Joly, Alexis and Goëau, Hervé and Kahl, Stefan and Picek, Lukáš and Lorieul, Titouan and Cole, Elijah and Deneu, Benjamin and Servajean, Maximilien and Durso, Andrew and Bolon, Isabelle and Glotin, Hervé and Planqué, Robert and Vellinga, Willem-Pier and Klinck, Holger and Denton, Tom and Eggel, Ivan and Bonnet, Pierre and Müller, Henning and Šulc, Milan (2022) LifeCLEF 2022 Teaser: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction. In: Advances in Information Retrieval. Lecture Notes in Computer Science. No.13186. Springer , Cham, pp. 390-399. ISBN 978-3-030-99738-0. https://resolver.caltech.edu/CaltechAUTHORS:20220713-681149500
Full text is not posted in this repository. Consult Related URLs below.
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20220713-681149500
Abstract
Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants, animals and fungi is hindering the aggregation of new data and knowledge. Identifying and naming living organisms is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2022 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: very large-scale plant identification, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) SnakeCLEF: Snake Species Identification in Medically Important scenarios, and (v) FungiCLEF: Fungi recognition from images and metadata.
Item Type: | Book Section | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||||||||||||||||||||||||
ORCID: |
| ||||||||||||||||||||||||||||||||||
Additional Information: | © 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG. First Online: 05 April 2022. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No◦ 863463 (Cos4Cloud project), and the support of #DigitAG. | ||||||||||||||||||||||||||||||||||
Funders: |
| ||||||||||||||||||||||||||||||||||
Series Name: | Lecture Notes in Computer Science | ||||||||||||||||||||||||||||||||||
Issue or Number: | 13186 | ||||||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-99739-7_49 | ||||||||||||||||||||||||||||||||||
Record Number: | CaltechAUTHORS:20220713-681149500 | ||||||||||||||||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20220713-681149500 | ||||||||||||||||||||||||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||||||||||||||||||
ID Code: | 115528 | ||||||||||||||||||||||||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||||||||||||||||||||||||
Deposited By: | Tony Diaz | ||||||||||||||||||||||||||||||||||
Deposited On: | 14 Jul 2022 15:51 | ||||||||||||||||||||||||||||||||||
Last Modified: | 14 Jul 2022 15:51 |
Repository Staff Only: item control page