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A B S T R A C T   

High resolution satellite images with improved spatial and temporal resolution provide unprecedented oppor
tunities to monitor Earth Surface changes in 2D and 3D due, for example, to earthquakes, sand dune migration, 
ice flow, or landslides. The volume of imagery available for such measurements is rapidly growing but the 
exploitation of these data is challenging due to the various sources of geometric distortions of the satellite im
agery. Here we propose a new approach to extract high-quality surface displacement in 3D based on the cor
relation of multi-date and multi-platform high resolution optical imagery. We additionally show that when a 
large enough volume of data is available, it is possible to separate the deformation signal from the artifacts due to 
the satellite jitter and misalignment of the CCDs, which, together with topographic artifacts, are the main source 
of noise in the measurements. Our method makes use of a reference DEM, but the outcome is independent of the 
characteristics of the chosen DEM. We use the case-example of the ground deformation caused by the Ridgecrest 
earthquake sequence to assess the performance of our proposed approach. We show that it outperforms the more 
standard approach which combines 2-D correlation and DEM differencing. With our technique, we were able to 
generate high quality measurements of coseismic ground displacement with GSD of 2.4 m, and uncertainties at 
the 90% confidence level on the NS, EW and vertical displacement measurements of 0.6 m, 0.7 m, and 0.6 m 
respectively.   

1. Introduction 

Satellite optical images can be used to measure surface displace
ments in 2-D and 3-D due for example to earthquakes, sand dune 
migration, ice flow, or landslides, (e.g., Altena and Kääb, 2017; Antoine 
et al., 2021; Avouac and Leprince, 2015; Barǐsin et al., 2015; Bontemps 
et al., 2018; Stumpf et al., 2017, 2018; Zhou et al., 2015; Zinke et al., 
2019). The volume of imagery available for such measurements is 
rapidly growing, and this has motivated various efforts of method 
development to complement the tools available for 2-D measurements 
such as COSI-Corr (Leprince et al., 2007) or MicMac (Rupnik et al., 
2017). Optical images are generally taken with view angles less than 20◦

from nadir, so that they are more sensitive to horizontal than to vertical 
displacements. A common practice is to first calculate the 2-D dis
placements from correlating orthorectified images and determine ver
tical displacements next from differencing Digital Elevation Models 

(DEMs) produced with images acquired before and after the deformation 
event, (e.g., Antoine et al., 2021; Barnhart et al., 2020). Orthor
ectification errors are then a major source of noise in the measurements 
of the 2-D displacement field. One reason is that the DEMs used in the 
process generally don’t have the adequate ground resolution to account 
for the stereoscopic disparities present in the raw images. In addition, 
topographic changes, due to vertical displacements or the advection of 
the topography associated with the horizontal displacements, can be a 
source of bias and errors on the measurements of horizontal displace
ments (Altena and Kääb, 2017; Ayoub et al., 2009), and vertical dif
ferencing represents vertical displacement only if the topography has no 
relief at the scale of the horizontal displacement or if the horizontal 
displacement is null. It should therefore be advantageous to correlate 
non-orthorectified images since it is in principle possible to separate 
stereoscopic disparities and ground displacements in 3-D. The principle 
is used widely in computer vision (e.g., Tang et al., 2019). For satellite 

* Corresponding author at: California Institute of Technology, CA, USA. 
E-mail address: saif@caltech.edu (S. Aati).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2022.113038 
Received 4 October 2021; Received in revised form 16 March 2022; Accepted 3 April 2022   

mailto:saif@caltech.edu
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2022.113038
https://doi.org/10.1016/j.rse.2022.113038
https://doi.org/10.1016/j.rse.2022.113038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2022.113038&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Remote Sensing of Environment 277 (2022) 113038

2

images, a procedure was outlined by (Avouac and Leprince, 2015) (also 
applied, for example, by Zinke et al. (2019)) which requires stereoscopic 
pairs of images acquired before and after the deformation event. 

Here we propose an alternative end-to-end approach to extract high- 
quality 2D/3D surface displacement. We additionally show that when a 
large enough volume of data is available, it is possible to separate the 
deformation signal from the artifacts due to the satellite jitter and mis
alignments of the Charge-Coupled Devices (CCDs), which, together with 
topographic artifacts, are the main source of noise in the measurement 
of ground deformation from satellite image correlation (Beyer et al., 
2018; Leprince et al., 2007). Our procedure makes use of the Indepen
dent Component Analysis (e.g., Gualandi et al., 2016), which is an un
supervised Machine Learning algorithm. ICA is a blind source separation 
technique that allows extracting signals that would otherwise be 
camouflaged when the low-order statistical method of Principal 
Component Analysis (PCA) is adopted. It has been used for example to 
extract hydrological signals from gravimetric and geodetic data (e.g., 
Forootan et al., 2012; Larochelle et al., 2018), or, in remote sensing for 
hyperspectral image classification (Dalla Mura et al., 2011). In our 
study, we show a new application of ICA by demonstrating that geo
metric image artifacts can be filtered out with this technique. This is a 
crucial element of our workflow as it allows accurately measuring ste
reoscopic offsets for pair of images with low B/H, which is critical to 
improving the 2-D measurements and extracting the vertical displace
ment field. The ICA-based approach presented in this study thus pro
vides an alternative or complementary approach to the state-of-the-art 
techniques that correct such artifacts during the orthorectification pro
cedure (Leprince, 2008; Leprince et al., 2007; Shean et al., 2016). We 
show in this study that the proposed approach outperforms the state-of- 
the-art method, and allows the joint co-registration of images from 
different platforms and produces geometrically consistent data. 

Hereafter, we first briefly describe how 2-D and 3-D displacements 
can be measured from the correlation of orthorectified images and DEM 
differencing, which is an approach that is commonly adopted. We next 
present our alternative approach and compare the two approaches based 
on an application to the large dataset covering the epicentral area of the 
Mw 7.1 Ridgecrest earthquake sequence, which occurred in California in 
July 2019. 

2. State-of-the-art method for measuring ground displacements 
with optical images 

Ground displacements in 2-D are generally measured from correla
tion of orthorectified images, ideally including some optimized regis
tration and orthorectification procedures (e.g., Avouac and Leprince, 
2015). The most common method for calculating 3D surface deforma
tion is to independently solve for the horizontal and vertical displace
ments (Fig. 1). Ideally, to obtain a good quality deformation 
measurement, in-track stereo pairs before and after the event that 
caused the deformation (i.e., a landslide, earthquake, ice movement) are 
needed to generate distinct digital elevation models (DEMs): a pre-DEM 
that represents the topography prior to the event and a post-DEM that 
accounts for the topography changes after the event. In general, the 
DEMs produced at different epochs are not perfectly registered. There
fore, the two DEMs must be aligned and resampled on a common grid. In 
most instances, the alignment is achieved using a stable area away from 
the deformation (i.e., an area did not experience any topographic 
changes and the distribution of the difference ~ 0). Then, the pre-and 
post-raw images are orthorectified with the pre-and post-DEM, respec
tively. In practice, images with the smallest view angle are selected to 
minimize the stereoscopic effect on the derived ortho-image. The hori
zontal displacement is then derived from the image correlation tech
nique, while the vertical displacement is derived by differencing the two 
aligned DEMs. 

The Iterative Closet Point (ICP) approach method is generally used to 
align different sets of point clouds derived from airborne or terrestrial 
LiDAR data (Besl and McKay, 1992; Nissen et al., 2014) or photo
grammetry (Shean et al., 2016). In practice, the reference (pre-event) 
and target (post-event) point clouds are divided into tiles. Then, the 3D- 
deformation is determined by estimating a local rigid-body trans
formation between these tiles (i.e., translation and rotation), where for 
each point of the reference tile, the closest point in the target tile is 
computed. The rigid transformation is determined, by an iterative pro
cess, to minimize the square sum of the distance between the tangential 
plane of the reference point and its paired point in the target tile. The 
final local transformation is the cumulative rigid-body transformation 
determined at each iteration. In the case where we have pre-and post- 
rasterized DEMs, usually derived from a stereogrammetry process, we 

Fig. 1. State of the art method for 3-D displacement measurements using optical images.  
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Fig. 2. Process flowchart of the proposed approach. The method comprises five stages: (1) Rigorous sensor model refinement (RSM), (2) Orthorectification and 
resampling, (3) Image correlation, (4) 3D-displacement calculation, and (5) Independent component analysis. 
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need to transform each raster to a regularly spaced point cloud at each 
tile center. The horizontal coordinates of each point are computed from 
the raster geo-transformation, and the vertical point coordinates are 
retrieved from the raster pixel value (Nissen et al., 2014). 

The estimation of the local surface normal is a crucial step for the 
convergence of the ICP algorithm, which makes this approach very 
sensitive to outliers and very dependent on the qualities of the extracted 
DEMs (especially in the case of photogrammetry DEMs). Thus, filtering 
and smoothing the point cloud is required to properly estimate the local 
normal, which could lead to a loss of spatial resolution and details. 

3. Proposed methodology 

Here, we propose an alternative end-to-end workflow to extract high- 
quality surface deformation in 3D using multi-date and multi-platform 
high resolution (HR) optical imagery (Fig. 2). Part of the workflow 
uses the Co-registration of Optically Sensed Images and Correlation 
(COSI-Corr) methodology (Leprince et al., 2007), which was incorpo
rated and augmented in a custom python/C++ freely accessible package 
referred to as COSI-Corr+ (geoCosiCorr3D). The software package al
lows: data preprocessing, physical geometry refinement, orthor
ectification, sub-pixel image correlation, 3D-displacement computation, 
and Geospatial Independent Component Analysis (geoICA). The COSI- 
Corr+ code repository accompanying this manuscript contains process
ing libraries and additional documentation of this workflow. In addition, 
we use the Ames Stereo Pipeline (ASP, version 2.7.0) for WorldView 
(WV) CCD correction (Beyer et al., 2018) and MicMac for tie point 
detection (Rupnik et al., 2017). 

The set of input data required for our workflow includes the 
following:  

- A set of four images spanning the event, which are referred to as “3D- 
set”, one base image (pre-event), and three target images (pre-event, 
post-event1, and post-event2). The current package version supports 
raw images with the accompanying physical model metadata. So far, 
we have tested this approach only with off-nadir angle images >8◦. 
However, it should be applicable too to data with smaller off-nadir 
angles, such as PlanetScope Doves images.  

- A reference DEM referred to as “rDEM”.  
- Optional input: geo-referenced external image (e.g., HR aerial 

imagery) 

In the case of a large number of images, automatic selecting of pairs 
could be performed, where additional inputs should be provided like the 
region of interest of the main event (e.g., the epicentral area in the case 
of coseismic deformation). The workflow output is a 4-bands geo- 
referenced displacement raster (East/West | North/South| Dz | residual). 

The workflow consists of five processes (Fig. 2): (1) Rigorous sensor 
model refinement (RSM), (2) Orthorectification and resampling, (3) 
Sub-pixel image correlation, (4) 3D-displacement calculation, and (5) 
Filtering using the Independent Component Analysis. We detail these 
steps in the following sections. 

3.1. Physical model refinement 

Precise registration is essential to achieve a good quality displace
ment field. The most accurate approach involves a refinement of the 
image geometry through a rigorous sensor modeling (RSM) that pro
vides the looking direction corresponding to each pixel corrected from 
the errors associated to the estimate of the satellite viewing parameters 
(e.g., spacecraft position, attitude variation, and the satellite’s looking 
vector) (Leprince et al., 2007). The reader is referred to Aati and Avouac 
(2020) for a discussion of how RSM compares to other registration 
techniques. Therefore, satellite velocities, positions, attitudes, and 
sensor orientations are required to build the RSM. The metadata file 
does not have any standard format. The format of the RSM-file that 

describing the interpolated satellites position and attitude for each 
image line thus depends on the imaging system. Linear interpolation is 
used instead of Lagrange interpolation when the number of ephemeris 
and attitude data are provided at high frequency; moreover, throughout 
the interpolation process, the continuity and the global motion of the 
satellite are preserved. 

The satellite positions are expressed in the WGS84 Earth-centered 
Earth Fixed (ECEF) Cartesian coordinate system. Additionally, the 
acquisition information is also stored in the same binary file (e.g., sun 
elevation/azimuth, satellite elevation/azimuth, off-nadir angle…). The 
rigorous sensor model relates the position of any point at the Earth 
surface relative to the center of the cartesian system (in this case Earth’s 
center of mass), O, according to: 

OM̅̅→(p) = OS̅→
(p)+ λ.T(p).R(p).U→(p) , (1)  

where  

- M(p) is a point on the ground seen by the pixel p with coordinates [x, 
y],  

- S(p) is the position of the optical center in space when pixel p was 
being acquired,  

- U→(p) is the look direction vector of the pixel p, expressed in the 
satellite platform reference frame,  

- R(p) is the 3D-rotation matrix that accounts for the satellite roll, 
pitch, and yaw when p was being acquired,  

- T(p) is the transformation matrix to go from the platform to the 
terrestrial coordinate system,  

- λ denote the scaling factor determined from the intersection of the 
ray with the Earth ellipsoid. 

Note that bold symbols refer to matrices. 
In our approach, the look directions of the imaging system are 

refined globally by adding a correcting term δ→(p) to the physical model 
using a set of GCPs and expressed in ECEF coordinate system. This 
correction compensates globally for satellite jitter due to the pitch, roll, 
and yaw variations along the satellite trajectory and aberrations from 
the imaging system. The correction is defined as: 

OM̅̅→corr(p) = OS̅→
(p)+ λ.

[
T.R(p).U→(p)+ δ→(p)

]
, (2)  

δ→(p) = A

⎡

⎣
x
y
1

⎤

⎦. (3)  

where A is a 3 × 3 matrix and [x,y,1]Tis the homogeneous coordinate 
vector of the pixel p.The correction matrix A is determined by using a 
Weighted Least Squares criterion with a stochastic model computed 
using a weight assigned to each GCP. The correction δ→(p) accounts for 
the drift of the satellite attitude and the nonlinear distortion due to the 
local topography. Next, a refined RSM-file that includes this correction is 
generated for each input image. 

This approach is different from the one described in (Leprince et al., 
2007) and currently implemented in the COSI-Corr software, where 
instead of optimizing the viewing parameters of a given set of GCPs, a 
new set of GCPs is estimated by correcting the ground coordinates of 
each GCP using the ground offset found between a reference and target 
orthorectified patches at each GCP location. One key advantage of our 
approach is that it makes bundle adjustment possible, therefore allowing 
to refine multiple images at the same time. 

In-situ measurement of a clearly identifiable feature on the image, a 
common practice to define control points, is expensive and may not be 
applicable depending on the accessibility of the area. In our workflow, 
the GCPs are extracted automatically. First, based on feature detection, 
tie points are selected between each raw image of the input 3D-set and an 

S. Aati et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 277 (2022) 113038

5

already orthorectified reference image (e.g., HR aerial images). These 
points are filtered and weighted using a frequency correlation technique 
in image space. The weight of each GCPs corresponds to the Signal to 
Noise Ratio (SNR) of the correlation wi = SNRi, while GCPs with SNR 
score under a predefined threshold are discarded. The correlation results 
are retrieved between two patches (base and target) centered on the 
pixel coordinates of the reference and raw image, respectively. Then, the 
tie points are converted to GCPs, where the georeferencing of the 
reference image provides the horizontal coordinates, while the elevation 
is interpolated from the rDEM. 

If no external data is available, a shaded DEM relief map is con
structed with lighting corresponding to the sun azimuth and elevation 
angles at the time of the acquisition of each input image. The sun 
elevation and azimuth are extracted from the generated RSM-file, and 
the shaded DEM provides both horizontal and vertical coordinates. In 
this case, the location of the selected GCPs is very inaccurate, thus 
optimizing the GCPs with the original approach of COSI-Corr is rec
ommended (Leprince et al., 2007). 

3.2. Orthorectification and resampling 

All the 3D-set images are orthorectified to the same resolution and 
with elevation information from the rDEM. In this step, the images are 
resampled to correct for the long-wavelength stereo component that 
occurs because of the stereoscopic effect produced when images are 
acquired at wide off-nadir angle. The images are orthorectified on a 
UTM grid to provide a support independent of the acquisition system 
and to allow pairing images from different platforms (e.g., push-broom, 
push-frame, or frame). 

The inverse orthorectification model is used, in which we determine 
for each grid element the non-integer pixel coordinates in the raw image 
by exploiting information from the refined RSM-files. 

The inverse orthorectification model is defined as: 

[x, y] = argminx,yΩ(x, y), (4)  

Ω(x, y) =
⃦
⃦
⃦OM̅̅→ − OM

′
̅̅→⃦

⃦
⃦

2

2
, (5)  

where (x,y) are the pixel coordinates in the raw image associated with 
point M in the projection grid and M′ is the point projected onto the 
ground using the refined RSM. 

The output of the inversion is stored into a 2-band raster array Tr of 
the same dimension as the orthorectification grid. Band-1 and band-2 
correspond respectively to the 2D matrices of X(xpix,ypix) and Y(xpix, 
ypix) coordinates of the pixel p(xpix,ypix) in the raw image to be projected. 
Ultimately, the orthorectified images are constructed by resampling the 
raw images according to the transformation matrices. To minimize 
resampling biases, a sine cardinal kernel (15 × 15 pixels) is used for the 
resampling process. 

3.3. Image correlation 

This step consists in selecting a base image and correlate with the 
other 3D-set images. Consequently, three horizontal displacement maps 

(corrj,j ∈ {1..3}) are derived. Ideally, all image pairs should be corre
lated so that no one image is given more weight than the others. 
Therefore, the option to progressively apply j independent correlations 
is possible (Fig. 2). When selected, correlations are applied iteratively 
using all available images in the 3D-set as the base, thus achieving a 
redundant stack of horizontal displacement maps (corrj,j ∈ {1..12}). 

The horizontal offsets are retrieved iteratively in two steps by 
applying a multi-scale sliding window. An initial window size maxi
mizes the correlation between the base and target images, while a 
smaller final window size provides a finer offset estimation. The corre
lations are processed using the frequency correlator implemented in 
COSI-Corr+, which is based on the principle that a translation in space 
corresponds to a phase shift in the frequency domain. Other correlation 
approaches, such as multi-scale normalized cross-correlation (NCC), can 
also be applied. Here, we chose to perform the correlation in the fre
quency domain because it can achieve 1/20-pixel accuracy (Leprince 
et al., 2007) and is faster than the spatial correlators, which is very 
important if we are processing a large data cube of images. 

Several parameters must be selected to perform the correlation, 
including initial and final window sizes, step size, number of iterations, 
and the mask threshold. The specific parameters for the correlation used 
in this study are listed in Table 1. 

Each correlation provides a 2-D offset vector map, that should 
correspond directly to horizontal displacements along the East-West (E/ 
W) and North-South (N/S) directions and a signal-to-noise ratio (SNR, 
ranging from 0 to 1), which assess the measurement quality. The com
ponents of the offsets/displacements vectors are measured positive 
eastwards and northwards. To automate the correlation process, a batch 
correlation is used. 

The pre-event (Base-pre1) offset map reflects only the topographic 
stereo disparities remaining in the pre-ortho images, which is small 
enough to be measured with the frequency correlator, thus because no 
deformation is present in the pre-event “base-pre1” correlation 
(corrj=1). Whereas the two post-event correlations, “base-post1” and 
“base-post2”, contain both the ground displacement signal and the ste
reoscopic offsets. 

3.4. Computing 3D-displacement 

Computing the 3D displacement field involves the following steps: 

(1) Cropping the j− correlations maps to the same extent and dis
carding the displacement values with low SNR values. 

(2) Tiling the rDEM, correlations (corrj, 3 ≤ j ≤ 12) and trans
formation matrices (Trk, k ∈ {1..4}) into raster blocks (default 
256 × 256 pixels) for parallel processing.  

(3) Computing for each pixel p(xpix,ypix) in the correlation map 
(corrj) the ray vector relating the satellite position with the 
ground position. This is accomplished by combining the space
craft refined RSM information (i.e., ephemeris/attitude) and the 
correlation offsets. First, latitude and longitude are extracted 
directly from the correlations (corrj), while elevation (elevk) is 
interpolated from the rDEM. Second, the ground position PECEF

k is 
computed by converting the geographic coordinates in a Carte
sian Earth-Centered Earth-Fixed (ECEF) coordinate system. 
Third, the satellite position PsatPos

k of pixel p is determined by 
combining the refined satellite position (eph. satPosk) and the 
orthorectification inverse transformation (Trk). Finally, the sight- 
vector S(p)

k is given by the difference between ground PECEF
k and 

satellite PsatPos
k positions.  

(4) Triangulating the 3D-ground position at each pixel location p 
before (Ppre) and after (Ppost) the event. The triangulation routine 
(geoTriangulte) computes the 3D coordinates in ECEF coordinate 
system for the closest intersection, first between the two pre- 
event sight vectors (S(p)

k=1, S(p)
k=2), and then separately between 

the post-event sight vectors (S(p)
k=3, S(p)

k=4). The full 3D- 

Table 1 
Example of the correlation parameters used in this study.  

Parameters Values 

Initial window size [pixel] 128 × 128 
Final window size [pixel] 32 × 32 
Step size [pixel] 8 × 8 
Iteration 2 
Mask threshold 0.9 
Grid True 
Correlation strategy Full  
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displacement vector is then estimated at each pixel location p by 
the difference between the triangulated pre (Ppre) and post (Ppost) 
event positions. The output is a 5-band raster file format, with the 
same projection system as the ortho-images. Band-1 contains the 
E/W displacement (ew(p)), band-2 the N/S displacement (ns(p)) 
and band-3 the vertical displacement (dz(p)), band-4 and -5 pro
vide, respectively, normalized triangulation errors for the pre- 
and post-event ortho-images. These errors are mainly the 

horizontal disparities not resolved during the orthorectification 
process and the remaining or unmodeled artifacts (e.g., CCD 
misalignment and jitter).  

(5) Merging all the tiles to build the final 3-D displacement map.  
(6) De-Ramping: the displacement retrieved after the correlation and 

triangulation contain long-wavelength errors related to the 
selected GCPs used for the RSM refinement. Given the small 
swath of the input images, the single date reference DEM and 

Fig. 3. Overview of the study area and used datasets. (a) The inset shows the geographic location of the study area with a true-colour NAIP image as background. 
A simplified rupture map of the Mw6.7 occurred on July 4, 2019, in a cyan polyline, and the Mw7.1 occurred on July 5, 2019, in a red polyline. The black rectangles 
represent the selected region of interest. (b)Timeline of the satellite images used in this study with respect to the date of earthquakes. (c,d) Key characteristics of 
image datasets and digital elevation models, respectively used in this study. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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reference ortho-image, it is difficult to avoid the effect of the 
displacement on the selected GCPs. Therefore, the long- 
wavelength error is modeled by estimating the parameters of 
2D affine transformation denoted in Eq.(6). The unknown pa
rameters are estimated using an iteratively reweighted least 

squares (IRLS) criterion with a bi-square loss function minimizing 
the residuals between the measured and modeled offsets (Holland 
and Welsch, 1977; Stumpf et al., 2018). Displacements from 
modeled error are then subtracted from the initial computed 
displacement maps. 

ud
x,y = a1x+ a2y+ a13 , (6)  

where ur, c
d is the displacement value of the pixel p(x,y) with respect to 

the displacement map d ∈ {EW,NS,Dz} and a1, a2, a3 are the unknown 
parameters. 

Algorithm 1. 3D-Displacement computing algorithm. 

3.5. Geospatial Independent component analysis (geoICA) 

The 3D displacement map obtained using a single correlation strat
egy (i.e., selecting a base image then correlating it with the three target 
images) includes the surface deformation signal and other artifacts, such 
as the CCD stripe artifacts, satellite jitter, outliers, topographic residuals, 
and decorrelation noise. The artifacts due to the CCD misalignment and 
jitter, can in principle be estimated and corrected, but the current 
methods require an accurate calibration site and precise GCPs (Ayoub 
et al., 2008; Jiang et al., 2018; Leprince et al., 2008; Tong et al., 2015; Ye 

Fig. 4. Co-registration assessment. (a) Example of measured horizontal geolocation errors (in meter) of an orthorectified WV-1 image acquired on June 16, 2018. 
Three ortho-images were generated at 60 cm GSD using three rDEMs: Pre-DEM (left), Lidar (center), and SRTM (right). Scatterplots show the 2-D misregistration 
shifts in-ground space (UTM-11 N). The purple and cyan circles indicate 68CE and 90CE, respectively. The black points represent the extracted vCPs between the 
ortho-images and the ref-image (NAIP). (b) Registration uncertainty, each black point represents the average X-shift and Y-shift measured in each ortho-image with 
respect to the ref-image. The red square represents the average registration value of all ortho-images (ΔX, ΔY) = (− 0.1, − 0.2) m. (c) Circular errors 68CE (black) 
and 90CE (red) of the 34-ortho-images. The error bars show the mean values of the biases (shift) in X and Y. The horizontal dashed black (68CE) and Red (90CE) lines 
indicate the mean circular error of all ortho-images (k = 33), respectively. A summary of all computed statistical values is reported in Table S.2. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of horizontal geolocation accuracy results and errors for the generated 
ortho-images after RSM-refinement. (Complete table provided in Table S.2).   

# ortho Mean 
68CE 

Mean 
90CE 

Mean 
RMSExy 

Mean 
stdxy 

All ortho 33 1.74 2.87 1.93 1.82 
Ortho images – rDEM 
Lidar 21 1.41 2.33 2.29 2.22 
SRTM 4 3.07 5.08 4.76 4.47 
Pre-Post 7 1.40 2.34 2.26 2.09 
Ortho images – resolution 
GSD (60 cm) 27 1.49 2.47 2.35 2.26 
GSD (1.5 m) 6 2.84 4.70 4.40 4.20 
Ortho images – Off-Nadir angle 
<10◦ 3 0.70 1.15 1.08 1.07 
10◦-15◦ 5 1.32 2.18 2.05 2.02 
15◦-25◦ 9 1.57 2.59 2.38 2.29 
>25◦ 16 2.16 3.64 3.44 3.26  
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et al., 2020). These methods were developed to compensate for the 
geometric artifacts of a specific imaging system and are not easily 
applicable when data from newly available systems are used. Our ICA- 
based approach has the advantage to be more general and sensor 
agnostic. 

To reduce the effect of these artifacts, we resort to an Independent 

Component Analysis. An ICA decomposition is used rather than a Prin
cipal Component Analysis (PCA) because the sources of artifacts can be a 
major contribution to the data variance and could be filtered out by 
selecting only the first component of a PCA. The basis for the decom
position is that the deformation signal and the various sources of arti
facts can be assumed to be statistically independent sources. In 

Fig. 5. RSM refinement assessment. Column (a) corresponds to the correlation results between pre-and post-earthquake WV-2 orthoimages acquired on June 23, 
2018, and July 14, 2019, respectively, and orthorectified with the state-of-the-art method. Column (b) corresponds to the correlation results using the same 
orthorectified images processed with our method. (a-1,b-1) the N-S displacements, (a-2,b-2) the E-W displacements and (a-3,b-3) displacements density distributions. 
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particular, the artifacts are assumed to be statistically independent with 
the deformation signal. The deformation signal is presumed to be the 
same in all the 3-D measurements maps independent of the choice of a 
particular set of images. As a result, we expect the deformation signal to 
show in only one component. The hypothesis that the displacement 
signal is independent of the artifacts is most likely to be verified in real 
applications. This assumption would be incorrect only in the unlikely 
case of a displacement signal similar with the pattern resulting from 
jitter or CCD artifacts. 

We implemented a modified version of the FastICA algorithm 
(Hyvärinen and Oja, 2000; Shlens, 2014), which is included in the COSI- 
Corr+ package, this routine version referred to as Geospatial ICA 
(geoICA). 

This approach can be considered as unsupervised learning and can be 
summarized as follows:  

(1) The overlapping displacements maps are cropped to the same 
extent and stored in the data cube Xd,where d represents the 
displacement directions (EW, NS, and Dz).  

(2) The outliers in the decorrelation areas are filtered out, then the 
“no data” values mask is constructed and applied to Xd.  

(3) Assuming that Xd is a linear combination of m independent 
sources S. The data cube is expressed as Xd = A.S, where A is the 
mixing matrix and S =

∑
i=1
m si, with si are the sources and m the 

number of sources. If there are 4 input images, the number of 
observations using the progressive correlation strategy is n = 4, 
then m ≤ n. In our case, we assume that the sources are 
displacement and artifacts (i.e., S = d + Bk≤m− 1, where Bk≤m− 1 
represents the different sources of artifacts). The sources are 
recovered by determining the unmixing matrix A− 1, which is 
performed in two successive stages:  
a. Whiten the data by calculating the eigenvectors of the 

covariance of Xd, to remove all linear dependencies (i.e., 
decorrelate the data) in the dataset and normalize the 
variance,  

b. Assume the statistical independence of the sources. The joint 
probability density function (pdf) of the sources, is denoted 
p(s1, s2,…, sn) =

∏n
i=1p(si), where p(si) is the probability 

density function of source si. The matrix is computed using an 
iterative process that maximizes the non-gaussianity of the 
whitened data sets using a contrast function G that approxi

mate the negentropy. G is defined as G(u) = − e− au2 /

2

a , where a is 
user-defined constant.  

(4) The source which is identified to represent the displacement 
signal is used to reconstruct n-displacement maps, which then are 
stacked by average to yield the final displacement result.  

(5) The measurement uncertainty is quantified from the residuals 
with our best estimate of the signal derived from combining all 
the measurements derived from the 90 images used in this study. 

4. Study area and datasets 

4.1. Study area 

The performance of the methodology described above to measure the 
three-dimensional surface-displacement field is demonstrated using the 
Ridgecrest earthquake sequence, which occurred in California in 2019. 
The two dominant events, a Mw 6.4 foreshock event on July 4th (a left- 
lateral strike-slip rupture) followed 34 h later by a Mw 7.1 mainshock 
event on July 5th (a right-lateral strike-slip rupture), were felt over most 
of southern California and caused surface ruptures with minor damage 
to infrastructure. The region of interest spans over an area of ~1864 
km2, consisting mostly of desert and rugged terrain with elevations 
between 500 m to 1500 m (Fig. 3). This region is particularly well suited 
for remote sensing observations of ground deformation using optical 
images and the technique has therefore been used in several previous 
studies (Antoine et al., 2021; Barnhart et al., 2020; Chen et al., 2020; 
Milliner et al., 2021). The Mw 7.1 mainshock produced right-lateral 
surface ruptures extending over ~50 km along a northwest direction, 
and the Mw 6.4 foreshock produced left-lateral surface ruptures with a 
southwest trend over ~14-km-long (Fig. 3). 

For the purpose of illustrating our results, we selected two sub- 
regions. The first sub-region (ROI-1), located in the upper north
western part of the Mw 7.1 surface ruptures, covers an area of ~231 km2. 
The second sub-region (ROI-2) covers the Mw 6.4 surface ruptures, with 
an area of ~99 km2. 

Only the result from ROI-1 are presented and discussed in the main 
manuscript. The results for ROI-2 and the entire study area are provided 
as supplement. 

4.2. Datasets 

We used a total of 90 HR satellite optical images out of which 37 
were acquired before the earthquake and 53 after. The pre-earthquake 
images were collected between the 23rd of July 2016 and the 1st of 
September 2018, and the post-earthquakes images between the 6th of 
July 2019 and the 21st of January 2020. They were acquired by the 
Spot-6, WorldView-1 (WV1), WorldView-2 (WV2) and WorldView-3 
(WV3) satellites with nominal pixel resolutions of 1.5 m, 0.46 m, 0.46 
m and 0.31 m, respectively. The images used in this study and their 
characteristics are listed in Table S.1. For our analyses only panchro
matic band were used. 

We used three different DEMs to assess the sensitivity to the 

Fig. 6. RSM refinement impact. Maps of EW (a) and NS (b) displacements and density distributions (c) measured by correlating a WV2 image orthorectified with 
RPC-based method and the same image orthorectified with our method. The image was acquired on July 14, 2019. The values of the correction matrix A estimated for 
the RSM refinement are: − 1.072e-11 5.803e-11 3.3574e-11 7.809e-11 -1.254e-11 -3.862e-11 -1.613e-05 1.046e-05 1.118e-05. 
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Fig. 7. Image geometric artifacts induced in correlation maps. (a) North/South component (northward positive) of the displacement map computed between 
two pre-event images (WV-3 acquisition from September 08, 2016, and WV-2 acquisition from June 16, 2018). No measurement is assigned to white points where the 
correlation is too weak. The superimposed graph shows the bias included by the jitter artifact. (b) North/South component map of the Mw 7.1 coseismic displacement 
field due to the 2019 Ridgecrest earthquake. The pre-earthquake image (WV-3) and the post-earthquake image (WV-2 acquisition from July 14, 2019) were 
resampled and orthorectified at 60 cm resolution on a 2 m pre- and post-DEMs, respectively. The offsets were measured from a sub-pixel correlation between a multi- 
scale sliding window of 128 × 128 to 64 × 64 pixels, sliding with a step of 8 pixels. The superimposed graph shows the N/S displacement within this box. The orange 
profile estimates the bias included by the CCD distortions of both WV-3 and WV-1 images before the earthquake. Blue and orange profiles estimate the displacement 
between images bracketing the earthquake. (c) E/W component (Eastward positive) over the same area between two Spot-6 images bracketing the earthquake. The 
fault rupture is identifiable, but the measurement is biased due to the aliasing artifacts. The red profile estimates the amplitude of the aliasing. (d) Skyplot with 
satellite azimuth and elevation angles in blue for the different H.R. images. In olive, the azimuth and elevation of the sun the time of acquisition. In green, the off- 
nadir angle. A specific symbol characterizes each satellite. Green, blue, and orange baselines correspond to the correlation pairs used for profiles in panel (a). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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reference DEM used as input (rDEM): (1) the 30-m resolution DEM from 
the Shuttle Radar Topography Mission (SRTM), which was collected 
using radar (C-band) interferometry in February 2000 (Farr et al., 2007), 
(2) the 10-m publicly available airborne LiDAR data (hereafter referred 
to as “LiDAR DEM”) collected over Ridgecrest in 2016 and accessed from 
Open Topography (www.opentopography.org), June 2020,(3) pre-and 
post-event photogrammetric DEMs with a resolution of 2 m, referred 
to as (Pre-DEM and Post-DEM), which we generated from in-track stereo 
pair acquired in July 2016 and July 2019, respectively. 

Furthermore, 113 orthorectified aerial photos with a resolution of 
60-cm were used as reference images to extract GCPs and to assess the 
horizontal geolocation accuracy of the orthorectified satellite images. 
The aerial photos were acquired between July 22 and September 01, 
2018 and are publicly available through the National Agriculture Im
agery Program (NAIP). 

5. Results 

5.1. Accuracy assessment 

5.1.1. RSM refinement and co-registration accuracy 
In this section, we assess the overall 2D geolocation accuracy of the 

ortho-images generated with refining the RSM using a well geolocalized 
reference image (ref-image). 16 raw images were orthorectified: WV1 (n 
= 4), WV2 (n = 7), WV3 (n = 3) and Spot-6 (n = 2) using the workflow 
outlined in Section 3. A total of 34 (k = 34) orthorectified image were 
generated with a ground sampling distance of 60 cm (n = 28) and 1.5 m 
(n = 6), using three different rDEMs: Pre/Post photogrammetry DEM (n 
= 7), LiDAR-DEM (n = 23) and SRTM-DEM (n = 4). 

The evaluation was performed using a well-matched set of tie points 
between the ref-image (NAIP) and the 3D-set generated ortho-images. Tie 
points were extracted using Scale-Invariant Feature Transform (SIFT) 
(Lowe, 2004), then refined using the image correlation procedure 

Fig. 8. N/S component of the horizontal displacement. The Base-Pre1 column (a) corresponds to the correlation between two pre-event images (WV1 and WV2 
images acquired on June 16, 2018, and June 23, 2018, respectively). Base-post1 (b) and Base-post2 (c) columns correspond to the correlation of two images 
bracketing the MW 7.1 earthquake. WV1 as the pre-event image and the stereo pair WV2 as the post-event images (the stereo-images were acquired on July 14, 2019). 
The images were orthorectified and resampled to 60 cm resolution using three different DEMs: pre-DEM (1 m), Lidar DEM (10 m), and SRTM DEM (30 m). (d) Skyplot 
with satellites: azimuth, elevation, and off-nadir angles and the position of the sun. 
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described in Section 3.1. Points with poor correlation were filtered out 
based on correlation criteria. Afterward, selected tie points were trans
formed to a projected coordinate system (UTM 11 N) using the geo- 
transform respective to each ortho-image (k). Subsequently, horizontal 
errors at all virtual control points (vCP) were computed for each 
orthoimage: ΔXi

k = (XvCPi
ref − XvCPi

orthok) and ΔYi
k = (YvCPi

ref − YvCPi
orthok). Ulti

mately, the horizontal errors (ΔXi
k, ΔYi

k) were used to compute the 
registration uncertainty and statistics to assess the performance (e.g., 
the circular errors at the 68% 68CE (~1σ) and 90% 90CE (~1.4σ) 
confidence level). 

It should be emphasized that we selected different GCPs from the 
ones used for the RSM-refinement to assess the ortho-images geolocation 
accuracy. 

Fig. 4-a shows an example of measured error in one ortho-image 
orthorectified using three different DEMs. The 68CE and 90CE values 
are reported in the plots of Fig. 4-b-c and summarized in Table 2. 

Our RSM refinement approach consistently yields a more accurate 
geolocation of the ortho-images than the specification given by Digital 
Globe and Airbus, which report a 90CE ~ 3-5 m for ortho-images ac
quired at off-nadir angles <15◦. Moreover, one can observe from values 

Fig. 9. 3D-displacement maps using our approach. The method was applied to the same data set as in Fig. 8. The first and second columns correspond to the 
horizontal displacement. The third column corresponds to the vertical displacement. The method was tested using three reference DEMs: Pre-DEM (1 m), LidarDEM 
(10 m), and SRTM DEM (30 m). 
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summarized in Table 2 and Table S.2 that the horizontal accuracy de
pends on the ground sampling distance (GSD) of produced images, the 
quality of the rDEMs and the image acquisition parameters (mainly off- 
nadir angles).We note that the geolocation accuracy also depends on:  

(1) The geolocation accuracy of the reference image (NAIPs) which is 
reported to be ~5 m at 95CE (Earth Resources Observation and 
Science (EROS) Center, 2017). Therefore, by design, our pro
cedure cannot yield a more accurate geolocation.  

(2) The environmental surface changes between the 3D-set ortho- 
images and the ref-image, that is a function of the difference in 
acquisition date, sensors characteristics and acquisition condi
tion. The accuracy of the geolocation is degraded where such 
changes are most significant.  

(3) The number of vCPs and their distribution within the scene. They 
should be selected on flat areas to avoid both parallax effects and 
shadows, and cover the entire extent of the scene for highest 
accuracy. 

However, for the vCPs selected for the geolocation assessment, we 
did not consider all these criterions. Therefore, much of the observed 
residual spread can be attributed to change in landscape and terrain 
characteristics (i.e., earthquake surface deformation) over time, which 
on the one hand, leads to errors in extracted vCPs for the geolocation 

analysis of generated ortho-images. On the other hand, errors in the 
selected GCPs for the RSM-refinement result in an error in the linear 
coefficient of Eq.(2), and thus to a long-wavelength error in the 
displacement maps (Section 3.4). Overall, the circular errors range from 
0.5 to >2 m, with a mean value of ~1.7 m. Similarly, residual errors in 
the horizontal geolocation accuracy ranges from 0.4 m to >3 m with a 
mean value of 1.92 m. 

Table 2 and Fig. 4 also show that images orthorectified using the 
photogrammetric pre- and post-DEMs have slightly better horizontal 
geolocation accuracy than the images orthorectified using either the 
LiDAR or SRTM DEMs. The residual errors are the largest with SRTM, 
with a mean value of ~4 m (RMSExy) and a 68CE of ~3 m. The errors 
increase for larger off-nadir view angles. The 68 CE is on average 2.16 m 
for ortho-acquired at off-nadir angles >25◦ while it is ~1.74 m 68CE on 
average when all view angles are considered. 

To quantify the impact of the correction term δ→(p) on the orthor
ectification process, we performed a correlation between pre- and post- 
images orthorectified using either the standard RPC-based method or 
our refinement method (Section 3.1). Fig. 5 shows the correlation results 
between the pre- and post-earthquake WV-2 images acquired on June 
23, 2018, and July 14, 2019, respectively. The same parameters were 
selected for the correlation, and the same DEM, resampling kernel, and 
resolution for the orthorectification. 

The test shows a horizontal bias of ~9 m in EW and ~ 18 m in NS 

Fig. 10. Overview of produced 3D displacement using the state of the art method. (a, b) 2.4-m resolution horizontal surface displacement field of the Mw 7.1 
Ridgecrest. (a) East/West component and (b) North/South component. The horizontal displacement was derived by correlating two images bracketing the earthquake 
using a multi-scale subpixel frequency correlator. (c) Vertical displacements are derived by differencing pre-and post- DEM. 
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Fig. 11. Comparison of vertical displacements measured from our approach and sate-of-the-art method. Blue profiles corresponded to the measurement using 
our method, and orange profiles to the measurement from the stat-of-the-art method. Profiles extracted along (a) AA’, (b) BB’ and (c) CC’, respectively. See Fig. 10-c 
for profiles locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Cross-platform 3D-displacement. (a,c) Sky plots of the 3D-set used for the displacement calculation, using Spot-6 and WV-1 as base image for correlation 
respectively. (b,d) Derived displacement measurements in EW (− 1), NS (− 2) and Dz (− 3) directions, respectively. 

Fig. 13. East/West displacement component of the cross-platform data cube. (a) The input E/W component of the data cube. (b) Reconstructed E/W component 
using the coseismic displacement source of the ICA decomposition corresponding to the coseismic displacement. (c) Displacement residuals reconstructed using the 
remaining sources of the ICA decomposition. (1–4) Correspond to the base image used for the correlation scheme (WV1, pre-Spot6, WV2, and post-Spot6, 
respectively). 
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when the images orthorectified with the standard method are used. In 
addition, we observe a large magnitude parallax related to the topog
raphy that was not resolved correctly during the orthorectification 
process, mainly related to the attitude variation during image acquisi
tion. By contrast, our refinement method reduces the average horizontal 
geolocation accuracy in the EW and NS to ~0.5 m and the parallax due 
to topography. 

The impact of the correction is best observed when we correlate the 
same single image (e.g., WV2 image acquired on July 14, 2019), where 
the base image is orthorectified with the standard method and the target 
image orthorectified with our method (Fig. 6). Thus, the correction 
matrix A is mainly a global correction of the satellite look direction that 
compensates for any drift along the satellite trajectory and attitude (roll, 
pitch, and roll). 

5.1.2. Artifacts 
To identify the different sources of errors and the bias that could 

affect the displacement measurements, we orthorectified a 3D-set 
composed of four Digital Globe images (WV3 acquired on September 8, 
2016, WV1 acquired on June 18, 2018, WV2 acquired on July 14, 2019 
and WV1 acquired on June 21, 2020) at 60-cm ground sampling dis
tance using the high-resolution DEMs (1-m GSD) produced from 
photogrammetry using data either before or after the event. Then, three 
horizontal surface displacement fields with 2.6-m GSD were derived by 
correlating the base image (WV3) to the three target images (pre1-WV1, 
post1-WV2 and post2-WV1). The acquisition parameters of the images 
in this 3D-set and the correlation results are shown in Fig. 7. The mea
surements show strong linear stripe artifacts caused by misalignment of 
the CCD arrays, a common problem in push-broom imaging systems that 
generally use a sensor formed of staggered line arrays of CCD. The 
misalignments are generally small (typically less than 1/10 of the pixel 
size) within a single array and larger (possibly up to 1/2 of the pixel size) 
at the junctions between different arrays. The observed spaced stripes in 

Fig. 7-a in the North/South component of the computed horizontal 
displacement map are correlated with the corresponding spatial posi
tions of the CCD sensors in the base and target images. Consequently, the 
measured horizontal displacement is biased by ~40 cm (~0.7 pix). The 
amplitude of the geometric distortion caused by the CCD misalignment 
is estimated from the disparity map computed between two pre-event 
images where there is no coseismic deformation (Fig. 7-a). This map 
also shows a linear striping artifact typical of jitter running in the sat
ellites’ along-track direction with an amplitude of ~40 cm and topo
graphic artifacts due to DEM inaccuracies. 

Furthermore, another type of artifact typical of aliasing was identi
fied when correlating two SPOT-6 images bracketing the earthquake, as 
reported by Milliner et al. (2021). Two Spot images, with a similar ge
ometry acquisition and a low view angle (<10◦), were orthorectified to 
1.5 m GSD using the same pre-event photogrammetric DEM and then 
correlated using a multi-scale (128 × 128 to 32 × 32 pixels) sub-pixel 
phase correlator with an 8-pixel step, resulting in a 12 m GSD 
displacement map. As shown in Fig. 7-c, the fault rupture is identifiable, 
and no topography-dependent artifacts are observed; however, the 
measurements are biased with an aliasing artifact (amplitudes are up to 
~50 cm) caused by the two images. We suspect that this artifact arises 
due to the resampling procedure used by the provider to generate the 
super-resolution images. 

The different components of the error source that bias the displace
ment field must be taken into account and eventually corrected for, in 
order to produce high-quality measurements of the displacement field (i. 
e., with the highest possible spatial resolution, and reduced artifacts). 

Our measurements show that the main sources of errors include: (1) 
the unmodelled interior orientation (i.e., stripe artifacts), (2) the satel
lite attitude variation (i.e., time-varying attitude jitter), (3) resampling 
errors in the generation of the images distributed by the providers (i.e., 
aliasing artifacts), (4) the image acquisition geometry and DEM quality 
used for the orthorectification (i.e., topography-dependent artifacts), 

Fig. 14. A plot of independent sources extracted from the East/West cross-platform data cube.  

Fig. 15. Overview of the 3D-displacement measurements produced using the average stack of the extracted component corresponding to the coseismic displacement.  

S. Aati et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 277 (2022) 113038

16

and (5) texture and radiometry changes between the base and the target 
images (i.e., decorrelation noise). 

5.2. State-of-the-art 2-D measurements of horizontal displacements 

We first measured horizontal displacements using the state-of-the-art 
method based on the correlation of orthoimages. Four input images are 
selected: WV-1 and WV-2 before the earthquakes and in-track stereo 
pairs of WV-2 after the earthquakes (see sky plot in Fig. 8-d). Each of 
these images is orthorectified to 60 cm GSD using three different pre- 
event DEMs. We use only a single DEM because, most often, it is not 
possible to construct or have access to both a pre- and a post-event DEM. 
The three DEMs considered in this case are the SRTM (30 m), LiDAR 
DEM (10 m), and photogrammetric DEM extracted using WV-2 stereo 
pairs acquired on July 14, 2019 (with 2 m GSD). The orthoimages are 
then correlated using a 32 × 32 pixel window with an 8-pixel sliding 
step, yielding in 4.8 m resolution displacement maps. Before performing 
the orthorectification, “wv_correct” an ASP routine, is used to regenerate 
images corrected for CCD artifacts; this routine is specific only for WV-1 

and WV-2 imagery. 
The North/South components of the horizontal displacement are 

presented in Fig. 8-a,b and -c. The base-pre1 correlation, which is the 
correlation between two pre-event images, should in principle show no 
displacements, and reveal only noise measurements. Topographic arti
facts are clearly present though. In the base-post1 and base-post2 
measurements, a discontinuity that represents the surface rupture 
caused by the Mw 7.1 earthquake is identifiable. In absence of any bias, 
the two displacement measurements should lead to the same result, 
which is not the case here. We can therefore see that the horizontal 
measurements depend on the acquisition geometry as well as the rDEM 
used for the orthorectification. In addition, less decorrelation and 
topographic artifacts are observed when a photogrammetric DEM 
extracted from the input images is used for the orthorectification. The 
measurement of the displacement also shows that the linear artifacts 
CCD are reduced compared to Fig. 7-b but not completely removed; 
residual CCD misalignments are still observed. 

The horizontal results and identified artifacts derived from the 
abovementioned approach are consistent with horizontal measurements 

Fig. 16. Example of 3D-displacement maps computed with 4 different combinations of images.  
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from other studies based on similar methods applied to lower-resolution 
sensors, including Sentinel-2 and PlanetScope (Milliner & Donnellan, 
2020), and higher-resolution sensors, including SPOT-6 (Milliner et al., 
2021), WorldView (Barnhart et al., 2020), and Pléiades (Antoine et al., 
2021). 

5.3. 3D-displacements measured from our workflow 

We ran the workflow described in section 3 using the same 3D-set 
presented in the previous section (see sky plot in Fig. 8-d). Fig. 9 shows 
the computed 3D-displacement measured using the single correlation 
strategy option with WV-1 acquired on June 16, 2018, selected as the 
base image. 

Analysis of the horizontal components (~ 2.4 m GSD) reveals a 
substantial improvement of the measurement that is no longer sensitive 
to the rDEM used for the orthorectification. The insensitivity to the 
rDEM characteristics is also demonstrated by comparing profiles 
(Fig. S.1 and Table S.3). Furthermore, because we triangulate the cor
relation measurements at each sampling point, the topographic re
siduals (i.e., the unresolved parallax during the orthorectification 
process) are reduced, and the vertical component is extracted with 
proper account for topographic changes. It should be noted that, with 
our method, the measured vertical displacement is not affected by the 
horizontal advection caused by the coseismic deformation, which can be 
the case using the state-of-the-art method. We also observe some arti
facts typical of jitter, which are more prominent in the vertical 

Fig. 17. Example of sources extracted from the East/West data cube. (a) Histogram and cumulative variance distribution of extracted sources. (b) Example of the 
spatial distribution of the primary sources. 
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Fig. 18. Reference 3D-displacement measurements. (a-c) Colour maps represent the East/West, North/South, and vertical ground displacement, respectively. (d- 
f) profiles extracted along the respective black box in panels (a-c). 
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component. 
The average vertical displacement is between 1.5 m and − 1.5 m. 

Looking at area far from the rupture, where vertical displacements are 
small <0.8 m based on InSAR and GNSS measurements (Jin and Fialko, 
2020; Ross et al., 2019), we measure ~0.5 m, which gives a first-order 
estimate of the uncertainty. 

The results obtained from applying our workflow confirm that high- 
quality 2D/3D displacement measurements can be produced using a 
publicly available coarse resolution rDEM, typically with SRTM. 
Therefore, our approach is not limited by the availability of an updated 
high-resolution DEM and compared to a purely 2-D workflow, improves 
the quality of the measurements of the horizontal displacement field. 

5.3.1. Comparison of displacements measured from 3-D correlation and 
state-of-the-art method 

The 3D surface displacement field due to the Ridgecrest earthquake 
sequence was measured in previous studies by combining the standard 
2-D workflow procedure with DEM differencing informally known as the 
“2.5 D method”, as outlined in section 2 (Antoine et al., 2021; Barnhart 
et al., 2020). In order to compare our approach to this more standard 
method, we have reproduced the displacement results presented in 
Barnhart et al. (2020) using two sets of Digital Globe stereo-pairs ac
quisitions. The first stereo-pair of WV-1 acquired on June 16, 2018, 
before the Ridgecrest earthquakes, and the second stereo-pair of WV-2 
acquired after the earthquakes on July 14, 2019 (Table S1). The two 
sets of stereo-data were processed separately to produce pre-and post- 
DSM at 2-m GSD using the OrthoEngine module of PCI Geomatics 
software (details on DEM extraction are provided in the supporting in
formation). Then, the misregistration between the two DEMs was 
reduced by extracting a sub-region located far from the surface ruptures. 
The horizontal surface displacement was retrieved using sub-pixel image 
correlation in the frequency domain between pre-and post- orthor
ectified images. For each date, the image with the smallest off-nadir 
angle (28.6◦ and 27.6◦) is orthorectified with the high-resolution pre- 
and post- DEM, respectively, with the purpose of limiting as much as 
possible the stereoscopic effects. The NS and EW horizontal displace
ments with 2.4-m GSD are shown in (Fig. 10-a,b). Ames Stereo Pipeline 
software is used to correct for Digital Globe images CCD misalignment, 
while the orthorectification and correlation processes are performed 
using COSI-Corr+. The vertical displacement is computed by simply 
differencing the two DEMs without accounting for the horizontal 
displacement. As stated by Barnhart (2020, 2019), if the topography is 
relatively flat, as is the case for most of the valley where the Ridgecrest 
earthquakes occurred, the horizontal displacement of the topography 
should not bias the vertical component on average. It is, however, a 
source of noise due to the roughness of the topography. 

The correlation of the pre-and-post shaded DEMs (Fig.S 2) actually 
shows some measurable deformation signal despite the lower resolution 

of the DEMs compared to the images. The state-of-the-art approach 
yields in a biased displacement arising due to lateral shift of the 
topography during the earthquake. The bias is between 1.6 m and 2 m on 
average (Fig. S2f-g). In general, the topography differencing will reflect 
the combined effects of misregistration, resampling errors, and unac
counted advective transport of the topography. By contrast, our method 
solves for the 3D displacement in all 3 directions independently and it is 
insensitive to the choice of the rDEM. Fig. 11 shows an example of 
profiles extracted from the vertical component measured by our method 
and by the state-of-the-art method. 

5.4. Cross-platform 3D-displacement 

In this section, the 3D-displacement field was retrieved using a 3D-set 
composed of images from different platforms; we combined WV1, WV2, 
and Spot-6 (see sky plots in Fig. 12) for more information on geometry 
and acquisition dates). The 3D-set images were orthorectified using the 
LiDAR DEM to a 1.5 m resolution, which corresponds to the spatial 
resolution of the panchromatic band of Spot-6 imagery. Initially, we 
adopted a single correlation scheme by selecting the pre-event Spot-6 
image as the base image. Analysis of the resulting 3D-displacement re
veals a pattern of aliasing that bias the measure in all directions (Fig. 12- 
b) as noted above and reported by Milliner et al. (2021). 

A first approach to mitigate this artifact is to change the base image 
to avoid cross-correlation between the pre- and post- Spot-6 ortho im
ages. Fig. 12-d shows the produced displacement measurements with 
WV-1 selected as the base-image. An improvement in the measurements 
can be noticed, there is no longer interference between the resampling 
artifact from the pre- and post- images, and the aliasing pattern disap
pears; however, the original resampling artifacts are still present and are 
not corrected. This approach would be effective when the coseismic 
displacement amplitude is larger than the amplitude of the resampling 
errors, which we estimate to be about ~1/10 pixel (~15 cm). Therefore, 
within this approach, we actually do not remove the artifact. Instead, we 
show later a post-processing scheme to correct it. 

To give equal weight to all the images, we constructed a data cube of 
4 displacement maps by varying the base image (see section 3.5). Each 
displacement map in this data cube should contain the same deforma
tion signal with additional artifacts of varying amplitude and nature 
depending on the choice of the base image. As it can be seen in the East/ 
West component of the data cube (Fig. 13-a), there are two displacement 
maps where the aliasing pattern is clearly identifiable. They correspond 
to the scheme in which we have chosen one of the two SPOT images as a 
base-image. 

By applying the geoICA decomposition to the data cube, we sepa
rated the coseismic displacement from artifacts sources that correspond 
mainly to the aliasing artifact. The extracted sources for the East/West 
component are presented in Fig. 14. As expected, the deformation signal, 

Fig. 19. Error distribution example. Histograms of the relative offsets between the reference 3D-displacement and the state-of-the-art method (orange histograms) 
and between the reference 3D-displacement and the 3D-correlation approach with only 4-images (blue histograms). (a) EW histograms of the density error distri
bution. (b) NS histograms of the density error distribution. (c) Dz histograms of the density error distribution. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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easily identifiable from the discontinuity due to the surface ruptures, 
shows up in only one component (S1). Therefore, the 3D-displacement 
map was produced using only this source. Fig. 13-b reports the extrac
ted deformation signal, and Fig. 13-c represents the artifact. The final 
displacement maps were generated by stacking the 4 displacement maps 
reconstructed from only the S1 component. As a result, we observe a 
considerable improvement in the 3D displacement map, and the various 
artifacts due to the Jitter, CCD misalignments, or resampling errors are 
not visible anymore (Fig. 15). 

5.5. Generation of a reference 3D-displacement 

The ICA decomposition can be applied to any data cube when pro
vided at least two images before and two images after the deformation 
event. In principle, including more data should help remove the noise 
further. In this section, we use a 3D-set consisting of 7 images (3 ac
quired before the earthquakes and 4 acquired after) over the region of 
interest 1 (ROI 1). Table S.3 provides detailed information about the 
selected 3D-set images. 

The input 3D-set images were orthorectified with the LiDAR DEM at 
60 cm GSD. Then, by applying the progressive correlation strategy, 42 
correlation maps were generated, yielding in 72 3D-displacement maps 
(A3

2C4
2 + C3

2A4
2, where A and C stand for arrangement and combination, 

respectively). The WV1 and WV2 images were corrected for CCD arti
facts using ASP utility “wv_correct” before the orthorectification pro
cess. The resulting data cubes were composed of 72 observations in each 
direction, and pixel measurements with a displacement of more than 20 
m were considered outliers and discarded. 

An example of the computed displacement maps is shown in Fig. 16 
(an animation with all the results is available in the supplementary 
materials). 

Visual assessment reveals that the vertical components vary 
depending on the acquisition geometry of the satellites, while the hor
izontal components are more stable. In addition, linear stripes are 
observed along and across the displacement maps, which are typical of 
CCD misalignment and jitter, respectively. Residual CCD misalignments 
are still even after applying a CCD correction procedure (Shean et al., 
2016) on WV1 and WV2 and refining the physical model. 

Then, to take advantage of the observation redundancy, the ICA 
decomposition was performed on the data cubes to extract a reference 
displacement signal free of residual artifacts. By looking at the variance 
of the various source components, we see that one component accounts 
for most of the data variance (Fig. 17-a), and seven other significant 
components that represent the artifacts. The data variance explained by 
the different source components in the case of the E/W data cube is 
shown in Fig. 17-a. Fig. 17-b also represents a spatial visualization of the 
extracted dominant components. The dominant component (S1) clearly 
represents the coseismic signal. Again, the other source components 
show linear stripes along- and across-track, typical of CCD misalignment 
and jitter artifacts, which are clearly highlighted in panels S4 and S5 
from Fig. 17. 

The sources also account for persistent topographic artifacts (Fig. 17- 
b(S3)) that were not resolved during the orthorectification and 3D- 
Computing steps (see sections 3.2 and 3.4). We use the only source 
component (S1) corresponding to the coseismic signal (Fig. 17-b(S1)) to 
reconstruct the data cube, which amounts to saying that we are filtering 
out the sources of artifacts represented by the other components. We 
then stack all the EW, NS, and vertical maps to produce a 3D-displace
ment map that we consider free from artifacts and the most accurate 
signal extracted from all the data assembled for this study. We recom
mend using this reference measurement in further investigations of the 
Ridgecrest earthquake sequence. Fig. 18 represents the produced 
reference displacement measurements. 

6. Error quantification 

We now use the reference 3-D displacement map described in the 
preceding section to evaluate the errors contained in the measurement 
made from a minimum 3D-Set of 4 images and measurement generated 
from the state-of-the-art method. Histograms in each dimension are 
given in Fig. 19. The spread of our 3D method is Gaussian and can be 
seen as reflecting the noise of the measurements. Therefore, on average, 
the uncertainty on the NS, EW, and vertical displacement measurements 
is ~0.6 m, ~0.7 m, and ~ 0.6 m at the 90% confidence level, respec
tively. However, with the state-of-the-art method, the standard devia
tion of the Gaussian distribution, on average, of the EW component is 
~2.18 m and of the NS component, ~2.5 m, while for the vertical 
component is ~0.7 m. Artifacts related to topography, jitter, and CCD 
misalignment are forming the tails of the state-of-the-art method 
histogram. 

7. Conclusions 

We present in this study a new approach to measure ground defor
mation in 3D from optical satellite images, which is applicable if at least 
2 pairs of images are available before and after a deformation event. The 
addition of an ICA-based post-processing allows to take advantage of 
data redundancy to separate the deformation signal from the various 
sources of artifacts that are typical of satellite imaging systems related to 
the internal (CCDs misalignment in particular), the external models (the 
telescope position and viewing direction during the image acquisition) 
and the production of the images distributed by the providers (resam
pling bias). In any case, the method yields the 2-D displacement field 
with significantly better accuracy than a standard correlation of ortho- 
images, even if the orthorectification procedure is optimized to correct 
misregistration arising from errors on the internal and external models. 
Vertical displacements can be resolved if the viewing angles span a 
sufficiently large range of values (> 8◦) to allow for the measurable 
stereoscopic offsets. The procedure makes use of a reference DEM, but 
the outcome is independent of the characteristics of the chosen DEM, 
which is not the case with the standard approach. We used the case- 
example of the ground deformation caused by the Ridgecrest earth
quake sequence to assess the performance of our proposed approach. We 
were able to generate high-quality measurements of coseismic ground 
displacement with GSD of 2.4 m, and uncertainties at the 90% confi
dence level on the NS, EW, and vertical displacement measurements of 
0.6 m, 0.7 m, and 0.6 m, respectively. The technique could similarly be 
used to study other processes causing displacements of the earth surface, 
such as slow landslide, sand dune migration, volcanic deformation, and 
ice flow. 
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Stumpf, A., Michéa, D., Malet, J.-P., 2018. Improved co-registration of Sentinel-2 and 
Landsat-8 imagery for earth surface motion measurements. Remote Sens. 10, 160. 
https://doi.org/10.3390/rs10020160. 

Tang, Y., Li, L., Wang, C., Chen, M., Feng, W., Zou, X., Huang, K., 2019. Real-time 
detection of surface deformation and strain in recycled aggregate concrete-filled 
steel tubular columns via four-ocular vision. Robot. Comput.-Integr. Manuf. 59, 
36–46. https://doi.org/10.1016/j.rcim.2019.03.001. 

Tong, X., Xu, Y., Ye, Z., Liu, S., Tang, X., Li, L., Xie, H., Xie, J., 2015. Attitude oscillation 
detection of the ZY-3 satellite by using multispectral parallax images. IEEE Trans. 
Geosci. Remote Sens. 53, 3522–3534. https://doi.org/10.1109/ 
TGRS.2014.2379435. 

Ye, G., Pan, J., Zhu, Y., Jin, S., 2020. A jitter detection method based on the integration 
imaging model. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. V-3–2020, 
709–715. https://doi.org/10.5194/isprs-annals-V-3-2020-709-2020. 

Zhou, Y., Parsons, B., Elliott, J.R., Barisin, I., Walker, R.T., 2015. Assessing the ability of 
Pleiades stereo imagery to determine height changes in earthquakes: a case study for 
the El mayor-Cucapah epicentral area. J. Geophys. Res. Solid Earth 120, 8793–8808. 
https://doi.org/10.1002/2015JB012358. 

Zinke, R., Hollingsworth, J., Dolan, J.F., Van Dissen, R., 2019. Three-dimensional surface 
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