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Abstract. Recent work has shown that the local non-Gaussianity parameter
fNL induces a scale dependent bias, whose amplitude is growing with scale.
Here we first rederive this result within the context of the peak–background split
formalism and show that it only depends on the assumption of universality of the
mass function, assuming that the halo bias only depends on the mass. We then
use the extended Press–Schechter formalism to argue that this assumption may
be violated and that the scale dependent bias will depend on other properties,
such as the merging history of halos. In particular, in the limit of recent mergers
we find that the effect is suppressed. Next we use these predictions in conjunction
with a compendium of large scale data to put a limit on the value of fNL. When
combining all data assuming that the halo occupation depends only on the halo
mass, we get a limit of −29 (−65) < fNL < +70 (+93) at 95% (99.7%) confidence.
While we use a wide range of data sets, our combined result is dominated by the
signal from the SDSS photometric quasar sample. If the latter are modeled
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as recent mergers then the limits weaken to −31 (−96) < fNL < +70 (+96).
These limits are comparable to the strongest current limits from the Wilkinson
Anisotropy Probe (WMAP) five-year analysis, with no evidence of a positive
signal in fNL. While the method needs to be thoroughly tested against large
scale structure simulations with realistic quasar and galaxy formation models,
our results indicate that this is a competitive method relative to the cosmic
microwave background one and should be further pursued both observationally
and theoretically.
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1. Introduction

The origin of structure formation in the universe is one of the most hotly debated topics
in current cosmology research. The standard paradigm is that of inflation [1]–[4], which
has been tremendously successful in describing a very large number of very distinct data
sets (see e.g. [5]). Inflationary models generically predict a flat universe and nearly scale-
invariant spectrum of initial fluctuations [6]–[10], both of which seem to be confirmed by
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observations. Consequently, a lot of effort is being put into constraining observables that
might actually distinguish between different models of inflation. At the moment, this
is done as a multi-pronged effort: first, measurement of the primordial power spectrum
gives a direct measure of the inflationary potential shape and inflationary models differ
on the actual slope, some predicting a red and some a blue spectrum. Moreover, inflation
predicts that the primordial slope should only be changing with scale very slowly and any
deviation from this prediction would be a surprise in need of an explanation. Second,
a detection of B-mode polarization in the cosmic microwave background, if interpreted
as gravitational waves from the early universe, will effectively determine the energy scale
of inflation and rule out a major class of inflationary models that predict that inflation
occurs at a low energy scale [11]. Alternatives to inflation, such as ekpyrotic models [11]–
[14], differ from inflationary predictions in that the expected gravitational wave signal
in the CMB is always negligible. Thus, they can be falsified if primordial gravitational
waves are detected. Third, multifield models could generate isocurvature perturbations;
while now ruled out as the main mode of structure formation, these could be present at a
subdominant level and if detected would rule out the simplest models of inflation [15]–[18].

A fourth direction, and the one we focus on in this paper, is non-Gaussianity in initial
conditions. Standard single-field inflation predicts that the departures from Gaussianity
are very small and not accessible with the current observational constraints. Most of
the models predict that non-Gaussianity is of the local type, meaning that it depends
on the local value of the potential only. A standard parameterization of the primordial
non-Gaussianity is the so-called scale independent fNL parameterization, in which one
includes a quadratic correction to the potential [19, 20]:

Φ = φ + fNLφ2, (1)

where φ is the primordial potential assumed to be a Gaussian random field and fNL

describes the amplitude of the correction. A typical value of fNL for standard slow roll
inflation is of the order of the slow roll parameter and thus of order 10−2 [21], but this is
likely to be swamped by the contribution from the non-linear transformation between the
primordial field fluctuation (assumed to be Gaussian if it started from the pure Bunch–
Davies vacuum) and the observable (such as the CMB temperature fluctuation), which
generically gives fNL of order unity (see e.g. [22]). Models where fNL is significantly higher
include multifield inflation [23]–[25] as well as models where non-Gaussianity arises during
reheating [26, 27] or preheating [28]–[30]. Non-slow roll inflation models may also lead to
a significant non-Gaussianity, but are constrained because they may not lead to enough
inflation in the first place. Note that since φ ∼ 10−5, even fNL ∼ 100, comparable to the
present limits, generates non-Gaussian signatures only at a 10−3 level, so the non-Gaussian
signal that one is searching for is very small. Overall, any detection of fNL above unity
would be a major surprise in need of an explanation within the inflationary paradigm.

Very recently, non-Gaussianity in ekpyrotic models has also been studied, with the
results suggesting that non-Gaussianity in these models is generically large [31] and often
correlated with the spectral slope ns [32, 33], in the sense that the redder the spectrum
the higher the non-Gaussianity that one may expect. Thus, non-Gaussianity is emerging
as one of the strongest discriminators among the models attempting to explain the origins
of structure in the universe.

Traditionally, the cleanest method for detecting the non-Gaussianity has been measur-
ing the bispectrum or three-point function of the cosmic microwave background (CMB).
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The initial three-year Wilkinson Microwave Anisotropy Probe (WMAP) result gave a
limit on fNL of −54 < fNL < 134 [34] (all limits reported at 95% confidence limit) from
the bispectrum of the WMAP data at � < 400. This has been improved subsequently to
−36 < fNL < 100 by the three-year analysis [35]. However, Yadav and Wandelt recently
claimed a detection of fNL > 0 at 99.5% significance, with 2σ range 27 < fNL < 147 [36].
This result is surprising as, taken at its face value, it implies a very non-standard infla-
tion or something else all together. Interestingly, a similar result has been obtained by
Jeong and Smoot using the one-point distribution function of the CMB [37]. The WMAP
five-year results also favor positive fNL from the bispectrum analysis, although zero fNL

is within the 2σ significance [5], namely −9 < fNL < 111.

An alternative method that has been applied to the CMB is that of Minkowski
functionals [34]. WMAP three-year analysis via this technique puts the limit at −70 <
fNL < 91 [38], while the recent WMAP five-year analysis gives −178 < fNL < 64 from
Minkowski functionals, which is about a factor of two larger error than from bispectrum
analysis [5].

In the near future, the Planck satellite should improve these numbers significantly and
can in principle push to σ(fNL) ∼ 7 [39], while more speculatively, the pre-reionization Hi

21 cm transition may offer an unprecedented access to the three-dimensional distribution
of linear modes at high redshift and may bring us into the regime σ(fNL) � 1 where a
detection is expected [40].

A different direction for probing non-Gaussianity is trying to determine what
observational signatures it leaves in the large scale structure (LSS) of the universe. The
main problem is that non-linearities add their own phase correlations between Fourier
modes that can very quickly swamp the primordial signal. Historically, the focus was on
the mass function of very massive virialized structures [41]–[45]. The motivation was the
notion that very massive virialized objects correspond to very rare peaks in the initial
density field and therefore their number density should be an exponentially sensitive
probe of those peaks at the high mass end, allowing a unique probe of the primordial
peak structure. While results generally agree with this picture, the observational task
is made very difficult by the low number statistics of such objects, uncertainties in the
mass–observable relation and its scatter, and selection effects.

A different method has been recently proposed by Dalal et al [46]. By extending the
classical calculation for calculating the clustering of rare peaks in a Gaussian field [47] to
the fNL-type non-Gaussianity, they have shown that clustering of rare peaks exhibits a
very distinct scale dependent bias on the largest scales. The analytical result has been
tested using N -body simulations, which confirm this basic picture.

The purpose of this paper is twofold: first to provide a better theoretical
understanding of the effect and the range of its applicability, and second, to apply it
to the real data. We begin in section 2 by providing a new, more general, derivation of
the non-linear bias induced by non-Gaussianity, highlighting more clearly its underlying
assumptions. We then extend the basic derivation using the extended Press–Schechter
formalism and show that for certain classes of halos, such as those that have undergone a
recent merger, the results may be substantially modified.

We then use this formalism and apply it to a wide selection of publicly available
large scale structure data. In sections 3–4 we discuss the data, methodology, main results
and systematic issues, including application of section 2 to the derived observational
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constraints. In section 5 we discuss the results and present some directions for the
future.

2. Theory

In this section we provide theoretical derivations of the large scale bias induced by non-
Gaussianity of the local type. We first derive an expression that depends only on the
halo mass function and halo bias, using the fact that fNL causes a local rescaling of the
amplitude σ8. This derivation is more general than that of Dalal et al [46], since it
is not tied to the spherical collapse model. In particular, we show that any universal
mass function, such as the Sheth and Tormen mass function [48] or Press–Schechter mass
function [49], leads to the equation first derived in Dalal et al [46]. We then extend the
derivation to the extended Press–Schechter (ePS) type of analysis and derive the effect of
the halo merger bias on Δb. Finally we comment on the accuracy of the ePS prediction
and compare it to previously published N -body results.

2.1. Local non-Gaussianity in peak–background formalism

Large scale bias of halos is usually treated in the context of the peak–background split [50].
One can split the density field into a long-wavelength piece δl and a short-wavelength piece
δs as in

ρ(x) = ρ̄ (1 + δl + δs) . (2)

The local Lagrangian number density of halos n(x) (i.e. number density of halos per
unit halo mass) at position x can then be written as a function of the local value of the
long-wavelength perturbation δl(x) and the statistics of the short-wavelength fluctuations
Ps(ks). The sufficiently averaged local density of halos follows the large scale matter
perturbations

n(x) = n̄(1 + bLδl), (3)

and so the Lagrangian bias is then

bL = n̄−1 ∂n

∂δl

. (4)

For Eulerian space bias one needs to add the Eulerian space clustering, so the total or
Eulerian bias is b = bL +1. This argument leads to a generically scale independent bias at
sufficiently large scales. The specific function b(M) is obtained by constructing a specific
function n[δl(x), Ps(ks); M ], generally fit to simulations, and then differentiating it.

The non-Gaussian case is complicated by the fact that large and small scale density
fluctuations are no longer independent. Instead, in the fNL prescription, one may separate
long- and short-wavelength Gaussian potential fluctuations,

φ = φl + φs, (5)

which are independent. Inserting into equation (1) we can then re-map these into the
non-Gaussian potential fluctuations,

Φ = φl + fNLφ2
l + (1 + 2fNLφl)φs + fNLφ2

s + const. (6)
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We can then convert this to a density field using the expression δl(k) = α(k)Φ(k), with

α(k) =
2c2k2T (k)D(z)

3ΩmH2
0

. (7)

Here T (k) is the transfer function, c the speed of light, D(z) the linear growth factor
normalized to be (1+z)−1 in the matter domination, Ω0 the matter density today and H0

the Hubble parameter today. The operator α(k) makes it non-local on scales of ∼100 Mpc,
so this can also be thought of as a convolution operator in real space.

For long-wavelength modes of the density field, one may write

δl(k) = α(k)φl(k); (8)

the remaining terms in equation (6) are either much smaller (fNLφ2
l ), have only short-

wavelength pieces ((1 + 2fNLφl)φs), or simply add a small white noise contribution on
large scales (fNLφ2

s).
Within a region of given large scale overdensity δl and potential φl, the short-

wavelength modes of the density field are

δs = α
[
(1 + 2fNLφl)φs + fNLφ2

s

]
. (9)

This is a special case of

δs = α
[
X1φs + X2φ

2
s

]
, (10)

where X1 = 1 + 2fNLφl and X2 = fNL.
In the non-Gaussian case, the local number density of halos of mass M is a function

of not just δl, but also X1 and X2: n[δl, X1, X2; Ps(ks); M ]. The halo bias is then

bL(M, k) = n̄−1

[
∂n

∂δl(x)
+ 2fNL

dφl(k)

dδl(k)

∂n

∂X1

]
, (11)

where the derivative is taken at the mean value X1 = 1. (There is no X2 term since X2

is not spatially variable.) The first term here is the usual Gaussian bias, which has no
dependence on k.

Equation (10) shows that the effect on non-Gaussianity is a local rescaling of
amplitude of (small scale) matter fluctuations. To keep the cosmologist’s intuition we
write this in terms of σ8:

σlocal
8 (x) = σ8X1(x), (12)

so δσlocal
8 = σ8δX1. This allows us to rewrite equation (11) as

bL(M, k) = bGaussian
L (M) + 2fNL

dφl(k)

dδl(k)

∂ ln n

∂ ln σlocal
8

. (13)

In principle there is an additional change in the bias because the mean density n̄
contains terms of order fNL, which arise from (i) the dependence of n on X2 and (ii) the
cross-correlation of δl and X1. This correction is scale independent and so causes no
problem if one is fitting the bias to large scale structure data, as we do here.

Substituting in dφl(k)/dδl(k) = α−1(k) and dropping the local label, we find

Δb(M, k) =
3ΩmH2

0

c2k2T (k)D(z)
fNL

∂ ln n

∂ ln σ8
. (14)
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This formula is extremely useful because it applies to the bias of any type of object and
is expressible entirely in terms of quantities in Gaussian cosmologies, which have received
enormous attention from N -body simulators. Within the peak–background split model,
the task of performing non-Gaussian calculations is thus reduced to that of performing
an ensemble of Gaussian simulations with varying amplitude of matter fluctuations.

2.2. Application to universal mass functions

We now apply equation (14) to halo abundance models with a universal mass function.
Universal mass functions are those that depend only significance ν(M), i.e.

n(M) = n(M, ν) = M−2νf(ν)
d ln ν

d ln M
, (15)

where we define ν = δ2
c/σ

2(M) and f(ν) is the fraction of mass that collapses into halos
of significance between ν and ν +dν. Here δc = 1.686 denotes the spherical collapse linear
overdensity and σ(M) is the variance of the density field smoothed with a top-hat filter
on the scale enclosing mass M . Universality of the halo mass function has been tested
in numerous simulations, with results generally confirming the assumption even if the
specific functional forms for f(ν) may differ from one another.

The significance of a halo of mass M depends on the background density field δl, so
one can compute ∂n/∂δl(x) and insert it into equation (4) [50],

b = 1 − 2

δc
ν

d

dν
ln[νf(ν)]. (16)

(This is >1 for massive halos since the last derivative is negative in this case.)
The derivative ∂ ln n/∂ ln σ8 appearing in equation (14) can be obtained under the

same universality assumption. In fact, the calculation is simpler. The definition of the
significance implies ν ∝ σ−2

8 , so d ln ν/d ln M does not depend on σ8 at fixed M . Therefore
n ∝ νf(ν) and

∂ ln n

∂ ln σ8
=

∂ ln ν

∂ ln σ8

∂ ln[νf(ν)]

∂ ln ν
= −2ν

d

dν
ln[νf(ν)]. (17)

Thus by comparison to equation (16), we find

Δb(M, k) = 3fNL(b − 1)δc
Ωm

k2T (k)D(z)

(
H0

c

)2

. (18)

This is equivalent to the previously derived expressions [46, 51]. However, it is more
general, because it is independent of the form of f(ν). It is therefore valid for the Press–
Schechter mass function as well as for the more accurate Sheth–Tormen function. It is
also valid for any object that obeys a halo occupation distribution (HOD) that depends
only on the halo mass, 〈N〉(M), since in this case both b and Δb are linear averages of
their values for individual masses:

b =

∫
b(M)n(M)〈N〉(M) dM∫

n(M)〈N〉(M) dM
, (19)

and similarly for Δb.
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2.3. Halo merger bias

The above statements apply to biasing of objects whose HOD depends only on the mass
of the halo. However this may not be true for the quasars; in particular there are many
lines of evidence that suggest that quasar activity is triggered by recent mergers [52]–
[54]. Therefore we should consider the standard bias b and large scale bias Δb for recent
mergers, which is in general not the same as the bias of all halos of the final mass [55, 56].

This section considers the simplified case in which quasars are triggered by a merger
between a halo of mass M1 and one of mass M2, after which the quasar lives for a time
tQ � H−1 in the new halo of mass M0 = M1 + M2. This requires us to understand the
dependence of the number of recent mergers on amplitude, which we will again express
as σ8. Unlike for the case of the mass function there are no accurate formulae for fitting
to the merger rate that have been tested against N -body simulations for a variety of
cosmologies. Therefore we will take two approaches here. The first will be to consider the
recent merger probabilities from the extended Press–Schechter (ePS) formalism. With
ePS, we will find that for halos of a given mass the probability of being a recent merger
is proportional to σ−1

8 . In this picture, the bias of the quasars in this case is the same as
the halo bias b(M0), but the fNL-induced bias Δb is less for recent mergers than for all
halos of mass M0. However there is no rigorous error bound on ePS calculations, so it is
desirable to have an independent way to get the dependence of merger histories on σ8. We
therefore consider a second method of getting the recent merger probability during the
matter-dominated era by using redshift scaling relations from N -body simulation results.
The latter method confirms the ePS σ−1

8 relation.

2.3.1. Extended Press–Schechter calculation. We will work in the ePS formalism in which
the merger history seen by a given dark matter particle is controlled by the linear density
field δ(M) measured today, spherically smoothed on a mass scale M in Lagrangian
space [57]. At time t a particle is inside a halo of mass ≥ M if δ(M ′) > ω(t) for any
M ′ > M , where ω(t) = δcD(t0)/D(t) is the ratio of the threshold overdensity for collapse
δc to the growth function D(t). In this picture it is convenient to replace the smoothing
scale M with the variance of the density field on that scale, S(M) = 〈δ(M)2〉. The
smoothed density field δ(S) then follows a random walk as a function of S; this random
walk is usually assumed to be Markovian because (i) each Fourier mode is independent
for Gaussian initial conditions, and (ii) one neglects the difference between smoothing
with a top-hat in Fourier space (in which each mode is independent) and the physically
motivated top-hat in real space.

In this formalism we would like the probability that a halo of mass M0 at time t was
actually of mass M1 at an earlier time t − tQ and experienced a merger with a halo of
mass M2 = M0 − M1. As argued by Lacey and Cole [57], the probability for a particular
dark matter particle in this halo to have been in an object of mass < M1 at time t− tQ is
the probability that the trajectory δ(S) does not exceed ω(t − tQ) between S0 ≡ S(M0)
and S1 = S(M1). This evaluates to

Pparticle(<M1) = erfc
ω(t − tQ) − ω(t)

√
2(S1 − S0)

, (20)
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so the differential probability is

Pparticle(M1) dM1 =
1√
2π

ω(t − tQ) − ω(t)

(S1 − S0)3/2
exp

{
− [ω(t − tQ) − ω(t)]2

2(S1 − S0)

}

×
∣∣
∣
∣
dS1

dM1

∣∣
∣
∣ dM1 ≈

1√
2π

tQ|ω̇|
(S1 − S0)3/2

∣∣
∣
∣
dS1

dM1

∣∣
∣
∣ dM1, (21)

where in the last line we have assumed that tQ is short so that one can do a Taylor
expansion to lowest order in tQ and recalled that ω̇ < 0. The differential probability
that the halo of mass M0 is a recent merger is simply this divided by the fraction of the
particles in the mass M1 progenitor,

P (M1|M0) dM1 =
1√
2π

tQ|ω̇|
(S1 − S0)3/2

M0

M1

∣
∣
∣∣
dS1

dM1

∣
∣
∣∣ dM1. (22)

This formula was first derived by Lacey and Cole [57], albeit in a slightly different form
(they computed P (M0|M1)). It has two well-known deficiencies. One is that it is not
symmetric under exchange of M1 and M2, especially for extreme mass ratios [58, 59].
Another is that it does not contain merger bias in the Gaussian case, i.e. the bias of
mergers is simply b(M0) [55]. This is because of the assumption that the trajectory
δ(S) is a Markovian random walk, which is not quite correct. For example, the analytic
explanations for merger bias of high mass halos [60] are based on non-Markovian behavior
due to the fact that the physically meaningful smoothing in real space does not correspond
to a sharp cutoff at some kmax. The corresponding merger history bias is based on the
correlation coefficient γ between δ(S) and dδ(S)/dS; one would have γ = 0 if one used the
Fourier space rather than real space top-hat filter. This subtlety is however not required
to understand why the merger bias in fNL cosmologies is significant on large scales.

For our application we would also need to integrate over the range of masses M1

that define a major merger, but since the result does not actually depend on this we will
not explicitly write it. In order to apply equation (14) to recent mergers we need only
understand how the number density of recent mergers varies with σ8. Since the number
density of recent mergers is the product of the number density of halos of mass M0 and
the probability of them being recent mergers, we may write

∂ ln nmerger

∂ ln σ8

=
∂ ln n(M0)

∂ ln σ8

+
∂ ln P (M1|M0)

∂ ln σ8

. (23)

From equations (16) and (17), the first term evaluates to δc(b − 1). The second term
contains the merger tree dependent contribution to the large scale bias, and can be
evaluated from equation (22). If one varies σ8, the mass variances all scale as S(M) ∝ σ2

8,
and hence P (M1|M0) ∝ σ−1

8 . Thus we conclude that the second term is equal to −1, so
∂ ln nmerger

∂ ln σ8

= δc(b − 1 − δ−1
c ). (24)

This is identical to the extra large scale bias for halos of fixed mass, except that we have
a factor of b − 1 − δ−1

c instead of b − 1, so the factor of b − 1 is replaced by b − 1.6.
This formula is derived from ePS formalism and so it would seem to be on a somewhat

less certain footing, since the analytic formulae for merger rates have not been tested in
N -body simulations as extensively as those for the halo mass function. However, as we
show in the following subsection, we do have some guidance from numerical simulations
suggesting that the scaling derived here is correct.
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2.3.2. Scaling from N -body simulations. The ePS formalism predicts that the probability
of a halo of mass M0 being a recent merger, P (M1|M0)dM1, is proportional to σ−1

8 . While
the qualitative result that massive halos are more likely to be recent mergers in low σ8

than high σ8 cosmologies is supported by N -body simulations [61, 62], the quantitative
validity of the −1 exponent does not appear to be well tested. Nevertheless, in the matter-
dominated era it is possible to determine the exponent from the redshift dependence of
the merger rate.

The key is that there is no favored timescale in the Einstein–de Sitter cosmology; scale
factor and linear growth factor are both proportional to t2/3 and therefore the rescaling
of initial amplitude is mathematically identical to rescaling of time. Hence two N -body
simulations whose initial conditions differ only by the normalization of the primordial
perturbations will evolve through exactly the same sequence of halo formation and
mergers, except that the scale factor of each merger is re-scaled according to amerger ∝ σ−1

8 .
Note that for ΛCDM cosmologies this correspondence between scaling time and

scaling normalization breaks as the amplitude of fluctuations at the onset of cosmic
acceleration will be different for different initial amplitudes. Therefore results of this
rescaling do not apply to the lowest redshifts, where the dark energy becomes important,
but since in our analysis the only sample where recent mergers may be relevant is the
quasar sample, which has a redshift distribution peaking at z ∼ 1.7, this is a minor
deficiency.

We want to test this relation from the merger history statistics [63] in the Millennium
simulation [64]. The recent merger probability, which we have denoted as P (M1|M0)dM1,
is related to the merger rate B/n defined by [63] by

P (M1|M0)dM1 = tQ
B(M0, ξ)

n(M0)

dz

dt

∂M1

∂ξ
dξ, (25)

where ξ > 1 is the mass ratio of the progenitors. Here B/n is the merger rate per
final halo of mass M0 per unit redshift per unit ξ. The derivative with respect to σ8 is
straightforward to express:

∂ ln P (M1|M0)

∂ ln σ8
=

∂ ln(B/n)

∂ ln σ8
, (26)

where the partial derivatives are all at constant z.
In an Einstein–de Sitter universe, the rescaling of the amplitude

σ8 → (1 + ε)σ8 (27)

is equivalent to rescaling of the scale factor (or redshift):

1 + z → 1 + z

1 + ε
. (28)

Equating the recent merger probabilities in these two cases gives

B

n
(1 + z, σ8(1 + ε)) dz =

B

n

(
1 + z

1 + ε
, σ8

)
dz

1 + ε
. (29)

(The denominator 1+ε on the right-hand side comes from rescaling of the redshift interval,
dz → dz/(1+ε).) Taking the logarithm of both sides, and then differentiating with respect
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to ε gives

∂ ln(B/n)

∂ ln σ8
= −1 − ∂ ln(B/n)

∂ ln(1 + z)
. (30)

This means that equation (26) can be evaluated provided the power-law exponent relating
B/n to 1 + z is known.

The ePS prediction is B/n ∝ (1 + z)0, i.e. constant [63]. Inspection of figure 8 of [63]
shows that for a wide range of halo masses (≥2 × 1012M�) and progenitor mass ratios
(100:1 through 3:1), the exponent is indeed close to 0 during the matter-dominated era
z > 1, although in some cases (galaxy mass halos, 3:1 mergers) the actual scaling is closer
to B/n ∝ (1 + z)0.1. These results suggest that the scaling ∂ ln P (M1|M0)/∂ ln σ8 is in
the range of −1 (the ePS prediction) to −1.1. If we plug this into equation (23) then we
derive ∂ ln nmerger/∂ lnσ8 equal to δc(b − 1.6) (for −1) or δc(b − 1.65) (for −1.1).

These results provide an independent calculation of ∂ ln P (M1|M0)/∂ ln σ8 that is on
a more solid footing than ePS. The agreement of the logarithmic derivatives at the ∼10%
level is remarkable, especially given that ePS does not do so well at predicting the absolute
merger rate.

2.3.3. Summary. We can write a generalized expression for the fNL induced scale
dependent bias as

Δb(M, k) = 3fNL(b − p)δc
Ωm

k2T (k)D(z)

(
H0

c

)2

, (31)

where 1 < p < 1.6, i.e. p = 1 for objects populating a fair sample of all the halos in a
given mass range and p = 1 + δ−1

c ∼ 1.6 for objects that populate only recently merged
halos. Below we discuss plausible values of p for the data samples used in this paper.

To summarize, in non-Gaussian cosmologies, there are two types of merger bias: both
b and Δb can depend on the merger history of a halo as well as its final mass. The ePS
prediction for recent mergers is that for the bias b = b(M0), i.e. there is no dependence on
merger history; but that recent mergers with final mass M0 have a smaller Δb than one
would find considering all halos of mass M0. Under the specific assumptions of ePS, if
one makes the extreme assumption that all quasars are the result of recent halo mergers,
the correction can be implemented by replacing b − 1 in equation (18) with b − 1.6.

The reliability of the ePS result can only be evaluated by comparison to N -body
simulations. In the matter-dominated era, in the range of masses and progenitor mass
ratios covered by [63], ePS appears to be a good description for the merger bias of Δb.

Since in practice one estimates Δb from the observed clustering rather than from
the unobserved halo mass M0, any assembly bias effects in b [65] are also important to
our analysis. This subject has received much attention recently, with the general result
being that for high mass halos (M � M�), those halos that exhibit substructure, have
lower concentration, or are younger have a slightly higher bias than the mean b(M). For
example, in [66] it was found that the lowest quartile of halos in concentration have bias
∼10–20% higher than the mean b(M). Reference [67] found that the lowest concentration
quintile was ∼10% more biased than their highest concentration quintile, and that this
dependence was even weaker if one split on formation redshift instead of concentration.
Reference [68] found almost no dependence on formation redshift in the relevant range
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δc/σ ≥ 2, but their lowest quintile of concentration is ∼25% more biased than the mean
b(M) and even larger effects are seen if one splits by substructure. Reference [56] found
that the bias for recent major mergers was enhanced by ∼5% relative to b(M). It is clear
that the strength of this effect depends strongly on the second parameter used, but in the
case of the definitions related to the mergers, the deviation in b(M) is significantly less
than the corrections to the Δb, which replaces b−1 with b−1.6. We will therefore assume
that the theoretical uncertainties are fully absorbed by the expression in equation (31).

Finally, while there is ample evidence that quasar activity is often triggered by
mergers, it is probably not the case that all quasars live in recently merged halos.
Therefore the true value of p for quasar population lies between 1 and 1.6, since the true
population of host halos lies somewhere between randomly selected halos and recently
merged halos. Therefore, our limits with p ∼ 1.6 should be viewed as a most conservative
reasonable option.

3. Method and data

After reviewing and extending the theoretical formalism we turn to its application to the
real data. We would like to use equation (31) to put constraints on the value of the fNL

parameter. Since the effect is significant only on very large scales we need to use the
tracers of large scale structure at the largest scales available. In addition, the effect scales
as b−p, where p is typically 1 but can be as large as 1.6 in special cases; hence we need very
biased tracers of large scale structure to measure the effect. We discuss below our choice
of observational data. Finally, the effect changes the power on large scales and in principle
this can also be achieved with a change in the primordial power spectrum, although this
degeneracy exists only in the presence of one tracer: with two tracers with different biases
one can separate fNL from the changes in the initial power spectrum. Here we assume
that the basic model is one predicted by the simplest models of structure formation and
we do not allow for sudden changes in the power spectrum beyond what is allowed by
the standard models, which assume the power spectrum slope ns to be constant. We use
the Markov chain Monte Carlo method to sample the available parameter space using a
modified version of the popular public package cosmomc [69]. In addition to fNL, we fit
for the standard parameters of the minimal concordance cosmological model: ωb = Ωbh

2,
ωCDM = ΩCDMh2, θ, τ , ns and log A, where θ is the ratio of the sound horizon to the
angular diameter distance at decoupling (acting as a proxy for Hubble’s constant), τ is
the optical depth and A is the primordial amplitude of the power spectrum. All priors
are wide enough that they do not cut the posterior at any plane in the parameter space.

We always use standard cosmological data as our baseline model. These include the
WMAP five-year power spectra [70, 71] and additional smaller scale experiments (VSA,
CBI, ACBAR) [72]–[74], as well as the supernovae measurements of luminosity distance
from the Supernova Legacy Survey (SNLS) [75]. For values of fNL under consideration in
this paper these data sets are not directly sensitive to the fNL parameter. However, they
are needed to constrain the basic cosmological model and thus the shape and normalization
of the matter power spectrum. The large scale structure data discussed below are thus
simultaneously able to fit for fNL and other auxiliary parameters.

Most of our large scale structure data are drawn from the Sloan Digital Sky Survey
(SDSS). The SDSS drift-scans the sky in five bands (ugriz) [76] under photometric
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conditions [77, 78] using a 2.5 m optical telescope [79] with a 3◦ field of view camera [80]
located in New Mexico, USA [77]. The photometric and astrometric calibration of the
SDSS and the quality assessment pipeline are described by [81]–[85]. Bright galaxies [86],
luminous red galaxies (LRGs) [87], and quasar candidates [88] are selected from the SDSS
imaging data for spectroscopic follow-up [89]. This paper uses imaging data through the
summer of 2005, which formed part of SDSS Data Release 6 (DR6) [90], and spectroscopic
data through June 2004 (DR4) [91].

The requirement of large scales and highly biased tracers leads us to explore several
different large scale data sets, in particular SDSS LRGs, both spectroscopic [92] and
photometric [93] samples, and photometric quasars (QSOs) from SDSS [94]. In all these
cases we use the auto-correlation power spectrum, which is sensitive to f 2

NL. These
data sets can be assumed to be statistically independent. As explained below, when
spectroscopic and photometric LRGs are analyzed together, we take care exclude those
photometric redshift bins that have significant overlap with spectroscopic sample. Our
quasars have typical redshifts of z ∼ 1.5–2 and only 5% overlap with LRGs due to
photometric redshift errors. Moreover, they are in the Poisson noise limited regime, so
overlap in volume is less relevant. This is discussed in more detail in [94]. In addition,
we also use cross-correlation of all these samples, as well as nearby galaxies from the two-
micron All-Sky Survey (2MASS) [36] and radio sources from the NRAO VLA Sky Survey
(NVSS) [95] with the CMB, as analyzed in Ho et al [94]. Since this is a cross-correlation
between the galaxies and matter (as traced by the ISW effect), the dependence is linear
in fNL.

3.1. Spectroscopic LRGs from SDSS

We use the spectroscopic LRG power spectrum from Tegmark et al [92], based on a galaxy
sample that covers 4000 square degrees of sky over the redshift range 0.16 ≤ z ≤ 0.47.
We include only bins with k ≤ 0.2h Mpc−1. We model the observed data as

Pobserved(k) = [b + Δb(k, fNL)]2 Plin(k)
1 + Qk2

1 + Ak
, (32)

where the last term describes small scale non-linearities [96], with Q treated here as a
free parameter (bound between zero and 40) and A = 1.4h−1 Mpc. For realistic values
of fNL and Q, the non-Gaussian bias Δb is present only at large scales and the Q-term
is present only at small scales; there is no range of scales over which both are important.
We explicitly confirmed that there is no correlation between Q and fNL present in our
MCMC chains and we let the data determine the two parameters.

As discussed above, if the halos in which objects reside have undergone recent mergers
and thus depend on properties other than halo mass, then the simple scaling with (b− 1)
may not be valid. This is unlikely to be relevant for LRGs, which are old red galaxies
sitting at the center of group and cluster sized halos. Moreover, the number density
of LRGs is so high that it is reasonable to assume that almost every group sized halo
contains one, since otherwise it is difficult to satisfy both the number density and high
bias requirements at the same time [97]. For LRGs we thus do not expect there to be a
second variable in addition to halo mass, and halo occupation models find that populating
all halos with mass above 1013M� h−1 with an LRG is consistent with all the available
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data [98]. Hence we will only use p = 1 in equation (31). The same also holds for the
photometric LRGs discussed below.

3.2. Photometric LRGs from SDSS

We use data from Padmanabhan et al [93], who provide the LRG angular power spectrum
measured in eight redshift slices (denoted as 0–7) covering the range 0.2 < zphoto < 0.6 in
slices of width Δzphoto = 0.05. The power spectrum is based on 3500 square degrees of
data. We use only data points that correspond to k < 0.1h Mpc−1 at the mean redshift
of each individual slice. We use the full Bessel integration to calculate the angular power
spectrum on largest scales and account for the redshift distortion power as described in
Padmanabhan et al [93]:

C� = Cgg
� + Cgv

� + Cvv
� , (33)

where superscripts g and v denote galaxies overdensity and velocity terms respectively.
The bias and β dependence has been put back into the Bessel integral as it now depends
on the value of k. The three terms are given by the integrals

Cgg
� = 4π

∫
dk

k
Δ2(k)|W�(k)|2,

Cgv
� = 8π

∫
dk

k
Δ2(k)� [W ∗

� (k)W r
� (k)] , and

Cvv
� = 4π

∫
dk

k
Δ2(k)|W r

� (k)|2,

(34)

where Δ2(k) is the linear matter power spectrum today. The window functions are given
by

W�(k) =

∫
(b + Δb)

D(r)

D(0)

dN

dr
j�(kr) dr, and

W r
� (k) =

∫
Ω0.6

m (r)
D(r)

D(0)

dN

dr

[
2�2 + 2� − 1

(2� − 1)(2� + 3)
j�(kr) − �(� − 1)

(2� − 1)(2� + 1)
j�−2(kr)

− (� + 1)(� + 2)

(2� + 1)(2� + 3)
j�+2(kr)

]
dr,

(35)

where dN/dr is the redshift distribution normalized to unity and written in terms of
comoving distance r, and D is the growth function. The code automatically switches to
the Limber approximation when this becomes accurate. Note that for the low multipoles,
it is essential to include the redshift space distortion even for a photometric survey because
a significant amount of power comes from Fourier modes that are not transverse to the
line of sight.

We use an independent bias parameter for each redshift slice. In addition to the bias
dependence, we also use the equation (32) to take into account non-linear corrections.
While strictly speaking the value of Q should be different for each slice, we use a single
free parameter Q for all slices. We have explicitly checked that non-linear corrections are
negligible for k < 0.1h Mpc−1 and therefore this is not a major issue. Since there is a
strong overlap between the spectroscopic and photometric samples for z < 0.45, we use
only slices 5–7 when combining these data with the spectroscopic sample.
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3.3. Photometric quasars from SDSS

We use the power spectrum of the high redshift quasar photometric sample that has
recently been constructed for ISW and CMB lensing cross-correlation studies [94, 99].
The sample covers 5800 square degrees of sky and originally had two photometric redshift
ranges, 0.65 < zphoto < 1.45 (‘QSO0’) and 1.45 < zphoto < 2.00 (‘QSO1’). It consists of
ultraviolet-excess (UVX; u− g < 1.0) point sources, classified photometrically as quasars
[100], and with photometric redshifts [101]. The classification and photometric redshifts
were at the time of sample construction only available over a subset of the survey region;
they were extended to the remaining region using a nearest-neighbor algorithm in color
space [94]. As described below, we only used the QSO1 sample as QSO0 appears to suffer
from systematic errors on large scales.

The largest angular scales in the quasar data are subject to at least three major
sources of systematic error: stellar contamination, errors in the Galactic extinction maps,
and calibration errors. All of these are potentially much worse than for the LRGs: some
stars (e.g. M dwarf–white dwarf binaries) can masquerade as quasars, and we are relying
on the u band where extinction is most severe and the photometric calibration is least
well understood. These errors were discussed in the context of ISW studies [94], but if one
wishes to use the quasar autopower spectrum on the largest angular scales the situation
is more severe.

We investigated this subject by computing the cross-power spectrum of each QSO
sample with the SDSS 18.0 < r < 18.5 star sample and with ‘red’ stars (which satisfy the
additional cut g − r > 1.4). The cross-power should be zero in the absence of systematics
but it could be positive if there is stellar contamination in the QSO sample. Either positive
or negative correlation could result from photometric calibration errors which shift the
quasar and stellar locus in non-trivial ways. The results of this correlation are shown in
figure 1, with error bars estimated from the usual harmonic space method,

σ(Cqs
� ) =

√
(Cqq

� + n−1
q )Css

�

[(�max + 1)2 − �2
min]fsky

, (36)

where Cqq
� is the quasar autopower spectrum, nq is the number of quasars per steradian,

and Css
� is the star autopower spectrum; the n−1

s term is negligible. (Aside from boundary
effects, this is the same error as one would obtain by correlating random realizations
of the quasar field with the actual star field.) From the figure, QSO1 appears clean,
but QSO0 appears contaminated: the first bin (2 ≤ � < 12) has a correlation of
Cqs

� = −(2.9±1.0)×10−4 with the red stars. This is a −2.9σ result and strongly suggests
some type of systematic in the QSO0 signal on the largest angular scales. We are not
sure of the source of this systematic, but the amount of power in the quasar map that is
correlated with the red stars is

�(� + 1)

2π
Cqq

� (corr) =
�(� + 1)

2π

Cqs 2
�

Css
�

∼ 2 × 10−4. (37)

The variation in QSO0 density that is correlated with the red stars is thus at the ∼1.4%
level. This is consistent with the excess autopower in QSO0 in the largest scale bin, which
is at the level of [�(� + 1)/2π]Cqq

� ∼ 3 × 10−4 (see figure 10 in [94]) and is comparable
to what one might expect from the 1–2% calibration errors in SDSS [83], although other
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Figure 1. The correlation of each quasar sample with stars and with the red
stars.

explanations such as the extinction map are also possible. Because of this evidence for
systematics, we have not used the QSO0 autopower spectrum in our analysis; in what
follows we only use QSO1. QSO0 may be added in a future analysis if our understanding
of the systematics improves.

Because the redshift distribution is poorly known and needs to be determined
internally from the data sample itself the data are analyzed in a two-step procedure.

(1) Power spectrum points with � = 30 · · ·200 are used to constrain the product
(bdn/dz)(z), where b is the linear bias at redshift z and dn/dz is the normalized
radial window function. Although the fNL is taken into account at this step, its effect
is subdominant.

(2) We then assume that the functional form for b(z) either is

b(z) ∝ 1 +

(
1 + z

2.5

)5

, (38)

as measured in [102], or that its form is given by

b(z) ∝ 1/D(z), (39)

as would be valid if the clustering amplitude is not changing with redshift. In
both cases the constant of proportionality is determined from the normalization
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condition ∫
dn

dz
dz =

∫
b dn

dz

1

b(z)
dz = 1. (40)

(3) Once both dn/dz and b(z) are known we calculate the theoretical angular power
spectrum using the same code as for photometric LRGs, taking into account all
available � points. This is the theoretical spectrum that is used to calculate the χ2

that goes into the MCMC procedure. In principle, all free parameters that determine
the shape of b dn/dz should be varied through the MCMC, rather than being fixed at
the best-fit point. However, in the limit of Gaussian likelihood, the two procedures
are equivalent, while the latter offers significant speed advantages.

(4) We calculate χ2 using two different methods. Our standard method is to use all points
and the full covariance matrix assuming a Gaussian likelihood:

χ2 = (d− t) · C−1(d− t), (41)

where d and t are data and theory vectors of the C�, respectively. This is likely to
be a good approximation except on the largest scales, where small number of modes
leads to corrections that may affect the outer limits (e.g. 3σ). To test this we model
the first QSO bin with an inverse-χ2 distribution, but neglecting covariance of this
bin with higher � bins:

χ2 = N

[
ln

(
d� + 1/n

t� + 1/n

)
+

t� + 1/n

d� + 1/n
− 1

]
+ Gaussian χ2 for other points, (42)

where N ∼ 21.5 is the effective number of modes contributing to the first bin and
n is the number of quasars per steradian. (This was called the ‘equal variance’ case
in [103], and is appropriate if there is equal power in all modes; this is the case here
to a first approximation since we find that the Poisson noise 1/n dominates.)

Since the power rises dramatically at low � in the fNL models, we have included the full
window function in our calculation of the binned power spectrum, Cbin =

∑
� W�C�. The

window functions for the lowest two QSO bins are shown in figure 2, and the algorithm
for their computation is presented in the appendix.

As shown in section 2.3.1, if halos have undergone recent mergers then we would
expect p ∼ 1.6 instead of p ∼ 1 in equation (31). Recent mergers could be a plausible
model for QSOs, whose activity could be triggered by a merger [52]–[54]. For QSOs used
in this work we do not find that their number density places a significant constraint: at
z ∼ 1.8 the number density of halos with b ∼ 2.5–3 is one to two orders of magnitude
higher than the measured number density; hence we can easily pick and choose the halos
with a recent merger and still satisfy the combined number density and bias constraint.
This is in agreement with conclusions of [102], which looked at a similar QSO sample from
2dF. Because of this uncertainty we therefore run another separate analysis for QSOs with
p = 1.6 (QSO merger case).

3.4. Cross-correlation between galaxies and dark matter via the integrated Sachs–Wolfe
effect

One can also look for the fNL using the cross-correlation between a tracer like galaxies or
QSOs and dark matter. Since we do not have dark matter maps from large scales we can
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Figure 2. The window functions for the � = 6 and 18 bins of the quasar power
spectrum.

use cosmic microwave background (CMB) maps as a proxy. If the gravitational potential
is time dependent, as is the case in a universe dominated by dark energy or curvature then
this leads to a signature in CMB, the so-called integrated Sachs–Wolfe (ISW) effect [104].
This signature can easily be related to the dark matter distribution, but part of the signal
is not coming from ISW but from the primary CMB anisotropies at the last scattering
surface. These act as a noise and lead to a large sampling variance on large scales and
as a result the statistical power of this technique is weakened. At the moment ISW is
only detected at ∼4σ level [105]. Our procedure closely follows that of [94] and is in
many respects very similar to that of the section 3.3. We use all nine samples present
in Ho et al , although the discriminating power is mostly coming from the NVSS–CMB
cross-correlation because the NVSS sample is available over a 27 361 deg2 area and the
tracers, radio galaxies, are biased with b ∼ 2. First, b dn/dz and b(z) are determined for
each sample. Here we always use b(z) ∝ 1/D(z) for all samples except the quasar sample.
Then we calculate the ISW Limber integral:

CgT
� =

3ΩmH2
0TCMB

c3(� + 1/2)2

∫
dz [b(z) + Δb(k(z), z)] × dn

dz

d

dz

[
D(z)

D(0)
(1 + z)

]
D(z)P (k(z)) , (43)

where k(z) = (� + 1/2)/χ. Again, we used the full window function for the NVSS–CMB
correlation to avoid an unnecessary bias and we assume p = 1 for all the samples.

4. Results

We begin by plotting data points and theoretical predictions for six of the data sets and
values of fNL in figure 3. This plot deserves some discussion. The easiest and most intuitive
to understand is the case of spectroscopic LRGs. We note that the inclusion of the fNL

parameter modifies the behavior of the power spectrum on the largest measured scales.
Naively, one would expect LRGs to be very competitive at constraining fNL. In practice,
however, fNL is degenerate with matter density, which also affects the shape of the power
spectrum and hence the constraints are somewhat weaker. Since the effect of fNL rises very
strongly, just a couple of points on largest scales might break this degeneracy, improving
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Figure 3. This figure shows six data sets that are most relevant for our constraints
on the value of fNL. In the left column we show the NVSS×CMB integrated
Sachs–Wolfe cross-correlation, the QSO1 power spectrum, the spectroscopic
LRG power spectrum, while the right column shows the last three slices of the
photometric LRG sample. The lines show the best-fit fNL = 0 model (black,
solid) and two non-Gaussian models: fNL = 100 (blue, dotted), fNL = −100
(red, dashed). The ISW panel additionally shows the fNL = 800 model as a
green, dot–dashed line. While changing fNL, other cosmological parameters were
kept fixed. See the text for further discussion.

constraints by a significant factor. The effect in the photometric LRG samples is similar,
although we are now looking the angular space, where the dependence has been smeared
out. The QSO plot again shows similar behavior, with two caveats. First, the changes
in the predicted power spectrum on small scales are a result of the fact that b dn/dz is
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Table 1. Marginalized constraints on fNL with mean, 1σ (68% cl), 2σ (95% cl)
and 3σ (99.7% cl) errors. The ordering exactly matches that of figure 4. See the
text for discussion.
Data set fNL

Photometric LRG 63+54+101+143
−85−331−388

Photometric LRG (0–4) −34+115+215+300
−194−375−444

Spectroscopic LRG 70+74+139+202
−83−191−371

ISW 105+647+755+933
−337−1157−1282

QSO 8+26+47+65
−37−77−102

QSO (b = 1/D) 8+28+49+69
−38−81−111

QSO alternative χ2 10+27+52+72
−40−74−101

QSO merger 12+30+58+102
−44−94−138

Combined 28+23+42+65
−24−57−93

Comb. merger 31+16+39+65
−27−62−127

Combined + WMAP 5 bispectrum fNL 36+18+33+52
−17−36−57

Combinedmerger + WMAP 5 bispectrum fNL 36+13+29+53
−17−36−57

perturbed with changing fNL, although this is a minor effect. Second, the increase in the
power at smallest � for negative fNL is due to the fact that for sufficiently negative fNL (or
sufficiently large scales), δb < −2b and hence the power spectrum rises again above what is
expected in the Gaussian case. The more unexpected is the NVSS–CMB cross-correlation.
Naively, one would expect that the first point of that plot will produce a very strong fNL

‘detection’. However, the CMB cross-correlation signal is only linearly dependent on
fNL, while cross-correlations of NVSS with other tracers of structure are quadratically
dependent on fNL. Large values of fNL produce anomalously large power in the angular
power spectrum if b dn/dz has a significant contribution at the high z tail, which probes
large scales. Therefore, the b dn/dz fitting procedure skews the distribution towards lower
redshifts, leading to a lower bias overall. At very large values, e.g. fNL = 800, this effect
is so severe that the b ∝ 1/D(z) scaling forces b < 1 at the low redshift end. This implies
Δb < 0, and the large scale ISW signal actually goes negative (see the top left panel of
figure 3). Therefore, the ISW is surprisingly bad at discriminating fNL and we were unable
to fit the first NVSS ISW data point with a positive fNL. This behavior is however only
of academic interest because the other data sets strongly rule out these extreme values of
fNL.

We ran a series of MCMC chains with base cosmological data and one of the four data
sets considered above, as well as a run in which all data were combined (with the exception
of slices 0–4 of photometric LRGs as described above). The results are summarized in
table 1 and visualized in figure 4.

We note several interesting observations. When only slices 0–4 of the photometric
LRG sample are used, the results are weaker than those for the spectroscopic LRGs.
The two trace comparable volumes, but the photometric sample does not use radial mode
information and as a result its errors are as expected larger. On the other hand, the overall
photometric sample performs somewhat better than the spectroscopic LRG sample, due to
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Figure 4. This figure shows the median value (red points) and 1σ, 2σ and 3σ
limits on fNL obtained from different probes (vertical lines). The data sets used
are, from top to bottom: photometric LRGs, photometric LRGs with only slices
0–4 used, spectroscopic LRGs, integrated Sachs–Wolfe effect, photometric QSO,
photometric QSOs using the b(z) ∝ 1/D(z) biasing scheme (see section 3.3),
photometric QSOs using the alternative χ2 calculation scheme (see section 3.3),
using a scale dependent bias formula appropriate for recently merged halos
(section 2.3), combined sample, combined sample using a scale dependent bias
formula appropriate for recently merged halos (for QSO); for the last two results
a statistically independent WMAP 5 bispectrum fNL constraint was added. See
the text for discussion.

its larger volume: it traces LRGs up to z ∼ 0.6 as opposed to z ∼ 0.45 for the spectroscopic
sample.

We find that the ISW is constraining the fNL parameter rather weakly. This is
somewhat disappointing, but not surprising, since the cross-correlation between LSS and
CMB is weak and has only been detected at a few sigma overall. In addition, as mentioned
above, fNL enters only linearly (rather than quadratically) in the ISW expressions and
is strongly degenerate with determination of b dn/dz. Given that ISW S/N can only be
improved by another factor of ∼2 at most even with perfect data we do not expect that
it will ever provide competitive constraints on fNL.

We find that the quasar power spectra give the strongest constraints on fNL. This is
due to their large volume and high bias. The lowest � point in this data set at � = 6 is
a non-detection and therefore highly constrains fNL in both directions. The second and
third points have some excess power relative to the best-fit fNL = 0 model and so give
rise to a slightly positive value of fNL in the final fits. This is however not a statistically
significant deviation from fNL = 0.

We also test the robustness of fNL constraints from the quasar sample power spectrum
by performing the following tests. First we change the form of evolution of the bias from
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that in equation (38) to that in equation (39). Second we replace the details of the
likelihood shape for the first points; we replace equation (41) with equation (42). In both
cases, the effect on the constraints was minimal, as shown in figure 4 and table 1.

The large scale quasar power spectrum could also be affected by spurious power
(e.g. calibration fluctuations or errors in the Galactic extinction map) or one-halo shot
noise, either of which would dominate at large scales over the conventional P (k) ∝ k
auto-correlation. At the level of the current data these are not affecting our results:
uncorrelated power adds to the power spectrum C�, and if present it would only would
only tighten the upper limits on the power spectrum given by our � = 6 and 18 points.
The one-halo shot noise would contribute an added constant to C� since z ∼ 1.7 halos
are unresolved across our entire range of �; the observed power at � ∼ 250 constrains the
one-halo noise to be much less than the error bars at � = 6, 18. Nevertheless, if we had
detected excess power in the quasars at the largest scales, a much more detailed analysis
would have been necessary to show that it was in fact due to fNL and not to systematics.

If quasars are triggered by mergers, then they do not reside in randomly picked halos
and the use of the equation (18) may not be appropriate. As discussed in section 2.3,
one can replace the (b − 1) factor in equation (18) with a modified factor (b − 1.6). We
quote the results in this case in table 1 as “QSO merger”. The error bars have increased
by about 40%, which is somewhat less than naively expected from a population with an
average bias of around 2.5. This is due to various feedbacks related to b dn/dz fitting.
Moreover, this is likely to be an extreme case since it assumes that all quasars live in
recently merged halos with short lifetimes, so we would expect that the true answer is
somewhere in between the two results. On the other hand, it is also unclear how accurate
extended Press–Schechter formalism is for this application, so there is some uncertainty
associated with this procedure. Recent progress in understanding quasar formation and
its relation to the underlying halo population [53] gives us hope that this can be solved
in the future.

We also quote results for the combined analysis. In this case, the error on fNL shrinks
somewhat more than one would expect assuming that error on fNL measurement from each
individual data set is independent. This is because other parameters, notably the matter
density and amplitude of fluctuations, get better constrained when data are combined.
Furthermore, we note that when quasars are assumed to be recent mergers the errors
expand by an expected amount at the 3σ level, but hardly at all at a 2σ level. We
have carefully investigated this anomaly and it seems to be due a peculiar shape of the
likelihood surface and subtle interplay of degeneracies between fNL, matter density and
amplitude of fluctuations.

5. Discussion

The topic of this paper is the signature of primordial non-Gaussianity of local type (the
so-called fNL model) in the large scale structure of the universe. Specifically, it was
recently shown that this type of non-Gaussianity gives rise to the scale dependence of the
highly biased tracers [46]. We extend this analysis by presenting a new derivation of the
effect that elucidates the underlying assumptions and shows that in its simplest form it
is based on the universality of the halo mass function only. Our derivation also allows for
possible extensions of the simplest model, in which tracers of large scale structure depend
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on properties other than the halo mass. One that we explore in some detail is the effect
of recent mergers. By using extended Press–Schechter model we show that in this case
the effect has the same functional form, but the predicted scaling with fNL for a given
bias has a smaller amplitude than in the simplest model.

Second, we apply these results to constrain the value of fNL from the clustering of
highly biased tracers of large scale structure at largest scales. In our analysis we find that
the best tracers are highly biased photometric quasars from SDSS at redshifts between
1.5 and 2, followed by photometric and spectroscopic LRGs at redshift around 0.5. Our
final limits at 95% (99.7%) confidence are

−29 (−65) < fNL < +70 (+93), (44)

if we assume halos in which tracers reside are a fair sample of all halos of a given bias.
If we assume instead that QSOs are triggered by recent mergers and have short lifetimes
then we find

−31 (−96) < fNL < +70 (+96), (45)

a somewhat weaker, but still competitive constraint. In both cases, we find no evidence
for non-zero fNL. These results show that existing data can already put very strong limits
on the value of fNL, which are competitive with the best constraints from WMAP five-year
analysis of the CMB bispectrum [5], which is statistically independent of the method used
in this paper. These give −9 < fNL < 111 at 95% confidence. Assuming the WMAP 5
constraint on fNL to be independent of ns and well described by a Gaussian likelihood
fNL = 51 ± 31 [5], we get the following combined constraint:

0 (−21) < fNL < +69 (+88). (46)

If we assume quasars to live in recently merged halos, we get essentially the same result
with the upper limit relaxed to 89.

In this combined result, fNL = 0 is at just around 2σ, which taken at a face value
suggests than the evidence for a significant non-Gaussianity found in three-year WMAP
data by [36] may have been a statistical fluctuation rather than evidence of a real signal.

The results are already sufficiently strong to constrain the ekpyrotic models
of generating the primordial structure: these generically predict much higher non-
Gaussianity than inflationary models [31]. Following [33], we parametrize the ekpyrotic

model in terms of γ = φ̇2/φ̇1 during the phase of creation of entropic perturbations for
minimally coupled fields φi responsible for ekpyrosis and ekpyrotic parameter εek � 1,
the ekpyrotic equivalent of the slow roll parameter ε. In figure 5 we show our ‘combined’
constraints on the ns–fNL plane together with approximate theoretical predictions [33]:

ns ∼ 1 +
2

εek
− 1

60

log εek

log 60
, (47)

fNL ∼ 4(γ2 − 1)

γ
εek − 85. (48)

We note that large parts of parameter space are strongly constrained. For the theoretically
favored value of γ = −1/

√
3 [106], εek is constrained to be between 100 and 10 000. Higher

values of εek require considerably lower values of γ and γ � −0.3 is disfavored at 2σ.
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Figure 5. This figure shows 1σ and 2σ contours on the ns–fNL plane for
our best combined data set with the additional WMAP five-year bispectrum
constraint (assumed to be independent of ns). Red lines are predictions from
the ekpyrotic models and correspond to values of fixed γ and varying ε. Different
lines correspond to different values of γ, which varies from γ = −1 (flat, constant,
negative fNL) to γ = −0.2 in steps of 0.1. The dashed green line corresponds to
the theoretically favored value of γ = −1/

√
3 according to [106].

Our results are very promising and with this first analysis we already obtain
constraints comparable to the best previous constraints. However, we should be cautious
and emphasize that this is only the first application of this new method to the data and
there are several issues that require further investigation. While analytically the method
is well motivated and can be derived on very general grounds, as shown in section 2.3.1,
the method needs to be verified further in N -body simulations using large scale tracers
comparable to these used in our analysis. Equation (18) has been calibrated with N -body
simulations using matter–halo cross-correlation [46]. Auto-correlation analysis of biased
halos, which is the basis for the strongest constraints derived here, is typically noisier and
has not been verified at the same level of accuracy, although there is no obvious reason for
it to give any different results. Still, it would be useful to have larger simulations where
the scale dependent bias could be extracted with high significance from auto-correlation
analysis. In addition, it would be useful to verify the scaling relations in simulations;
samples defined as closely as possible to the real data should be selected, in our case by
choosing halos with mean bias of 2 at z = 0.5 for the LRG and b = 2.7 at z = 1.7 for
QSO samples.

A second uncertainty has to do with the halo bias dependence on parameters other
than halo mass. We have shown that for QSOs we need to allow for the possibility that
they are triggered by recent mergers and we have presented extended Press–Schechter
predictions for the amplitude of the effect in this case, which can affect the limits. To
some extent these predictions have been verified using simulations [63], but we do not have
a reliable model of populating QSOs inside halos to predict which of the limits is more
appropriate for our QSO sample. Moreover, just as the overall halo bias has recently been
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shown to depend on variables other than the halo mass [65], it is possible that the large
scale fNL correction also depends on variables other than the mass and merging history:
while we have shown that extended Press–Schechter already predicts the dependence on
the merging history, other dependences less amenable to analytic calculations may also
exist. It is clear that these issues deserve more attention and we plan to investigate them
in more detail in the future using large scale simulations combined with realistic quasar
formation models.

On the observational side, there are many possible extensions of our analysis that
can be pursued. In this paper we have pursued mostly quasars and luminous red galaxies
(LRGs), two well studied and highly biased tracers of large scale structure. On the quasar
side, we have only analyzed photometric QSO samples split by redshift, but we should
be able to obtain better constraints if we also use the luminosity information, especially
if brighter quasars are more strongly biased [102]. Moreover, it is worthwhile to apply
this analysis also to a z > 3 spectroscopic quasar sample from SDSS [107], which is
very highly biased. Its modeling appears to require almost every massive halo to host
a quasar [108], which would reduce the uncertainties related to the secondary parameter
halo bias dependence. An order of magnitude estimate shows that small values of fNL do
not change the mass function enough to affect this deduction. On the LRG side, the most
obvious extension of our work would be to pursue the luminosity dependent clustering
analysis of the spectroscopic sample. It is well known that the LRG clustering amplitude
is luminosity dependent [109] and so selecting only brighter LRGs would lead to a higher
bias sample and could improve our limits, but ideally one would want to perform the
analysis with optimal weighting to minimize the large scale errors as in [92]. A similar
type of luminosity dependent analysis could also be done on the LRG photometric sample
used here [93].

Finally, with the future data sets from several planned or ongoing surveys, especially
those related to the baryonic oscillations most of which use highly biased tracers of large
scale structure, a further increase in sensitivity should be possible [46]. The ultimate
application of the large scale clustering method would involve oversampling the three-
dimensional density field in several samples with a range of biases, so that excess clustering
due to fNL can be cleanly separated from contamination due to errors in calibration
or extinction correction, which are major challenges as one probes below the 1% level.
The ultimate sensitivity of the method will likely depend on our ability to isolate these
systematics and these should be the subject of future work.

Overall, the remarkably tight constraints obtained from this first analysis on the real
data, while still subject to certain assumptions, is a cause of optimism for the future and
we expect that the large scale clustering of highly biased tracers will emerge as one of the
best tools for searching for non-Gaussianity in initial conditions of our universe.
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Appendix. Window functions

This appendix describes the computation of the window functions. We begin with a
brief revisit of the principles underlying the window function (see the references for more
details) and then describe our computational method.

A.1. Principles

The power spectra in this paper were computed using the methodology of Padmanabhan
et al [110], implemented on the sphere as described in [93, 111]. The power spectrum is
estimated from a vector x of length Npix containing the galaxy overdensities in each of
the Npix pixels. Following the notation of [93], we estimate the power spectrum in bins,

C� =
∑

i

piC̃
i
�, (A.1)

where C̃i
� is 1 if multipole l is in the ith bin, and 0 otherwise, and pi are the parameters

to be estimated. We can then define the template matrices, Ci, which are the partial
derivatives of the covariance matrix of x with respect to pi. The quadratic estimators are
then defined:

qi = 1
2
xTC−1CiC

−1x, (A.2)

where C is an estimate of the covariance matrix used to weight the data (our choice is
described in Ho et al [94]). We also build a Fisher matrix,

Fij = 1
2
Tr

(
C−1CiC

−1Cj

)
. (A.3)
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The parameters are then estimated according to

pi = (F−1)ij(qj − 〈qj〉noise), (A.4)

where 〈qj〉noise is the expectation value of qj for Poisson noise. This is equal to

〈qj〉noise = 1
2
Tr

(
C−1CiC

−1N
)
, (A.5)

where N is the Poisson noise matrix (i.e. a diagonal matrix with entries equal to the
reciprocal of the mean number of galaxies per pixel). This quantity can be computed
using the same machinery as was used to compute F.

The actual expectation values of the binned power spectra pi for a general power
spectrum (i.e. not necessarily equation (A.1)) are given by

〈pi〉 = (F−1)ij(〈qj〉total − 〈qj〉noise); (A.6)

since the signal and noise are uncorrelated this reduces to

〈pi〉 = (F−1)ij〈qj〉signal = 1
2
(F−1)ij Tr

(
C−1CiC

−1S
)
, (A.7)

where S is the signal covariance matrix. Its entries are

Sαβ =
∑

�

C�

�∑

m=−�

Y�m(α)Y ∗
�m(β), (A.8)

where α and β are pixels: 1 ≤ α, β ≤ Npix. It could also be written as

S =
∑

�

C�

�∑

m=−�

Y�mY†
�m, (A.9)

where Y�m is a vector of length Npix containing the values of the spherical harmonic Y�m

at each pixel. With some algebra the expectation value collapses down to

〈pi〉 =
∑

�

Wi�C�, (A.10)

where the window function Wi� is

Wi� = 1
2
(F−1)ij

�∑

m=−�

Y†
�mC−1CiC

−1Y�m. (A.11)

A.2. Computation

Like the other matrix operations with million-pixel maps, direct computation of Wi� using
equation (A.11) is not feasible; it is O(N3

pix). We have therefore resorted to Monte Carlo
methods, analogous to those used for trace estimation, to simultaneously solve for all of
the � and m terms in equation (A.11). Define a random vector z of length Npix and with
entries consisting of independent random numbers ±1 (i.e. probability 1/2 of being 1 and
1/2 of being −1). Then 〈zzT〉 = 1, so we can write

Wi� = 1
2
(F−1)ij

〈
�∑

m=−�

Y†
�mC−1zzTCiC

−1Y�m

〉

, (A.12)
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or

Wi� = 1
2
(F−1)ij

〈
�∑

m=−�

(Y†
�mC−1z)(Y†

�mC−1Ciz)

〉

. (A.13)

To do a Monte Carlo evaluation of the average, we can take a random vector z, and
compute the quantities C−1z and C−1Ciz. The latter dominates the computation time,
as it requires one expensive C−1 operation for each power spectrum bin, but it is also
needed in the Monte Carlo evaluation of the Fisher matrix Fij and hence comes with no

added cost. The inner product Y†
�mu for any pixel space vector u is the spherical harmonic

transform of u, for which ‘fast’ O(N
3/2
pix ) algorithms exist. We use the implementation of

the spherical harmonic transform of Hirata et al [111].
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