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Abstract

Artificial neural networks provide a powerful paradigm for information processing that has
transformed diverse fields. Within living cells, genetically encoded synthetic molecular networks
could, in principle, harness principles of neural computation to classify molecular signals. Here,
we combine de novo designed protein heterodimers and engineered viral proteases to
implement a synthetic protein circuit that performs winner-take-all neural network computation.
This “perceptein” circuit includes modules that compute weighted sums of input protein
concentrations through reversible binding interactions, and allow for self-activation and mutual
inhibition of protein components using irreversible proteolytic cleavage reactions. Altogether,
these interactions comprise a network of 310 chemical reactions stemming from 8 expressed
protein species. The complete system achieves signal classification with tunable decision
boundaries in mammalian cells. These results demonstrate how engineered protein-based
networks can enable programmable signal classification in living cells.

One-Sentence Summary

A synthetic protein circuit that performs winner-take-all neural network computation in
mammalian cells

Introduction

Cells are classification machines. Using circuits of interacting genes and proteins, they make
qualitatively distinct decisions in response to the levels or dynamics of multiple input signals. For
example, p53 functions as a tumor suppressor by classifying the types and levels of stress the
cell encounters, and inducing senescence or cell death in response (7). In the context of
development, cells in the neural tube take on specific progenitor fates by classifying the levels of
BMP and Hedgehog signaling (2). In the human immune system, the classification of multiple
cytokine inputs can control the fate of a T cell (3). The ability to program synthetic signal
classification systems could facilitate engineered gene and cell therapies by allowing cells to
robustly distinguish diseased and normal cell states (4). For this reason, a major goal of
synthetic biology has been to design synthetic classification circuits that could function in living
cells, respond to different types of signals as inputs and control cellular functions as outputs (5).
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One of the most powerful circuit architectures for classification is the winner-take-all neural
network (6). In these systems, an output neuron is ON if and only if the weighted sum of its
inputs exceeds that of all other neurons in the output layer (Fig. 1A, B). This architecture has
several benefits. First, it offers a compact mechanism for signal classification, requiring only a
single layer neural network. Second, it ensures that outputs are all-or-none (Fig. 1B). Finally, it
allows one to alter the decision boundary simply by tuning weights (Fig. 1C).

Previous theoretical work suggested specific schemes for engineering biochemical neural
computation systems (7-77). Experimentally, efforts to build synthetic classification systems
have resulted in DNA classifiers in test tubes (72, 13), and miRNA-based classifiers in
mammalian cells (74, 15). In contrast, a protein level classifier would offer several advantages: it
could be expressed transiently in cells, interface directly with endogenous inputs and outputs,
trigger different output pathways depending on input state, and should in principle work in
diverse cell types without relying on endogenous transcriptional regulations. More generally, a
protein-based neural network would also test the ability to construct sophisticated computational
devices out of interacting proteins (76).

A key challenge in designing a protein-based neural network has been the increased difficulty of
programming specific binding interactions and conditional activity using proteins compared to
nucleic acids. Recently, however, sets of modular protein interaction domains have been
developed, including de novo designed heterodimers (DHDs) (77-20). Additionally, multiple
groups have used conditional reconstitution of split viral proteases as a way to control protein
activities (21-24). Here, taking advantage of these advances, we designed a protein based
winner-take-all comparator circuit using DHDs and split proteases that senses and processes
input signals. This circuit accurately compared the relative levels of two inputs in living
mammalian cells, with a tunable decision boundary. This synthetic protein neural network
provides a foundation for rationally engineering protein classification in living cells.

Results
System design

Winner-take-all dynamics can be achieved with molecular components that exhibit three key
features (Fig. 1D): First, they should respond to input molecules with tunable strengths,
analogous to weights in neural networks, to enable weighted summation of inputs. Second, they
should be capable of mutual inhibition, allowing the elimination of less abundant species. Third,
they should be able to self-activate, so that surviving species can amplify their own activity (25).

We created fusion proteins that possess these features by genetically combining de novo
designed protein heterodimers (DHDs) (77), domains from viral proteases such as Tobacco Etch
Virus (TEV) and Tobacco Vein Mottling Virus (TVMV) (Fig. 1E), and the dihydrofolate reductase
(DHFR) degron. Briefly, the proteases are split into two inactive domains, whose reconstitution
into an active protease can be controlled by attached DHD domains (27, 22). The intermolecular
dimerization of these DHD domains can be regulated by input DHDs that disrupt a competing
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inhibitory self-caging interaction (Fig. 1E) (26). The strength of this input binding interaction,
analogous to a weight in a neural network, is tunable by varying the concentrations of
DHD-protease fusions (Fig. 1G). Once reconstituted, proteases can inactivate one another by
cleaving off attached dimerization domains, achieving mutual inhibition (Fig. 1F). Finally, the
same proteases can also self-activate by cleaving off degrons that would otherwise destabilize
them (Fig. 1F). Together, these components generate the key interactions required for
constructing a set of protein-based winner-take-all neural networks we term perceptein
networks, in loose analogy with the perceptron, a foundational artificial neural network
architecture (27).

In the language of neural networks, the perceptein network comprises a layer of inputs (DHD
input proteins, X;), as well as a layer of nodes (N;) that process information from inputs and
couple to outputs (Fig. 2). In this molecular implementation, each node consists of two parts,
labeled N-nodes and C-nodes. The N-nodes are composed of N,° or N, consisting of
N-terminal protease halves fused to DHDs, with (N,°) or without (N;) an attached degradation
tag. The C-nodes, labeled C,, contain C-terminal protease halves fused to DHDs (Fig. 1E). In
the simple case of two inputs and two outputs, all indices range from 1 to 2, such that the whole
system consists of two X;, four N,°, and two C, components, or eight proteins altogether.
Throughout the text, N; refers to the node consisting of N-node and C-node proteins, while N;°
and Ny refers to individual N-node proteins.

Our design enables weighted summation of inputs. The i input species, X, is partitioned among
different potential binding partners N,° (for which i = j) in proportion to their relative abundances.
The effective weights, w;, are thus determined by the abundances of the corresponding N;°
components. For example, in the case of 2 inputs and 2 outputs, wy, is defined as the
concentration of N;,° divided by the sum of the concentrations of N,°® and N,,° (Fig. 1G).
Binding to an input uncages (26) the DHD domain fused to Ny° components, exposing the N;°
binding domain (gray), which can interact with C, domains to produce either a functional
protease (if k = I) or a non-functional hybrid of mismatched protease halves (if k # 1) (Fig. 1E).
Each input can, in this way, generate both functional reconstituted proteases as well as
non-functional hybrids. Input summation occurs because the total set of functional reconstituted

proteases of a given type in general includes contributions from all inputs.

The design also enables self-activation and mutual inhibition. To achieve self-activation,
functional proteases can further activate their own activity by cleaving off a degron that is
present on the N,° components of the same protease type, which would otherwise cause rapid
protease degradation (Fig. 1F). The functional reconstituted proteases of each type can also
inactivate other functional proteases by cleaving off DHDs on their C, domains (Fig. 1F).

Modeling and simulation
To understand whether this design could produce winner-take-all behavior within physiologically

relevant parameter regimes, we first simulated its response to a matrix of input values (X
concentrations) (Supplementary Text). Briefly, inputs X; bind cooperatively to N;° and C, to form
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trimeric complexes that reconstitute either functional proteases or nonfunctional hybrids with
mismatched protease halves. To model this cooperative binding process, we divided the
process of trimer formation into two steps. First, X; binds to N;° to form an unstable dimer with
fast off rates. This step also exposes the binding site for C,. In the second step, this dimer binds
to C, to form stable trimeric complexes with slower off rates (26). Complexes with matching
protease halves are assumed to reconstitute active protease. Each reconstituted protease can
cleave its various cognate target sites on other protein components. All the while, all protein
building blocks are continuously synthesized at constant rates and degraded at different rates
depending on whether they contain a degron. Finally, we estimated physiologically reasonable
values for protein synthesis and degradation rates, protease catalytic rates, and other
biochemical parameters using references in the BioNumbers (28) database (Table 1).

With these parameter values, the simulated circuit exhibited the desired winner-take-all
classification behavior (Fig. 2A, first row). When X; exceeded X,, the N, protease activation
approached its maximum possible level over timescales of ~100h. However, the decision
appeared to be made much earlier, as large fold differences between N, and N, were apparent
within 3 hours (Fig. 2A, first row inset). Simulations further revealed that inner-take-all
classification functions across a broad range of absolute concentrations for X; and X,, and
remained accurate even for differences as small as 10% between the two ligand concentrations
(Fig. S1C).

To understand which features of the circuit are necessary or sufficient for classification, we also
analyzed circuit variants lacking cross-activation by inputs (Fig. 2A, second row), self-activation
(Fig. 2A, third row), or mutual inhibition (Fig. 2A, fourth row). Removing cross interactions (i.e.,
removing N,,° and N,°) produced a simplified circuit design we term the comparator (Fig. 2A,
second row) that is still capable of winner-take-all classification. Removing self-activation retains
all-or-none behavior at lower input levels, but at a lower dynamic range of outputs (Fig. 2A, third
row). At higher input levels, it loses classification ability altogether. By contrast, removing mutual
repression accelerated the response of the circuit but eliminated the all-or-none output behavior,
and also lost classification ability at higher input levels (Fig. 2A, bottom row). Therefore, both
self-activation and mutual inhibition are indispensable for winner-take-all computation in this
architecture.

We next analyzed sensitivity to parameter values within the circuit. Protease catalytic rates and
protein degradation rates both had strong effects on classification accuracy (Fig. S1A, B). Lower
values of kg led to reduced cleavage, hindering self-activation and cross-inhibition and
therefore decreasing classification performance. However, as long as k. values for both
proteases were above 0.04 sec”, the circuit operated correctly, identifying the larger of the two
inputs (Fig. S1A). Additionally, the winner-take-all behavior was more pronounced at higher
degradation rates, corresponding to stronger degrons in the experimental circuit (Fig. S1B,
x-axis). By suppressing background protease activity, degradation amplifies the effects of
self-activation.
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In general, different inputs can vary over different ranges. An ideal circuit would allow one to
tune the decision boundary to match the scales of the inputs. In these circuits, the decision
boundary can in fact be tuned by varying weights, represented here as component
concentrations. In the comparator, when N,,° and N,,° are fixed at the same level, the circuit
compares input levels without bias. On the other hand, varying the relative abundances of N,,°
and N,,° allows the construction of biased comparators, where N, is ON only when X, > X;-q,
where a depends on the relative levels of N,,° and N,,°. Simulations confirmed that the circuit
could implement such tunable decision boundaries (Fig. 2B).

Within cells, stochastic fluctuations can strongly impact circuit behaviors (29). Stochastic
simulations of the circuit revealed that both the full network and the comparator circuits could
function accurately despite such noise (Fig. 2C, Fig. S1D-F). Even with a difference in input
values of only 40% (e.g. X,=0.05, X,=0.07), no “reversal”’ events were observed, as shown by
individual traces (red and orange lines, Fig. 2C). On the other hand, when starting from equal
inputs (X;=X,=0.05), individual trajectories converged over a slower timescale to either of the
two output states, with an average response of neither (dark gray line, Fig. 2C), showing that
the output is bistable. To analyze the sensitivity to input differences in the presence of noise, we
varied X;-X, and analyzed the fraction of correct decisions. This analysis suggested that
differences of only 20% were sufficient for accurate classification more than 95% of the time
(Fig. 2D).

These results suggest that the perceptein architecture should function across a broad,
biologically plausible range of parameter values. On the other hand, the perceptein produces an
enormous number of distinct molecular species. Even in the smallest implementation, involving
two inputs and two neurons (Fig. 2A, first row), starting from just 8 protein species, the system
generates (by cleavage and protein complex formation) 158 unique proteins and protein
complexes, that participate in 310 distinct chemical reactions, including protein binding,
synthesis, degradation, and protease cleavage (Supplementary Text). Modeling these reactions
required a set of 158 ordinary differential equations containing 1238 terms. This complexity,
which exceeds that of most previous synthetic biological circuits, provokes the question of
whether the system could actually function in mammalian cells.

Experimental validation

We constructed the set of 6 perceptein components and 2 input proteins necessary to
implement the full circuit (Fig. 3A, S2). We chose the split tobacco etch virus protease (TEVP)
and tobacco vein mottling virus protease (TVMVP) (27) as the two orthogonal proteases, and
genetically fused the split halves to DHD domains, protease cleavage sequences, and
degradation domains for controlled reconstitution of full proteases (Fig. 3A, S2, Table 2). In
order to test many combinations of components and expression levels by co-transfection, each
protein was encoded on a distinct plasmid. To measure the output of the circuit, we engineered
a stable HEK293 reporter cell line containing a multi-cistronic construct co-expressing two
fluorescent proteins—mCitrine and mCherry—each tagged with a cleavage-activated N-degron
for either of the two input proteases (27) (Figure 3B). We verified that each protease variant
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exclusively reduced fluorescence from its target reporter (Figure S3A). Together, these
constructs and the reporter cell line permitted rapid, iterative testing of circuit designs.

Using these components, we experimentally validated each module of the winner-take-all neural
network, starting from the top of Figure 1D. Each experiment was performed with varying
amounts of input plasmids to identify combinations that maximize dynamic range and minimize
background activities. First, we asked whether inputs could ftrigger reconstitution of
corresponding protease activities, as depicted in Figure 1E. Co-transfecting input X; with
cognate N- and C-node proteins inactivated the corresponding fluorescent protein reporter,
consistent with reconstitution of the corresponding protease (Figure 3C, S3C, S3D).
Input-triggered protease activities were comparable to positive controls, consisting of split
protease halves fused to heterodimerizing domains. In the absence of input, reporter levels
were similar to those in a negative control consisting of split protease halves lacking DHD
domains. These results suggest that inputs can reconstitute cognate protease activities.

Next, we focused on the weight multiplication step, which should ideally distribute input proteins
based on the relative abundance of N-node proteins (Fig. 1G). In order to obtain a
homogeneous distribution of constructs in each cell, we used mRNAs encoding test constructs
for transfection. We transfected cells with varying ratios of Ny, and N,,, while keeping X,
constant. The amount of activated (protease reconstituted) N; and N,, which determines the
fluorescence of mCitrine and mCherry, should be linearly dependent on the ratio of N;; and N,
expression levels. Flow cytometry analysis confirmed that the changes in fluorescence followed
a linear trend consistent with the concentration ratios of transfected N,; and N, constructs (Fig.
3D).

Once activated, the perceptein components can self-activate and mutually inhibit (Fig. 1F).
Self-activation involves protease cleavage-dependent removal of a fused DHFR degron from
the half protease, stabilizing proteases of its own kind. To evaluate the extent of self-activation,
we transfected HEK293 cells with plasmids encoding either N-node constructs with a protease
cleavable degron, or similar negative control constructs lacking the cleavage site that are
therefore unable to self activate. Flow cytometry revealed a 5 fold change in protease activity
upon self-activation. By contrast, the negative control remained close to the background (Fig.
3C and S3E). Mutual inhibition interactions (Fig. 1F) also functioned as expected. As shown in
Figure 3C, protease activities of the N, node were strongly repressed by an excess of the N,
node components (N,,° and C,). Mutual inhibition worked similarly in the opposite direction
when there was more N, than N, (Fig. S3E). Taken together, these results indicate that each
module of the full circuit can function individually.

To test whether the full circuit behaved as predicted, we co-transfected reporter cells (Fig. 3B)
with varying concentrations of the inputs, fixed amounts of the N- and C- half-node proteins (in a
multicistronic manner), and a BFP co-transfection marker (Figure S2), and read out reporter
fluorescence. We set the concentrations of the N,;° and N,,° plasmids 9 times higher than the
concentrations of the N;,° and N,,° plasmids to put the circuit into a comparative regime (Fig.
3E, left). We normalized protease activities based on fluorescence (Materials and methods), and
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plotted the differences in normalized protease activities in N, and N,. As expected, the output
was positive when X; exceeded X, and negative when X, exceeded X;, with minimal response
at equal input concentrations (Fig. 3E, right). The output became more binary with greater
absolute difference between the two inputs, approaching the binary response observed in
simulations. Additionally, varying the relative levels of perceptein components resulted in a
biased comparator where, in agreement with prediction (Fig. 3F, left), Node 1 was the winner
regardless of the two input values (Fig. 3F, right). These results show that the full circuit can
compare the relative levels of two inputs.

In the model, eliminating the cross interactions, X;-N, and X,-N, altogether, leads to a simpler
comparator regime that should allow input classification with a decision boundary whose
position can be tuned by modulating the relative expression levels of the perceptein
components (Fig. 2A, second row). To test this capability, we transfected cells with varying
relative levels of the N,° and N,,° plasmids, while omitting the N,,° and N,,° plasmids entirely.
At a 1:1 ratio of N;;°:N,,°, we observed similar classification behavior to that seen with the full
circuit (Fig. 3E). Modulating the relative levels of N,,° and NP shifted the decision boundary,
similar to predictions (Fig. 3G). These results support the ability of the circuit to enable tunable
classification.

The perceptein can produce scalable classification

How well can this protein-based neural network scale? To address this question, we simulated
higher dimension comparators, each composed of m inputs and m nodes (Fig. 4A). For each
value of m, we simulated the response to a matrix of input values. Larger systems retained
classification ability, despite some loss of output dynamic range (Fig. 4B, C). Overall circuit
complexity, measured by the number of chemical reactions, scaled approximately linearly with
the size of the comparator, m (Fig. 4C).

Finally, simulations showed that the perceptein system can also perform more complex types of
classification. For example, by adding a third node to the two-input classifier, one can obtain a
winner-take-all response in which nodes 1 and 2 respond to X; or X, alone, while node 3
responds only to the presence of both (Fig. 4D). Conversely, with three inputs and two nodes
one can, in a single layer system, compute composite functions such as (X; OR X;) AND NOT
X, that require multiple layers of conventional Boolean logic gates (Fig. 4E). One can also
augment the system with “hidden” units that establish thresholds for the true inputs in order to
compute even more complex functions. For example, by adding a single hidden unit to the
3-input, 2-node system, one can obtain a circuit that computes an ANY 2 OUT OF 3 function,
where node 1 is activated when at least two of the three inputs are present (Fig. 4F). Together,
these results show that the perceptein system can in principle be scaled and extended to solve
a broader variety of classification problems.

Discussion
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Here, inspired by the classic winner-take-all neural network design, we introduced the
perceptein architecture for protein level winner-take-all classification within living mammalian
cells. The circuit design is based on three design principles: First, three-way cooperative binding
interactions enable input-dependent protease activation (26), producing the species on the right
in Fig. 1E. These cooperative interactions are in turn enabled by the use of fusions of de novo
designed heterodimers. Analogous functions could in principle be achieved with naturally
cooperative protein binding systems such as those in the N-WASP system (30). However, the
de novo designed proteins offer a larger repertoire of distinct binding specificities, and minimize
unintended interactions with endogenous cellular proteins. Second, the design takes advantage
of the irreversibility of protease-based cleavage, in combination with degrons (27).
Self-activation involves proteolytic degron removal, while mutual inhibition is achieved by
proteolytic inactivation (Fig. 1F). We note that other mechanisms, such as post translational
modification, could also be exploited to allow orthogonal signal processing and enable
multi-layer protein networks. Third, perceptein components further exploit molecular competition
between protease halves. Splitting proteases and letting them compete to form productive or
inactive complexes achieves two functional goals: it makes each protease activity dependent on
a cognate input, and it supports the winner-take-all behavior, as protease halves effectively
quench the activity of their non-matching partners (Fig. 1E). Combining these principles
successfully enabled two-input winner-take-all classification in mammalian cells (Fig. 3).

A key feature of neural computation is the ability to modulate input-output functions by tuning
weights in an existing network (27). Analogously, varying the expression levels of perceptein
circuit components such as N4, and N,,° systematically shifted the decision boundary in the
classification circuit without requiring additional protein components (Fig. 2B, 3G). Because
tuning can be achieved through expression, this design allows cells to control their own decision
thresholds by modulating gene expression.

The perceptein architecture can be scaled up to perform higher dimensional classification tasks.
A fully connected network (Fig. 2A, first row) with p inputs and q neurons grows multiplicatively,
requiring a total of p + q + pq distinct proteins. However, in the case of the simpler comparator
architecture (Fig. 2A, second row), elimination of cross interactions between inputs and node
proteins leads to linear scaling, with p + g starting components. When considering scaling, it is
interesting to also consider the remarkably large number of different protein species and
complexes (e.g. 158 for the 2-input, 2-output system) that are generated in the operation of this
system. Effectively, this large number of molecular species is “compressed” into the much
smaller number (e.g. 8 for the 2-input, 2-output system) of starting protein species from which
they are generated. This is reminiscent of the way certain protein families can produce huge
diversities of protein products through alternative splicing (37), proteolytic cleavage of
pro-proteins (32), or combinatorial assembly of alternative multimeric complexes (33). Previous
mammalian synthetic biology work has used as many as 12 unique genes in a single system
(34). To scale up protein computation further will require expression of more starting protein
species. It is likely that the major limitations are technical, relating to mammalian genome
engineering, rather than problems with protein-protein interactions. We anticipate that as
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genome engineering techniques continue to advance (35), they will permit creation of larger
systems, opening up the possibility of even more complex computation.

Finally, the perceptein output proteins are proteases, whose activities can be engineered to
control diverse targets, including activation of endogenous pathways, such as cell death;
transcription factors; or other synthetic protein systems (27, 23). They can also be wired to
additional perceptein layers, allowing the construction of more powerful, and more fault-tolerant,
multi-layer networks (36). Future iterations of this design could therefore enable the
programming of more complex biochemical computations, rivaling those produced by evolution,
in living cells.
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Figure 1. Winner-take-all neural network computation can be implemented using
engineered proteins. (A) A winner-take-all neural network, operating inside cells, would use a
set of interacting proteins (N;) to activate exactly one of its outputs (colored proteases, y;)
depending on the relative values of its inputs (X;). (B) Formal description of the system in (A).
The network consists of m inputs (X)), each taking positive real values. The inputs interact with
the n nodes (N;) with weights w; (1 <i<m, 1 <j<n, 0 <w; < 1) connecting input X; to neuron Ni.
Each neuron performs weighted sum operations to integrate the input signals it receives, and
winner-take-all is achieved through self-activation and mutual inhibition. The output y; from a
neuron N; is active only if its weighted sum is greater than that from any other neuron. (C) The
decision boundary, a, for a 2-input, 2-neuron network can be tuned by varying the weights w;.
(D) In a 2-input, 2-node circuit, each input protein activates either node protein by forming
input-node complexes. Such complexes then undergo self-activation and mutual inhibition to
perform the winner-take-all computation. The final state of the system is defined by the
abundance of the active node. (E) The weighted sum operation is carried out through
competitive and cooperative binding. The two inputs are de novo designed orthogonal DHDs (X,
and X,). Each node consists of two groups of proteins: the N-nodes, where the cognate binding
partners of X; and X, are caged by a genetically fused DHD caging domain, and further linked to
the N-terminal half of a protease, its cleavage site, and a DHFR degron; the C-nodes, made
from the cognate binding partner of the DHD caging domain in primary half-nodes, fused to the
cleavage sequence of the other protease, and the C-terminal half of a protease. The inputs,
N-node, and C-node bind cooperatively, such that neither of the two proteins can bind with high
affinity without the third protein. They also interact competitively, such that the N-nodes compete
to bind to the input protein, and the C-nodes. Two types of intermediate products result from
these 3-way binding events: the active but destabilized proteases where the two protease
halves reconstitute a functional protease, or the inactive and destabilized hybrids where the two
protease halves do not match. The blue and green stripes indicate that the DHD domains can
be either blue (X;) or green (X,). (F) Winner-take-all operation is achieved through two types of
reactions: mutual inhibition, where each protease can inactivate the opposite protease type by
cleaving its C-terminal half proteases off the C-nodes; self-activation, where the intermediate
DHD-protease complexes cleave off DHFR degrons from their N-nodes, converting them to
stable proteases, which can in turn activate and inhibit other protease complexes. (G) The
weights connecting inputs to neurons are set based on the abundance of each primary
half-neuron complex. For example, w4, the weight that connects input X, to Neuron 1, is defined
as the concentration of the N4; N-node divided by the sum of the concentrations of all N-nodes
that can potentially bind to X;, in this case Ny; + Ny,.
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Figure 2. Simulated two-input circuits perform winner-take-all classification. (A)
Simulations of circuit variants (left) reveal circuit dynamics (middle) and classification ability
(right). Input values, weights, and weighted sums (denoted %) are indicated on the circuit
diagrams, with larger weights represented by thicker lines. Each cell in the heatmap represents
the difference between active N, and N, proteases at steady state. Both the full circuit and the
comparator are able to classify across the full range of input levels, while circuits lacking
self-activation or mutual inhibition only classify within a limited input range. (B) The decision
boundary (gray lines) of the comparator circuit can be tuned by varying the relative levels of the
two node proteins, N;,° and N,P°. (C) Stochastic simulations of the comparator. Twenty
simulations were performed for each condition (light traces), and their average traces are
plotted in dark lines. Colors indicate the input levels (legend). See supplementary materials for
simulation methods. (D) Percentage of 50 equivalent simulations that correctly classify inputs as
a function of the concentration difference between the two inputs. Input X, is fixed at 0.05
molecules/s. Even with stochasticity, input differences of at least 20% classify correctly ~95% of
the time.
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Figure 3. The winner-take-all neural network circuit classifies inputs in mammalian cells.
(A) Plasmids and the encoded protein constructs. All plasmids use the human cytomegalovirus
promoter (PCMV) to express each engineered protein. Deg denotes DHFR degron. Orange and
yellow circles denote cleavage sites for corresponding proteases. DHDs are designed
heterodimerizing proteins. A schematic representation of each fusion protein is shown to the
right of the construct. (B) The stable reporter cell line constitutively co-expresses mCitrine and
mCherry fluorescent proteins that can be cleaved at the N-terminus by TEVP and TVMVP,
respectively, to reveal N-terminal degrons that destabilize the fluorescent proteins. PGK,
3-phosphoglycerate kinase promoter. (C) Engineered protease can respond to inputs,
self-activate, and mutually inhibit. Normalized protease activities under different experimental
setups indicate expected functions. (D) Testing the weight multiplication module by fixing input
X, and varying nodes N;;° and N,,°. Ideal behaviors are shown in solid lines, experimental data
points are mean + s.d from three biological repeats. (E) A fully connected 2-input, 2-neuron
circuit that compares relative input levels (left). (F) A fully connected 2-input, 2-neuron circuit
that, by construction, should always result in N, being the winner. (G) The decision boundaries
of a two-input comparator can be tuned by varying the ratios of N, to N, protein concentrations.
Data in E-G are averages of two biological replicates.
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Figure 4. Scaling of the winner-take-all circuit. (A) An m-input, m-neuron comparator circuit.
(B) Classification abilities of comparators that take 2, 3, and 4 inputs. As the size of the
comparator increases, the ability to compare relative input levels is retained, while dynamic
range is reduced due to the increased total number of substrates for each protease. (C) The
number of reactions in a comparator circuit increases roughly linearly with its size, as the circuit
dynamic range decreases. (D) A 2-input classifier can generate distinct responses to all 4 input
states. (E) A 3-input winner-take-all circuit performs the (X; OR X;) AND NOT X, calculation.
Neuron 1 wins if the condition is met. (F) A 3-input winner-take-all circuit performs “Any 2 out of
3” logic. A fourth “hidden unit” input was added to set the threshold and make the circuit more
compact. Neuron 1 wins if the condition is met.
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