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Abstract. Despite ongoing efforts to identify high-performance electrolytes for solid-state Li-ion 

batteries, thousands of prospective Li-containing structures remain unexplored. Here, we employ 

a semi-supervised learning approach to expedite identification of ionic conductors. We screen 

180 unique descriptor representations and use agglomerative clustering to cluster ~26,000 Li-

containing structures. The clusters are then labeled with experimental ionic conductivity data to 

assess the fitness of the descriptors.  By inspecting clusters containing the highest conductivity 

labels, we identify 212 promising structures that are further screened using bond valence site 

energy and nudged elastic band calculations. Li3BS3 is identified as a potential high-conductivity 

material and selected for experimental characterization. With sufficient defect engineering, we 

show that Li3BS3 is a superionic conductor with room temperature ionic conductivity greater than 

1 mS cm-1. While the semi-supervised method shows promise for identification of superionic 

conductors, the results illustrate a continued need for descriptors that explicitly encode for defects.   
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Identifying new materials that could improve solid-state ion battery prospects is an ongoing 

challenge. The search for an ideal solid-state Li electrolyte is a prime example. Research has 

focused on eight classes of materials: LISICON-type structures, argyrodites, garnets, NASICON-

type structures, Li-nitrides, Li-hydrides, perovskites, and Li-halides1. However, only three 

compounds with near-liquid-electrolyte conductivity (~10-2 S cm-1) have been discovered: 

Li10GeP2S12 (LGPS)2, Li6PS5Br argyrodite3, and Li7P3S11 ceramic-glass1,4. Although promising 

discoveries, all three high-conductivity structures are unstable against the Li anode5–10. While 

investigations to limit instability are ongoing11,12, identification of stable superionic structures is 

desirable. High-performing structures that enable new battery chemistries may exist outside of 

the eight classes. However, exploration under the traditional Edisonian approach prioritizes small 

perturbations to well-known variable spaces. 

Machine learning (ML) is a promising tool for expediting the discovery of useful solid-state 

materials. By describing prospective materials with physically meaningful descriptors, ML models 

can identify high-dimensional patterns in large datasets that are not readily apparent13–19. Ongoing 

descriptor engineering20–25 has enabled discovery of battery components26,27, electrocatalysts14,28, 

photovoltaic components15,29, piezoelectrics30, new metallic glasses13 and new alloys31. However, 

application of ML for discovery of SSEs and other emerging technologies can be challenging. 

Supervised ML approaches require empirical data for use as “labels,” but relatively few SSEs 

have been experimentally characterized compared to the ~26,000 known Li-containing 

structures18,32–34. Characterized materials often exhibit ill-defined properties owing to the variety 

of synthetic approaches and non-standardized testing methods35. Well-performing materials often 

contain charge-carrying defects that are not explicitly characterized or reported36. Negative 

examples, i.e. materials with undesirable properties, are useful for ML models but are seldom 

reported.   

Semi-supervised ML can guide synthetic prioritization of SSEs by overcoming the issues 

associated with label scarcity. Supervised ML requires labels because it infers correlation 
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functions by mapping the input descriptors to the labels37. Semi-supervised ML prioritizes 

comparison of descriptors to identify relationships between the descriptors in a dataset34,37. The 

input compositions are clustered (or grouped) by comparison of descriptors using a similarity 

metric. The clustering process does not consider labels, and thus circumvents the need for 

abundant labels. The resultant clusters can be labeled ex post facto to examine correlation 

between the descriptor and a physical property of interest. For semi-supervised ML, ideal 

descriptors result in a set of clusters where each cluster has similar labels and thus the label 

variance is minimized. Promising synthetic targets may then be identified by their membership in 

clusters that contain desirable labels.   

Semi-supervised ML can help identify descriptors that are correlated to physical properties 

of interest. Descriptors are representations of the input materials that encode the chemistry, 

composition, structure, and/or other system properties. An ideal descriptor should be a unique 

representation, a continuous function of the structure, exhibit rotational/translational invariance, 

and be readily comparable across all structures in the dataset23–25. Recently, Zhang et al. 

demonstrated that a modified X-Ray diffraction (mXRD) descriptor lead to favorable clustering for 

Li SSEs32. By labeling the resultant clusters with experimental room-temperature Li-ion 

conductivities, they identified 16 prospective fast-ion conductors. Despite the promising results, 

no other descriptors have been explored using clustering approaches. Descriptor screening is 

desirable for identifying more predictive semi-supervised learning models. Identification of useful 

descriptors can improve chemical intuition by revealing which system properties are most 

correlated with a property of interest. Descriptor transformations for inorganic structures have 

been curated in a variety of software packages, including: Matminer23, Dscribe24, SchNet38, and 

Aenet39. 

 Herein, we employ hierarchical agglomerative clustering to screen many descriptors, 

without assuming correlation to ionic conductivity. The performance of 20 descriptors is assessed 

for semi-supervised identification of Li SSEs. Each descriptor is paired with 9 structural 
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simplification strategies, yielding a total of 180 unique representations per input structure. The 

approach is applied to a dataset of ~26,000 Li-containing phases, encompassing all Li-containing 

structures contained in the Inorganic Crystal Structure Database (ICSD - v.4.4.0) and the 

Materials Project (MP - v.2020.09.08) database (Fig. 1). A set of 220 experimental room 

temperature ionic conductivities (σ25°C) are aggregated from literature reports and used as labels. 

Descriptors that encode the spatial environment are found to be most correlated with the ionic 

conductivity labels.  

 

Figure 1. Schematic of the semi-supervised machine learning approach. Li-containing structures are 

aggregated from the ICSD and MP database. Each input structure is simplified and transformed to yield a 

unique descriptor representation. The descriptor representations are clustered with hierarchical 

agglomerative clustering. Each cluster is then labeled with experimental σ25°C data and the intracluster 

conductivity variance is calculated. Comparison of the composite intracluster conductivity variance 

(intracluster conductivity variance summed across all clusters) enables identification of descriptors that are 

well correlated with ionic conductivity.     

 

Using the descriptors, the semi-supervised approach can identify potential fast solid-state 

Li-ion conductors. By selecting structures in clusters containing high conductivity labels, the 
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~26,000 input structures are down selected to just 212 promising structures. Practical 

considerations, a semi-empirical bond valence site energy (BVSE) method,40 and the Nudged 

Elastic Band (NEB) method are employed to rank the structures. From the ten highest ranking 

structures, Li3BS3 is selected for model validation. Synthesis of pure Li3BS3 yields a poor 

conductor. However, by employing defect engineering strategies we demonstrate that Li3BS3 is a 

superionic conductor with an ionic conductivity greater than 10-3 S cm-1.   

 

Main Text 

Screening simplification-descriptor combinations 

A set of 20 descriptors is selected for screening the semi-supervised learning approach 

(Table 1). The descriptors generally encode four types of information: the spatial environment, 

the chemical bonding environment, the electronic environment, and composition. All descriptors 

are implemented in Python using the Matminer23 or Dscribe24 libraries. The code is published to 

a github repository and is available for download (https://github.com/FALL-ML/materials-

discovery). Zhang et al. illustrated that structure simplification prior to learning can produce lower 

variance outcomes32. Their mXRD descriptor was found to work best with removal of all cations, 

all the anions replaced by a single representative anion, and the structure volume scaled to 40 Å3 

per anion. Inspired by the previous success in using structure simplification, we screen eight 

structure simplifications in addition to the unperturbed structure. For simplifications the following 

categories of atoms are replaced with a representative specie: (1) Cations are represented as Al, 

(2) Anions are represented as S, (3) Mobile ions are represented as Li, and (4) Neutral atoms are 

represented as Mg. Categories of atom are removed as to yield the four simplifications: CAMN 

(all atoms retained), CAN (mobile ions removed), AM (cations and neutral atoms removed), and 

A (only anions retained). Four additional simplifications are formed by scaling each lattice volume 

to 40 Å3 per anion: CAMN-40, CAN-40, AM-40, and A-40. 
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Table 1. The descriptors used for agglomerative clustering. Descriptor vectors are attained by 

simplifying the input structures and then applying the descriptor transformation. In total, 180 unique 

descriptor vectors are screened for each structure.  

Descriptor Descriptor Description Refs 
Bond Fraction “Bag of bonds” approach described in Hansen et. al. wherein 

pairwise nuclear charges and distances are encoded. 

41 

Band Center Estimation of band center from constituent atoms’ 
electronegativity values described by Butler et al. 

42 

Crystal Structure Analysis by 
Voronoi Decomposition 
(CAVD) 

Calculation of the largest sphere that can pass through the 
lattice-sans-mobile-ion using Voronoi decomposition of 
structures.  

43 

Chemical Ordering Warren-Cowley-like ordering method to determine how different 
the structure’s ordering is from random. 

44 

Density Features Calculates density, volume per atom, and the packing fraction.  45 
Electronegativity Difference Composition weighted calculation of the electronegativity 

difference between cations and anions. 

46 

Ewald Energy Sum of coulomb interaction energies across all lattice sites 
described by Ewald et al. 

47 

Global Instability Index Averaged square root of the sum of squared differences over 
the bond valence sums.  

 

Jarvis Diverse set of descriptors from the Jarvis-ML library. 48 
Maximum Packing Efficiency A measure of the void space within the unit cell. 44 
Meredig Composite descriptor from Meredig et al. 49 
Modified XRD (mXRD) Powder diffraction pattern calculated using Bragg’s law. 45 
Orbital Field Matrix Descriptor that encodes the distribution of valence shell 

electrons for each input structure.  

50 

Oxidation States Concentration weighted oxidation state statistics.  46 
Radial Distribution Function Radial distribution function for each structure.  45 
Sine Coulomb Matrix Coulomb matrix for periodic lattices, developed by Faber et al.  51,52 
Smooth Overlap of Atomic 
Positions (SOAP) 

Geometric encoder that is rotationally/transitionally invariant 
through use of spherical harmonics and radial basis functions. 
Atoms are represented by a smeared gaussian.  

24 

Structural Complexity The Shannon information entropy for a given structure. 53 
Structure Variance Bond length and atomic volume variance for each structure.  44 
Valence Orbital Structure averaged number of valence electrons in each orbital. 46,54 
Control A control descriptor is not explicitly used. Instead, clustering 

outcomes are randomly assigned. For composite intracluster 
variance calculations, 100 control iterations are averaged.  

 

 

Agglomerative clustering is performed on all Li-containing structures from the ICSD and 

MP repositories. Agglomerative clustering is a “bottom-up” approach to clustering where each 

structure starts in its own cluster of one. Clusters are merged according to Ward’s Minimum 

Variance criterion in Euclidean space, which minimizes the global descriptor variance55: 
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where nC is the number of clusters in a set, Ck is cluster k, di is a descriptor representation for 

structure i, and 𝑑̅௞  is the average descriptor representation in cluster k. Each cluster merger 

results in the lowest variance set of clusters, relative to all other possible mergers. Other common 

linkage criteria (average, complete, and single linkages) and metrics (l1, l2, manhatten, cosine) 

were screened but are found to result in clustering outcomes with larger W. For each 

simplification-descriptor combination, all clustering sets from 2-300 are computed. Physically 

relevant labels are applied to the resultant clustering sets to assess how well each simplification-

descriptor combination performs. To compare between the 180 different simplification-

descriptions combinations, the data is labeled with 155 experimental room temperature 

conductivity (σRT) values aggregated from the literature reports (see supplementary info - sections 

I - IV). A secondary label set is also screened, comprised of 6845 activation energies (Ea) 

computationally generated using a bond valence energy approach (see supplementary info – 

section V).  

An ideal simplification-descriptor combination results in clustering where each cluster 

contains labels with similar σRT values. Ward’s minimum variance method is applied to the 

conductivity labels as a measure of clustering efficacy:32  

𝑊ఙ ൌ  ෍ ෍ൣlogሺ𝜎ோ்ሻ௜ െ logሺ𝜎ோ்ሻതതതതതതതതതതത
௞൧
ଶ
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where 𝑛஼ is the number of clusters in a set, 𝐶௞ is cluster 𝑘, and logሺ𝜎ோ்ሻ௞തതതതതതതതതതതതത denotes the mean for 

all labels in cluster 𝑘. Since clusters containing only one label effectively drop out of the Wσ 

calculation, a frozen-state strategy is employed when needed (see supplemental information – 

section IV). Each descriptor’s Wσ results are shown in Figure 2 for the first 50 clustering outcomes 



8 
 

(i.e. the Wσ is shown for each set of 2, 3, …, 49, and 50 clusters). For simplicity, only the best-

performing simplification-descriptor combination is shown for each descriptor.  

 

Figure 2. The composite intracluster conductivity variance (Wσ) for the first 50 clusters generated 

using each descriptor. Half-violin plots show the raw Wσ score for each cluster as symbols next to the 

violin distribution. Simplification-descriptor combinations are sorted in order of ascending mean. The control 

is a random assignment of clusters, with Wσ values averaged over 100 randomly assigned sets. The 

smooth overlap of atomic positions (SOAP) descriptor outperforms all other descriptors. Although not 

shown here, SOAP continues to outperform for all depths of clustering through 300.   

 

Using σ25°C labels, the best semi-supervised ML performance is attained when using the 

SOAP descriptor. SOAP is a spatial descriptor that employs smeared gaussians to represent 

atomic positions for each crystal structure24. Predictions using the SOAP descriptor have 

exhibited similar performance to state-of-the-art graph neural networks (GCNs) on a variety of 
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materials science datasets56. Optimization of SOAP hyper-parameters (radial cutoff, number of 

radial basis functions, degree of spherical harmonics) is explored in section VI of the supplemental 

information. SOAP is found to perform best when combined with the CAN structure simplification. 

That is, the simplification where the mobile Li atoms are removed, and the remaining atoms are 

simplified into three representative species: cations, anions, and neutral atoms. SOAP 

outperforms all other descriptors for all depths of clustering. The SOAP descriptor can be 

modestly improved (2-3% decrease in Wσ) by mixing with other descriptors to make a 2nd order 

SOAP descriptor (see supplemental information – section VI). 

 

Semi-supervised identification of prospective Li-ion conductors 

Agglomerative clustering with the 2nd order SOAP descriptor is used to identify prospective 

ionic conductors. Wσ minimization is prioritized over WEa minimization because Ea alone is not 

necessarily a good predictor of conductivity; σ25°C may be affected by properties including the 

ionic carrier concentration, hopping attempt frequency, and the presence of concerted migration 

modes57. The agglomerative dendrogram for the 2nd order SOAP is shown in Figure 3, with the 

label densities plotted below. The agglomerative dendrogram is depicted to 241 clusters, after 

which the Wσ does not appreciably decrease. To facilitate discussion, an arbitrary cutoff is placed 

to yield 9 large clusters. The results show that although cluster #2 contains only 15% of the input 

structures, it accounts for over half of the high-conductivity (σ25°C >10-5 S cm-1) labels. By the 17th 

clustering step, the densest cluster accounts for 6.2% of the structures while containing over half 

(52%) of the high-conductivity labels.  
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Figure 3. Agglomerative clustering dendrogram for the 2nd-order SOAP descriptor. The hierarchical 

clustering representation is shown for the first 241 clusters. An arbitrary variance cutoff is placed such that 

9 large clusters are produced to facilitate analysis. The violin plots show the σ25°C distribution for the labels 

within the 9 large clusters. Three outlier clusters are grouped into two additional clusters and are hereafter 

ignored. The density (per 241 clusters) of low Ea (<0.6 eV) and high conductivity (σ25°C >10-5 S cm-1) labels 

is shown underneath the agglomerative dendrogram. The results illustrate that agglomerative clustering on 

the 2nd-order SOAP descriptor results in favorable aggregation of most high-conductivity labels.  

 

Candidates for next-generation SSEs can be identified by evaluating clusters that either 

contain or are near high conductivity labels. Clusters #2, #4, and #7 are promising because they 

account for 85% of the high σ25°C labels. However, targeting these clusters would necessitate 

screening thousands of structures. Instead, we search from the 241st cluster depth, targeting all 

clusters that contain or are directly adjacent (i.e. the nearest cluster in the Euclidean feature 

space) to high σ25°C labels. The promising structures are further screened using calculated stability 
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(Ehull) and band gap (Eg) properties from the Materials Project, and the BVSE Ea values. We select 

the structures that have (1) an Ehull of 70 meV or lower,58 (2) an Eg of at least 1 eV, and (3) a 

BVSE-calculated Ea below a conservative 0.6 eV. The approach identifies 212 structures as 

prospective ionic conductors. Climbing image nudged elastic band (CI-NEB) is employed to 

calculate the Ea for Li-ion hopping on the ten materials with the lowest BVSE-calculated Ea and 

an Ehull of 0 eV. The CI-NEB functionals and parameters can be found in the supporting 

information section VII. The top 10 prospective structures are tabulated in Table 2.  

 

Table 2. The top 10 prospective structures from the semi-supervised learning model as ranked by 

BVSE-calculated Ea. Structures in or directly adjacent to high-conductivity clusters were identified as 

promising. The list of promising structures was then further simplified by removing structures with Ehull 

values greater than 0 V and with Eg values less than 1 eV. To rank the remaining structures, the Ea was 

calculated using a BVSE approach. 

    Ea_calc (meV) 
compound space group MP_ID ICSD_ID BVSE  NEB  
Li3VS4 𝑃4ത3𝑚 (#215) mp-760375  160 390 
Na3Li3Al2F12 𝐼𝑎3ത𝑑 (#230) mp-6711 9923 230 340 
Li2Te 𝐹𝑚3ത𝑚 (#225) mp-2530 60434 260 320 
LiAlTe2 𝐼4ത2𝑑 (#122) mp-4586 280226 260 310 
LiInTe2 𝐼4ത2𝑑 (#122) mp-20782 658016 270 450 
Li6MnS4 𝑃4ଶ/𝑛𝑚𝑐 (#137) mp-756490  270 466 
LiGaTe2 𝐼4ത2𝑑 (#122) mp-5048 162555 270 340 
Li3BS3 𝑃𝑛𝑚𝑎 (#62) mp-5614 380104 280 260 
KLi6TaO6 𝑅3ത𝑚 (#166) mp-9059 73159 300 30059 
Li3CuS2 𝐼𝑏𝑎𝑚 (#72) mp-1177695  310 440 

 

The CI-NEB calculations generally agree with the BVSE calculated Ea values, suggesting 

favorable activation energies (< 500 meV). Discrepancies between the two values may arise 

because BVSE does not allow framework ions to relax during Li+ migration and does not account 

for repulsive interactions between atoms of the mobile ion species.  
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Experimental validation of the semi-supervised learning model: Li3BS3  

From the ten most promising candidates, Li3BS3 was selected for synthesis and 

characterization. Li3BS3 stands out because it has been explored experimentally and 

computationally before. Experimentally, Vinatier et al. previously determined that Li3BS3 has a 

total DC conductivity of 2.5∙10-7 S cm-1 with an activation energy of 700 meV60. The DC 

measurement was not included in our label set because DC measurements cannot differentiate 

between ionic and electronic conductivity, so they were categorically discounted from the label 

set (see supplemental information I for more details on label selection). Although the conductivity 

and activation energy reported by Vinatier et al. are underwhelming, there are promising 

theoretical reports. Density functional theory molecular dynamics (DFT-MD) simulations from 

Sendek et al.61 suggest that Li3BS3 should have a room temperature conductivity between 3.1∙10-

6 and 9.7∙10-3  S cm-1. Our NEB-calculated activation energy for Li3BS3 is 260 meV, corroborating 

a previous NEB result from Bianchini et al.62. Additionally, Li3BS3 is practically attractive because: 

(1) Li3BS3 contains no redox-active metals, (2) band edge calculations have suggested stability 

against metallic Li63, and (3) the synthesis is reported64. It is simpler to avoid redox active metals 

in the SSE as they may be reduced and oxidized at electrode interfaces. However, we note that 

Li0.5La0.5TiO3 is a widely studied SSE that contains redox active Ti65,66 so the compounds we report 

here that contain Mn, V, and Cu should not be categorically discounted. It is important to note that 

while studying Li3BS3 as a candidate Li-ion conductor for model validation, Kimura et al. reported 

that a so-called “Li3BS3 glass” exhibits an ionic conductivity of 3.6∙10-4  S/cm-1 at 25 °C67. 

Li3BS3 is prepared using solid-state synthesis from Li2S, B, and S precursors. The 

diffraction and quantitative Rietveld refinement are shown in Figure 4a, suggesting a phase pure 

material. Electrochemical impedance spectroscopy (EIS) is employed at various temperatures 

and the resultant conductivity is plotted according to the Arrhenius-like relationship (Fig. 4b): 

𝜎 ൌ
𝜎଴
𝑇
𝑒
ି
ாೌ
௞ಳ் 
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where T is the temperature, kB is the Boltzmann’s constant, σ0 is the conductivity prefactor and 

Ea is the activation energy. The room temperature ionic conductivity (σ25°C) is 7.16(± 0.21)∙10-7 S 

cm-1 and the activation energy is 400 ± 47 meV. The low conductivity and high activation energy 

may be due to lack of charge-carrying defects in the Li3BS3 lattice68,69. Although a sufficient carrier 

concentration is necessary for facile ionic conduction in most materials, the descriptors in the 

semi-supervised model do not explicitly encode for charge-carrying defects. In the label set, 

conductivity is likely influenced by the defect concentration but defects are typically not reported. 

Still, the semi-supervised model may infer a structure’s capacity to support conductive defects via 

correlation with the descriptors. To test the hypothesis, we use two strategies to engineer 

vacancies: aliovalent substitution and amorphization via extended ball milling. Aliovalent 

substitution has been shown to improve conductivity in Li-argyrodites, -sulfides, and -garnets by 

introducing vacancies68,69. Similarly, amorphization can introduce defects and vacancies that 

enable Li+ hopping67,69–71.  
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Figure 4. Characterization of Li3BS3 with vacancy engineering. (a) XRD patterns for Li3BS3, 2.5% Si 

substituted Li3BS3 (Li2.975B0.975Si0.025S3), 5% Si substituted Li3BS3 (Li2.95B0.95Si0.05S3), and amorphized 5% 

Si substituted Li3BS3 (a-Li2.95B0.95Si0.05S3). No impurities are observed in any pattern. (b) Arrhenius fits for 

Li3BS3. (c) Lattice parameter comparison for Li3BS3, Li2.975B0.975Si0.025S3, and Li2.95B0.95B0.05S3. (d) Arrhenius 

fits for Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3. (e) Electrochemical impedance spectroscopy for the a-

Li2.95B0.95Si0.05S3 at various temperatures. (f) 7Li NMR and (g) 11B NMR of the Li3BS3, Li2.95B0.95Si0.05S3, and 

a-Li2.95B0.95Si0.05S3. Results show that combined aliovalent substitution and amorphization can improve the 

ionic conductivity of Li3BS3 by over four orders of magnitude.  

 

Aliovalent substitution of Li3BS3 is achieved by substituting Si for B. The XRD patterns and 

quantitative Rietveld refinements of Li2.975B0.975Si0.025S3 and Li2.95B0.95Si0.05S3 are shown in Figure 

4a. The lattice parameters from the refinements are plotted vs. stoichiometry with the Li3BS3 end-

member in Figure 4e. The linear trend shows that the materials obey Vegard’s law and confirms 

that Si incorporates into the lattice as a solid-solution. Substitution to 7.5% Si continues the 

Vegard trend but unidentified impurities are present. With 5% Si substitution, the ionic conductivity 

is improved to 1.82(±0.21)∙10-5 S cm-1 and the activation energy is decreased to 333±47 meV (Fig. 

4d). Kimura et al. demonstrated that extended ball milling of Li3BS3 causes amorphization and 

improves ionic conductivity, likely due to introduction of defects60,67. Extended ball milling is 

attempted on the 5%-substituted Li3BS3 to assess whether both defect engineering strategies are 

compatible. Planetary ball milling of the 5%-substituted Li3BS3 for 100 h achieves amorphization 

(a-Li2.95B0.95Si0.05S3), as verified by the lack of distinct peaks in the XRD pattern shown in Figure 

4a. 

We find that amorphization significantly improves Li-ion conductivity. EIS measurements 

of a-Li2.95B0.95Si0.05S3 are shown in Figure 4e. A high-frequency semicircle is partially resolved 

which may represent grain boundary or bulk ionic transport. A Warburg tail is evident at lower 

frequencies, indicating that electronic charge transfer is blocked. Although multiple high-
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frequency semicircles may exist (see supplemental information – section VII), a conservative 

estimate of the ionic conductivity is determined by linear fit of the Warburg tail and extrapolation 

to the x-intercept. The σ25°C of a-Li2.95B0.95Si0.05S3 is 1.07(±0.08)∙10-3 S cm-1 with an activation 

energy of 345±2 meV (Fig. 4d). The electronic conductivity as measured by DC polarization at 

0.5 V is 3.3∙10-10 S cm-1.   

To determine if the local structure in the crystalline material is maintained after 

amorphization, we turn to 7Li and 11B NMR. If the local structure is not altered by amorphization, 

then it is likely that the ion diffusion pathways are similar. Comparing the ion diffusion pathways 

is important because the machine learning points to the structure of the crystalline Li3BS3 phase. 

The 7Li NMR spectra of Li3BS3, Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3 are shown in Figure 4d. 

All materials show a single resonance at the same chemical shift, suggesting the Li local 

environment remains unchanged. The resonance width narrows significantly in the amorphous 

material due to the higher mobility. The 11B NMR measurements are shown in Figure 4g. The 11B 

NMR for Li3BS3 and Li2.95B0.95Si0.05S3 show a single, quadrupolar environment that can be 

assigned to the [BS3]3- moieties67,72. The signal from the a-Li2.95B0.95Si0.05S3 shows a similar signal 

to that of the crystalline phases but the shape changes, similarly to the previous measurement for 

amorphous Li3BS3
67. Li3BS3, Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3 all exhibit a major peak at 

~60 ppm and a relatively minor peak ~0 ppm. The major peak is assigned to trigonal planar [BS3]3- 

while the minor peak likely indicates a minor impurity with tetrahedrally coordinated B73–75. The 

change in shape of the 11B spectrum upon amorphization is likely due an averaging of the 

quadrupolar couplings due to the fast Li dynamics. Thus, Li3BS3 and a-Li2.95B0.95Si0.05S3 have 

similar local structures and we can attribute the faster Li dynamics to the introduction of charge-

carrying defects.  

In addition to our experimental model validation, another of the predicted materials, 

KLi6TaO6, was recently synthesized with aliovalent Sn-substitution by Suzuki et al59. With a 

reported ionic conductivity near 10-5 S cm-1, KLi6TaO6 is better than 70% of the SSEs in the semi-
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supervised labels. Further improvement may be possible via extended amorphization to introduce 

structural defects, as is observed for Li3BS3.  

Conclusions 

Identification of functional materials is critical for improving technologies. Here, we show 

the utility of using semi-supervised learning as a method for guiding next-generation materials 

discovery in emerging fields. The method’s focus on identifying the relationships between 

descriptors, prior to labeling, enables understanding of compositional spaces where most inputs 

are unlabeled. We demonstrate how semi-supervised learning can be used to identify descriptors 

and prospective superionic Li SSEs. By analyzing all Li-containing structures from the ICSD and 

MP database, we identify 212 materials that show promise as SSEs. All 212 structures exhibit a 

BVSE-predicted Ea below 0.6 eV.  

The results illustrate that the utility of semi-supervised learning is contingent on careful 

screening of descriptors. While chemical intuition can be useful for descriptor selection, chemical 

intuition is often biased to favor previously investigated compositional spaces. For material 

discovery in emerging fields, use of handpicked descriptors may miss complex phenomena that 

more generally describe the dataset. Descriptor screening reveals which material properties are 

correlated to a property of interest to help enhance chemical intuition. In the case of Li SSEs, 

spatial descriptors excel over compositional, bonding, and electronic descriptors: the Smooth 

Overlap of Atomic Positions (SOAP), modified X-ray diffraction (mXRD), and general density 

descriptors are within the top four models. For spatial descriptors, simplification of the input 

structure tends to improve clustering outcomes. Removing the mobile ions from the structure and 

simplifying the remaining atoms, i.e. the “CAN” simplification, is most effective. Thus, the 

placement of framework atoms, but not their precise identity, is most correlated with ionic 

conductivity. Specifying the mobile ion positions hurts the model performance, suggesting a low 

correlation of mobile ion positions with ionic conductivity.  
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Predictions from the semi-supervised method are promising starting points for 

experimental identification of new superionic conductors but defects must be considered. The 

proposed materials are diverse, with the top thirty including halides, sulfides, tellurides, nitrides, 

oxides, and oxyhalides (see supplemental information – section IX).  As a structure that falls 

outside of the eight routinely studied SSE classes, we demonstrate experimental characterization 

of Li3BS3 to confirm the utility of the approach. However, pure Li3BS3 exhibits poor ionic 

conductivity. Defects must be introduced into the material to achieve a superionic conductivity 

above 10-3 S cm-1, a value that surpasses most reported SSEs. We note that the defects are 

introduced while maintaining the local structure of the crystalline material and thus the ionic 

conduction pathways are likely similar. The need to introduce defects highlights the paramount 

importance that defects play when measuring real materials. Many of the highest performing 

SSEs contain charge-carrying defects that are not explicitly encoded in their structure files. It is 

likely that some of the descriptors indirectly encode information about defects. By using 

experimental conductivity values as the evaluation metric, we may be prioritizing descriptors that 

encode information about a structures ability to support charge-carrying defects. To improve 

models and enhance chemical intuition, descriptors that explicitly encode defects are needed.   

Now developed, the semi-supervised learning approach can serve as a template for 

material discovery beyond Li SSEs. The code is thoroughly documented following pythonic coding 

standards and made freely available on Github. Although the present effort focuses on Li SSEs, 

the approach is applicable to any material discovery space where labels are sparse. Discovery of 

new Li cathodes could be accomplished by using Li diffusivity, cathode capacity, and metal redox 

couple voltages as labels. Discovery of divalent SSEs (e.g. Mg2+, Ca2+, Zn2+) could foreseeably 

be accomplished in a similar manner. The semi-supervised learning strategy may accelerate 

identification of fast ionic conductors for ion exchange membranes, solid oxide fuel cells, and 

various sensor applications.  
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Methods 

Data Processing and Semi-supervised Learning 

The ~26,000 input compositions are exported from the Inorganic Crystalline Structure 

Database (ICSD v.4.4.0) and Material’s Project (MP - v.2020.09.08) as crystallographic 

information files (.cif). All structures containing Li are imported. Although transition metals could 

produce undesirable redox activity, transition metal containing structures are not screened out. 

Some of the best-performing SSEs contain transition metals (e.g. LLZO and LLTO). Entries that 

existed in both ICSD and MP are merged. Data manipulations and structure simplifications are 

performed using the Python libraries NumPy (v1.19.1), Pandas (v1.0.5), ASE (v3.19.1), and 

Pymatgen (v2020.8.3). Descriptor transformations are performed using the Python libraries 

Pymatgen (v2020.8.3), Matminer (v0.6.3), and Dscribe. Agglomerative hierarchical clustering is 

performed using the Python library scipy (v1.5.0). All code has been successfully executed on a 

custom-built CPU with an AMD Ryzen Threadripper 3990x Processor and 256 GB of RAM, in 

Ubuntu 20.04 running on Windows Subsystem for Linux 2. All code is made available on the 

github (https://github.com/FALL-ML/materials-discovery).  

CI-NEB 

Migration barriers for Li ion hopping are evaluated with the Climbing Image – Nudged 

Elastic Band (CI-NEB) method as implemented in the QuantumESPRESSO PWneb software 

package76–79. Density-functional theory (DFT) calculations are performed using the Perdew-

Burke-Ernzerfof (PBE) generalized gradient approximation functional and projector-augmented 

wave (PAW) sets80,81. Convergence testing for the kinetic-energy cutoff of the plane-wave basis 

and the k-point sampling is performed for each structure to ensure an accuracy of 1 meV per 

atom. The lattice parameters and atomic positions of the as-retrieved structure are optimized. 

Supercells are created for each structure that are a minimum of 10 Å in each lattice direction to 
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minimize interactions between periodic images of the mobile ion. To study the migration barrier 

in the dilute limit, a single Li vacancy is created in the boundary endpoint structures of each 

studied pathway. A uniform background charge is used to balance excess charge. Each boundary 

configuration is relaxed until the force on each atom is less than 3x10-4 eV/Å. Images are created 

by linearly interpolating framework atomic positions between the initial and final boundary 

configurations. The initial pathway for the mobile ion is generated from the BVSE output minimum 

energy pathway to promote faster convergence of the NEB calculation. An NEB force 

convergence threshold of 0.05 eV/ Å is used. The calculation is first converged using the default 

NEB algorithm and then restarted with the CI scheme to allow for the maximum energy of the 

pathway to be determined. 

 

Li3BS3 Synthesis 

Li3BS3 is synthesized by reaction of Li2S (Alfa Aesar, 99.9%), S8 (Acros Organics, >99.5%), 

and elemental B (SkySpring Nanomaterials, Inc. 99.99%). The reactants are first mixed 

stoichiometrically (300 rpm for 1 h) using a planetary ball mill (MSE PMV1-0.4L) in 50 mL ZrO2 

jars with ZrO2 balls. Two grams of reactants are always combined with 2 large balls (10 mm 

diameter), 34 medium balls (5 mm diameter), and 8 grams of small balls (3 mm diameter). Loading 

of ball mill jars occurs in an Ar-filled glovebox (Mbraun) and the jars are sealed before removal. 

After the 1 h of milling, the precursor mixture is pumped back into the glovebox and 330 – 340 

mg of the powder is loaded into carbon coated vitreous silica ampoules (10 mm ID x 12 mm OD). 

The ampoules are evacuated (<10 mtorr) prior to sealing. Pure Li3BS3 is obtained via a four-step 

heating protocol in a Lindberg/Blue furnace: (1) ramp to 500 °C at 5 °C min-1, (2) hold at 500 °C 

for 12 h, (3) ramp to 800 °C at 5 °C min-1, and (4) hold at 800 °C for 6 h. The hot melt is then 

quenched from 800 °C into room temperature water. Recovered ingots are typically covered in a 
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C shell. The C shell is either sanded off or the ingot is ground into smaller pieces and the C is 

manually removed.  

 

Substituted Li3BS3 

Aliovalent substitution is accomplished by adding elemental Si (Acros, 99+%) into the 

precursor mixture prior to the 1 h mix. Si-substitution stoichiometry assumed that each Si atom 

replaces one Li and B: Li3-xB1-xSixS3. Aside from the addition of Si, all steps are the same as for 

the synthesis of Li3BS3. Amorphization is accomplished via extended planetary ball milling in Ar 

of the 5% Si-substituted Li3BS3 (Li2.95B0.95Si0.05S3). Approximately 1 g of Li2.95B0.95Si0.05S3 is 

combined in a ZrO2 ball mill jar with 3 large balls (10 mm diameter), 51 medium balls (5 mm 

diameter), and 12 g of small balls (3 mm diameter). The powder is ground in a planetary ball mill 

(MSE PMV1-0.4L), under Ar atmosphere, for 100 h.  

 

Material Characterization 

Li3BS3 materials are characterized using powder X-ray diffraction (XRD) and 

electrochemical impedance spectroscopy (EIS). XRD patterns are attained on a Rigaku Smartlab 

by scanning from 10° to 70° 2 at 2 degrees per minute. The Smartlab employs a Cu-Kα source 

with a 20 kV accelerating voltage. For EIS measurements, 50-100 mg of powder is first hot-

pressed (100 °C, 5 min) into a 1/4" diameter pellet. The pellet faces are polished using diamond 

lapping powder (Allied High Tech Products Inc.) in sequentially finer grits: 60, 30, 6, 0.5, and 0.1 

micron. Au contacts are sputtered (90 s at 40 mA) onto the polished surfaces using a 108 Auto 

Sputter Coater (Cressington). Pellets are then assembled into a Swagelok 1/4" cell with stainless 

steel current collectors. After applying pressure with a hand vise (~100 MPa), EIS data is collected 

on a VSP-300 with a Biologic low-current channel. All EIS data is collected to an upper frequency 
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of 3 MHz. The lower frequency is case dependent, with a frequency cutoff selected such that the 

Warburg polarization feature is visible. 7Li and 11B MAS MAS NMR spectra were acquired using 

a Bruker DSX-500 spectrometer with a 4 mm ZrO2 rotor. The operating frequencies for 7Li and 

11B are 190.5 and 160.5 MHz, respectively. The 7Li and 11B spectra were referenced to a 1 M LiCl 

aq. solution and BF3-OEt2, respectively. A spinning speed of 12 kHz was used, and the spectra 

were gathered after applying a single 0.5 μs to 15° pulse for both 7Li and 11B. 
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