m, well above the calcite saturation horizon (Barrett et al., 2014). Using a mean PIC turnover time of 10 days, these authors calculated dissolution rates of 0.2 and 0.9 mmol m⁻² d⁻¹ in the subpolar and subtropical North Atlantic, respectively. Sediment trap PIC fluxes also attenuate by ~1 mmol m⁻² d⁻¹ in the upper 200m at the coccolithophore-dominated Porcupine Abyssal Plain in the Subpolar North Atlantic (Marsay et al., 2015), suggesting substantial shallow dissolution. Shallow dissolution of particulate CaCO₃ is of course also observed in the North Pacific. The particulate CaCO₃ inventory from 50-500m water depth at Station K2 in the Northwest Pacific decreased by 70-90% over a ten-day period, corresponding to a dissolution rate of 1.1 mmol PIC m⁻² d⁻¹ (Bishop et al., 2008). The vertical reductions in shallow PIC flux at OSP are most pronounced at times of high CaCO₃ production and export, suggesting a coupling between biological activity and dissolution (Timothy et al., 2013, Wong et al., 1999). Our own CDisK-IV PIC fluxes decrease between 100-200m in most of the trap deployments across the North Pacific (Table 1), and PIC flux attenuations show a stronger correlation to the attenuation of POC flux (Dong et al., 2019) than to ambient saturation state (Fig. S9). The results and analyses presented here, combined with the above suite of historical observations, point towards the presence of a shallow calcium carbonate cycle: One that cannot be driven by ambient Ω, or sustained by more soluble phases like aragonite.

3.7 The role of metabolic activity on shallow CaCO₃ dissolution

The influence of metabolism on CaCO₃ dissolution provides a mechanism for coupling solid-phase and tracer observations. The earliest evidence of respiration-driven dissolution comes from porewaters, where the products of oxic respiration build up due to diffusive limitation, leading to lower saturation states relative to the overlying bottom water (Emerson and Bender, 1981, McCorkle and Emerson, 1988, Emerson and Archer, 1990, Steiner et al., 2019). By analogy, the two locations that may exhibit decreased saturation state in the water column are the oxygen-depleted interiors of marine snow aggregates and the digestive tracts of zooplankton (Alldredge and Cohen, 1987, Pond et al., 1995).

Particulate microenvironments are implicated in a number of globally relevant oceanographic processes that require the drawdown of O₂ to suboxic or anoxic levels (Bianchi et al., 2018, Babbin et al., 2015). The depletion of oxygen within particle interiors requires respiration of organic carbon and therefore the buildup of respiratory CO₂, which will depress saturation state and cause CaCO₃ dissolution (Fig. 2B). We tested this hypothesis by re-analyzing pH and O₂ microelectrode profiles inside marine snow aggregates containing coccolithophores (Alldredge and Cohen, 1987). If respiration were the only process occurring in these aggregates, the gradient in O₂ depletion between ambient seawater and the particle interior should produce a steady-state respiratory CO₂ gradient that can be translated into the observed
steady-state pH gradient. This approach is conceptually similar to Section 2.5 and Fig. 2B, but comparing pH instead of Ω (Section S3 for details). We analyzed pH and oxygen data for three marine snow aggregates that experienced at most a 46% depletion in oxygen. We avoided the anoxic fecal pellets because of anoxic reactions that can change the DIC/Alkalinity/pH balance above and beyond oxic respiration and CaCO₃ dissolution (e.g. sulfate reduction, Berner et al., 1970). In all three particles for which pH and O₂ profiles exist, the measured ΔpH is much smaller than ΔpH estimated from oxic respiration alone (Fig. 9A), suggesting that particles may serve as the locus for pH buffering of respired CO₂ via CaCO₃ dissolution. Figure 9B shows the difference between saturation state calculated from the measured ΔO₂ and measured ΔpH. Buffering is elevated at high oxygen drawdown, which may impact the efficiency of this buffering reaction: As buffering grows, dissolution slows. At steady state, dissolution must be sustained at a rate that continuously buffers pH changes within the particle aggregate, until either organic carbon or calcium carbonate runs out. These analyses are presented with the caveats that 1) these aggregates were coastal in origin and may not represent open-ocean particle composition; and 2) the fluid dynamics in this experimental setup are meant to simulate, but not reproduce, the conditions experienced by an in situ aggregate. We acknowledge that large aggregates capable of sustaining O₂ and pH gradients sink more quickly than the 10 m d⁻¹ modeled rate above (Figs. 4B,5C,8). Without better constraints on size-sinking-dissolution relationships, the contribution of aggregates to the total shallow dissolution flux is poorly constrained.

Although we have not explicitly modeled zooplankton grazing, it may be captured implicitly in the Ω_met framework. Zooplankton are abundant in the upper water column and modulate the vertical flux of material in the Twilight Zone through grazing, respiration, and

Figure 9: Reanalysis of microelectrode data from three marine snow aggregates from Alldredge and Cohen (1987). A The ΔpH expected from oxic respiration (dashed line) was estimated by converting ΔO₂ to ΔCO₂, and then to ΔpH (see main text and SI for details). In all three particles, measured ΔpH is less than the respiration-only ΔpH. These data suggest a buffering of pH (green arrows) within the marine snow aggregates. B the amount of Ω buffering calculated by differencing the saturation states estimated from oxygen-extrapolated and measured pH gradients, as a function of the measured pH gradient. There is more buffering at higher ΔpH.
repackaging material into fecal pellets (Bishop et al., 1986, Bishop and Wood, 2008, Stukel et al., 2019, Henson et al., 2019, Steinberg et al., 2014, Turner, 2015). Grazing experiments demonstrated that *E. huxleyi* liths dissolve within copepod guts (Harris, 1994), and that the extent of dissolution varies depending on feeding state (White et al., 2018). A numerical model suggested that gut dissolution may account for up to 25% of the total shallow dissolution signal (Jansen and Wolf-Gladrow, 2001), which qualitatively fits with the observed mismatches between our model and the 200m sediment trap data (Fig. 4B).

The fact that we require a very slow sinking rate of 10 m d$^{-1}$ may be reconciled by dissolution within zooplankton guts. The ω_{met} model does not include the production of strong digestive acids that would be more corrosive to CaCO$_3$ than respiratory CO$_2$ alone (Pond et al., 1995, Jansen and Wolf-Glaadrow, 2001). In addition to their direct metabolic influence, zooplankton-produced fecal pellets are usually denser than other types of aggregates (Ploug et al., 2008, Iversen and Ploug, 2010); they can go anoxic (Alldredge and Cohen, 1987, Ploug et al., 1997); and they exhibit lower diffusivities compared to aggregates (Ploug et al., 2008). It is possible that these factors lead to an enhanced coupling of respiration and dissolution in fecal pellets relative to other marine snow aggregates, despite their high density and rapid sinking speeds. Zooplankton are known to disaggregate existing fecal pellets instead of reingesting them (Iversen and Poulsen 2007, Dilling and Alldredge, 2000, Alldredge et al., 1987), cycling repackaged fecal material through the slow- and non-sinking particulate pool (Fischer et al., 2009, Riley et al., 2012, Lam and Marchal, 2015). This disaggregated material would have more time to be respired (and dissolved) in the upper water column through sustained metabolic activity.

Finally, mismatches between CaCO$_3$ production and euphotic zone export imply a large dissolution flux higher in the water column within the euphotic zone itself (Ziveri et al., in review). The influence of zooplankton in the euphotic zone may not be captured by our ω_{met} framework, because surface saturation states are often too high to be driven undersaturated by oxygen consumption alone (see, e.g., surface ω_{met} in the subtropics, Fig. 2B).

In summary, these studies suggest that particle aggregation coupled to microbial respiration, and zooplankton grazing and subsequent fecal pellet production, are involved in transferring material between the sinking and suspended phases, and in creating the necessary environments to couple metabolic activity to CaCO$_3$ dissolution. Our ω_{met} model appears to capture large-scale dissolution signals in the mesopelagic, and because zooplankton are aerobic organisms, we may be capturing the effect of zooplankton grazing without its explicit inclusion in the model. However, we acknowledge that many details are not captured by the assumptions in our simple oxygen drawdown model (i.e. 1:1 oxygen and DIC flushing from the particle interior; complete oxygen drawdown; a 10 m d$^{-1}$ sinking rate; the absence of zooplankton) and likely contribute to the mismatches between our modeled dissolution rates and previous data (Figs. 4B, 5C). We suggest that future work focuses on quantifying the unique roles of phytoplankton-derived aggregates versus grazing and fecal pellet microenvironments in mediating calcite dissolution in supersaturated waters.

3.6 A Vigorous Respiration-Driven Shallow Alkalinity Cycle and Its Implications

This study set out to provide solid-phase, dissolved phase, and experimental constraints on the CaCO$_3$ cycle of the North Pacific Ocean. In the process, we have documented an apparent shallow CaCO$_3$ cycle that we hypothesize is driven by metabolic CaCO$_3$ dissolution (Milliman et al., 1999). This mechanism does not emerge by coincidence. Most marine CaCO$_3$ is biogenic,
and is precipitated in direct contact with organic material. The consumption of this organic matter therefore directly influences the dissolution of biologically produced CaCO₃. It is likely that metabolic activity drives a substantial portion of alkalinity regeneration, both in the water column as shown here, and in shallow and deep ocean sediments (Emerson and Bender, 1981, Emerson and Archer, 1990, Burdige et al., 2010, Steiner et al., 2019). This mechanism also allows for the intimate association of CaCO₃ and the enzyme carbonic anhydrase to elevate dissolution rates (Subhas et al., 2017, 2019a, Dong et al., 2020).

The extent to which CaCO₃ and organic carbon export and remineralization are coupled controls the extent to which respired CO₂ is neutralized in the upper ocean. Packaging of CaCO₃ with organic carbon promotes CaCO₃ dissolution, quickly neutralizing a substantial fraction of respired CO₂. A shallow particulate dissolution flux of 0.5 mmol m⁻² d⁻¹ (0.2 mol m⁻² yr⁻¹) can be compared with sediment trap-derived organic carbon fluxes in the North Pacific, which generates 0.3-1.2 mol m⁻² yr⁻¹ of respiratory CO₂ from 100-1000m (Ruhl et al., 2018, Martin et al., 1987, Wong et al., 1999). Dissolution of sinking CaCO₃ alone therefore can instantly neutralize approximately 15-66% of respiratory CO₂ in the shallow ocean, and suspended CaCO₃ probably neutralizes even more. Our DI¹³C, AOU and pH water column data confirm this fraction of neutralization (~40%).

More soluble forms of CaCO₃ remain enigmatic. Pelagic fish produce highly soluble Mg-calcites that may contribute as much as 0.02-0.07 mmol CaCO₃ m⁻² d⁻¹ globally (Wilson et al., 2009), a factor of 7-25 less than the required dissolution flux of ~0.5 mmol m⁻² d⁻¹. While potentially regionally important, more work is needed to quantify the importance of fish-produced carbonates for the North Pacific CaCO₃ budget. However, a similar Corganic-CaCO₃ packaging argument could be made for observations of pteropods dissolving from the inside out: Pteropod shells compartmentalize organic carbon degradation and acid generation, leading to a decrease in saturation state and rapid interior dissolution (Peck et al., 2018, Oakes et al., 2019).

Our study instead suggests that primary coccolith calcite is responsible for a large portion of production and dissolution in the North Pacific. Coccolithophores are blooming organisms and require aggregation for export (Honjo, 1976, Ziveri et al., 2000), driven by a combination of viral infection dynamics leading to bloom crashes and export (Laber et al., 2019); dissolution during digestion (Bishop et al., 1980, Bishop et al., 1986, Harris, 1994, White et al., 2018); and 3) grazing leading to dense fecal pellet production and sinking (Iversen and Ploug, 2010). The multiple mechanisms of coccolith CaCO₃ aggregation, grazing, and export likely produce a spectrum of particulate size distributions (Cael et al., 2020, Durkin et al., 2015), sinking rates (McDonnell and Buesseler, 2010), respiration rates (Ploug, 2001, Collins et al., 2015, Omand et al., 2020), porosities (Ploug et al., 2008), PIC:POC (Passow and De la Rocha, 2008), and other particle qualities that all determine the potential for shallow dissolution and the subsequent export of CaCO₃ and organic carbon out of the mesopelagic.

Finally, selective shallow dissolution of coccolith calcite, driven by particle aggregation and remineralization dynamics, provides a mechanism to reconcile production estimates with the composition of deep ocean CaCO₃ fluxes and sedimentary calcite. Coccoliths make up 85-99% of calcite production in the North Pacific (Table 1, Ziveri et al., in revision), but comprise only ~50% of sedimentary CaCO₃ (Kawahata et al., 2002, Broecker and Clark, 1999). Foraminifera may dissolve faster than coccolithophores, but they are large, sink quickly, and contain little POC. Coccoliths, although they dissolve more slowly (Fig. 3), are directly implicated in the above aggregation-disaggregation export mechanisms that lead to their selective dissolution in the shallow ocean. Shallow dissolution therefore acts as a major filter on the composition of
sinking CaCO₃, and the extent of its influence is likely tied to ecosystem structure the associated styles of carbon export and ballasting, which vary regionally and may not be constant through time.

5 Conclusions

Our research expedition dataset, model results, and a suite of historical solid-phase and tracer results, all suggest that shallow dissolution is widespread in the North Pacific Ocean and beyond. Our new data further constrain the source of this feature to coccolith calcite, and the driver of this feature to metabolic activity. The attribution of this mechanism to the widespread occurrence of shallow CaCO₃ dissolution provides an explanation for the decoupling of dissolution rate to ambient saturation state, and for a reconciliation between CaCO₃ production and sediment composition. This decoupling from in situ Ω is still directly tied to well constrained dissolution rate laws that are fundamentally driven by critical Ω values for the change in dissolution mechanism. Most crucially for the carbon cycle, the coupling of organic and inorganic carbon remineralization means that the partitioning of alkalinity between the shallow and deep oceans is controlled to a substantial extent by a vigorous production-respiration-dissolution cycle in the upper ocean. This shallow alkalinity cycle is likely a fundamental feature of the carbon cycle, and is likely subject to a similar set of controls as the cycle of organic carbon.

Acknowledgments, Samples, and Data

The authors declare no conflicts of interest. The author list represents the entire science party of the CDisK-IV cruise, with the exception of PDQ who contributed GOSHIP data. All authors contributed to data collection and the final manuscript. Work was conceived by JFA, WB, AVS, SD, and JN. Data was analyzed by AVS, JFA, WB, and SD. The manuscript was written by AVS with contributions from all coauthors. Data sets can be found on BCO-DMO including dissolution rate experiments (https://www.bco-dmo.org/dataset/856409), sediment traps (https://www.bco-dmo.org/dataset/860424), McLane pumps (https://www.bco-dmo.org/dataset/860409), and bottle data including full carbonate chemistry, nutrients, density, AOU, and saturation state (https://www.bco-dmo.org/dataset/836954). This work was funded by NSF OCE-1220301 to W.B., NSF OCE-1220600 to J.F.A., and startup funding for A.V.S. We thank the crew of the R/V Kilo Moana for their support. We thank Dan McCorkle for helpful comments and discussions over the course of this paper, along with the constructive feedback from Jim Bishop, Phoebe Lam, and six anonymous reviewers. We acknowledge that the Woods Hole Oceanographic Institution is located on, and has benefited directly from, the traditional and unceded lands of the Mashpee Wampanoag Tribe.

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Laber, C. P., Hunter, J. E., Carvalho, F., Collins, J. R., Hunter, E. J., Schieler, B. M., Boss, E., More, K., Frada, M., Thamatrakoln, K., Brown, C. M., Haramaty, L., Ossolinski, J., Fredricks,
This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.
