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Phase estimation is a quantum algorithm for measuring the eigenvalues of a Hamiltonian. We propose
and rigorously analyze a randomized phase estimation algorithm with two distinctive features. First, our
algorithm has complexity independent of the number of terms L in the Hamiltonian. Second, unlike
previous L-independent approaches, such as those based on qDRIFT, all algorithmic errors in our method
can be suppressed by collecting more data samples, without increasing the circuit depth.
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Quantum computers can be used to simulate dynamics
and learn the spectra of quantum systems, such as interact-
ing particles comprising complex molecules or materials,
described by some Hamiltonian H. Phase estimation [1] on
the unitaryU ¼ eiHt efficiently solves the common spectral
problem of computing ground state energies, whenever we
can efficiently prepare a trial state with nontrivial (not
exponentially small) overlap ηwith the ground state [2] (see
also Ref. [3]). Each run of standard phase estimation
returns a single eigenvalue, with precision and success
probability dependent on the number of times U is used.
Recently, statistical approaches to phase estimation have

been proposed [4–6], where each run uses only a few
ancillae and shorter circuits than standard phase estimation.
As such, statistical phase estimation may be better suited to
early fault-tolerant quantum computers that are qubit
limited and depth limited. However, in these approaches,
a single run gives a sample of an estimator of hUji for some
runtime j, which alone is not enough to infer spectral
properties. Multiple runs with different values of j are
needed, and statistical analysis gives spectral information
with a confidence that increases with the amount of data
obtained. These runs could be massively parallelized across
multiple quantum computers. Interestingly, the approach of
Lin and Tong [6] is not only statistical in its analysis, but
also generates the runtime j, and therefore the circuits, from
a random ensemble.
The cost of phase estimation—statistical or standard—

typically depends on the Hamiltonian sparsity L, the
number of terms in the Hamiltonian when decomposed
in a suitable basis, such as the Pauli basis. Simple schemes
based on implementing U using Trotter formulas have
OðLÞ gate complexity [7–11]. This can be prohibitive for
the electronic structure problem in chemistry and materials
science, where typically L ¼ OðN4Þ for an N-orbital

problem [12]. This increases to L ¼ OðN6Þ when using
transcorrelated orbitals [13,14] to better resolve electron-
electron interactions. Sublinear non-Clifford complexity
Oð ffiffiffiffi

L
p þ NÞ is possible by employing an efficient data-

lookup oracle [15,16] in qubitization-based implementa-
tions of phase estimation [17–20]. However, these
approaches require Oð ffiffiffiffi

L
p Þ ancillae, which increases the

qubit cost from OðNÞ to OðN2Þ, or even OðN3Þ in the
transcorrelated setting.
Heuristic truncation and low-rank factorizations have

been proposed to decrease the sparsity L [18–20] of the
electronic structure Hamiltonian. As an alternative approach,
randomized compilation [21–23] has been rigorously shown
to enable phase estimation with gate complexity that is
independent of L for any Hamiltonian. Aweakness of these
randomized algorithms is a systematic error in energy
estimates that can only be suppressed by increasing
gate complexity, leading to high gate counts per run
(cf. Ref. [ [20], Appendix D]).
Here, we overcome this difficulty by combining the

statistical approach of Lin and Tong [6] with a novel
random compilation of each Uj instance that has parallels
to—but is distinct from—both the QDRIFT random com-
piler [21] and the linear combinations of unitaries (LCU)
method [24,25]. Our algorithm for phase estimation is
doubly randomized in that we randomly sample j, then
approximate Uj using a random gate sequence. Unlike in
any previous approach, all approximation and compilation
errors can be expressed in terms of statistical noise that is
suppressed by collecting more data samples. This allows
for a trade-off between the gate complexity per sample and
the number of samples required. We explore this trade-off
and show how to efficiently find the algorithmic parameters
that minimize the total complexity. In contrast, QDRIFT
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approximates U up to some systematic error that cannot be
mitigated by increasing the number of samples.
Applied to ground state energy estimation, we can tune

the gate vs sample trade-off to yield the following complex-
ities. Given a Hamiltonian as a linear combination of Pauli
operators with total weight λ, and an ansatz state with
overlap at least η with the ground space, we can choose to
sample from Õðη−2Þ randomly compiled quantum circuits,
where Õð·Þ hides polylogarithmic factors. Each circuit uses
one ancilla and at most Õðλ2Δ−2Þ single-qubit Pauli
rotations to estimate the ground state energy to within
additive error Δ.
Problem setting.—We assume that the Hamiltonian

H is specified as a linear combination of n-qubit Pauli
operators Pl:

H ¼
XL
l¼1

αlPl; with λ ≔
XL
l¼1

jαlj: ð1Þ

This form can always be achieved, and is particularly
natural for many physical systems of interest, such as
fermionic Hamiltonians [26–30]. We consider the follow-
ing problem of coarsely determining whether an ansatz
state ρ has overlap with eigenstates of H with eigenvalues
below some threshold: Given a threshold X, precision
Δ > 0, and overlap parameter η > 0, we seek to decide if
(A) tr½ρΠ≤X−Δ� < η or (B) tr½ρΠ≤XþΔ� > 0, where Π≤x
denotes the projector onto the eigenspaces of H with
eigenvalues at most x. Both of these statements can
simultaneously be true, in which case it suffices to output
either A or B. We refer to this problem as eigenvalue
thresholding, and its solution will allow us to estimate the
ground state energy, given a suitable ansatz ρ.
Cumulative distribution function.—Similarly to Ref. [6],

we define the cumulative distribution function (CDF)
associated with the Hamiltonian H and ansatz state ρ as

CðxÞ ≔ tr½ρΠ≤x=τ�; ð2Þ

where τ ≔ ½π=ð2λþ ΔÞ� is a normalization factor. The
jump discontinuities in CðxÞ occur at eigenvalues of τH,
so appropriately characterising the CDF would enable us to
estimate the spectrum of the Hamiltonian. We can write
CðxÞ as the convolution ðΘ � pÞðxÞ of the Heaviside
function Θð·Þ and the probability density function pð·Þ
corresponding to τH and ρ:

CðxÞ ¼
Z

π=2

−π=2
dypðyÞΘðx − yÞ; ð3Þ

noting that pðxÞ is supported within x ∈ ½−ðπ=2Þ; ðπ=2Þ�
since τkHk ≤ τλ < ðπ=2Þ. This will enable us to replace
ΘðxÞ with a periodic function that is a good approximation
only within x ∈ ð−π; πÞ. Eigenvalue thresholding then
reduces to the following problem regarding the CDF.

Problem 1.—For given x ∈ ½−τλ; τλ� and δ > 0, deter-
mine whether

Cðx − δÞ < η or Cðxþ δÞ > 0; ð4Þ

outputting either statement if both are true.
In particular, solving Problem 1 for x ¼ τX and δ ¼ τΔ

solves eigenvalue thresholding. Solving Problem 1 with
these parameter values also solves the “eigenvalue thresh-
old problem” [31,32], which, unlike eigenvalue thresh-
olding, is a promise problem (where it is guaranteed that
either tr½ρΠ≤X−Δ� ≥ η or tr½ρΠ≤XþΔ� ¼ 0) and hence cannot
be used as a subroutine for phase estimation in the same
manner.
Algorithm overview.—To solve Problem 1, we will

construct an approximation C̃ð·Þ to the CDF Cð·Þ satisfying

Cðx − δÞ − ε ≤ C̃ðxÞ ≤ Cðxþ δÞ þ ε ð5Þ

for relevant values of x, δ, and ε. Observe that for
ε ∈ ð0; η=2Þ, C̃ðxÞ < η − ε would imply the first case of
Eq. (4), while C̃ðxÞ > ε would imply the second case.
Hence, it suffices to estimate C̃ðxÞ.
Our algorithm is based on expressing C̃ðxÞ in terms of a

linear combination of computationally simple unitaries,
obtained via a two-step construction. First, we develop an
improved Fourier series approximation to the Heaviside
function (Lemma 1). Second, we combine this with a novel
decomposition of the time evolution operators (Lemma 2)
in the relevant Fourier series. Randomly sampling unitaries
from our decomposition and estimating their expectation
values using Hadamard tests [Fig. 1(a)] will give estimates
for C̃ðxÞ, allowing us to solve Problem 1 with high
probability.
Fourier series approximation.—Following Lin and Tong

[6], who use ideas similar to those in Refs. [33,34], we
obtain an approximate CDF C̃ð·Þ by replacing Θð·Þ in
Eq. (3) with a finite Fourier series approximation thereof.
As in Refs. [32,35] and related works, we need a Fourier
series with small approximation error on jxj ∈ ½δ; π − δ� for
fixed δ > 0, small total weight of Fourier coefficients, and
small maximal “time” parameter jtj in the eitx terms. We
explicitly construct such a Fourier series by converting
suitable Chebyshev approximations to the error function
(see Supplemental Material [36], Sec. A, for proofs and
explicit constants), establishing the following.
Lemma 1.—For any ε > 0 and δ ∈ ð0; π=2Þ, there exists

a Fourier series FðxÞ ¼ P
j∈S1 Fjeijx with S1 ≔ f0g ∪

f�ð2jþ 1Þgdj¼0 and d ¼ Oðδ−1 logðε−1ÞÞ, that satisfies.

(1) jFðxÞ − ΘðxÞj ≤ ε; ∀ x ∈ ½−π þ δ; −δ� ∪ ½δ; π − δ�,
(2) −ε ≤ jFðxÞj ≤ 1þ ε; ∀ x ∈ R,
(3) F ≔

P
j∈S1 jFjj ¼ OðlogdÞ.
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This improves on the Fourier approximation of Lin and
Tong, which has d ¼ Oðδ−1 logðδ−1ε−1ÞÞ [ [6], Lemma 6].
As such, Lemma 1 also improves the asymptotic complex-
ity of their phase estimation algorithm. Using our Fourier
series Fð·Þ, we obtain the approximate CDF

C̃ðxÞ ≔
Z

π=2

−π=2
dypðyÞFðx − yÞ ¼

X
j∈S1

Fjeijxtr½ρeiĤtj � ð6Þ

where tj ≔ −jτλ and Ĥ ≔ H=λ, which for any δ ∈ ð0; τΔ�
indeed satisfies the guarantees in Eq. (5) (see Supplemental
Material [36], Sec. B).
LCU decomposition of time evolution operators.—

Instead of directly implementing the time evolution oper-
ators eiĤtj from Eq. (6) in Hadamard tests, as considered by
Ref. [6], we further decompose each of these terms into a
specific linear combination of unitaries.
Lemma 2.—Let Ĥ ¼ P

l plPl be a Hermitian operator
that is specified as a convex combination of Pauli operators.
For any t ∈ R and r ∈ N, there exists a linear decom-
position

eiĤt ¼
X
k∈S2

bkUk

for some index set S2, real numbers bk > 0, and unitaries
Uk, such that

X
k∈S2

bk ≤ expðt2=rÞ;

and for all k ∈ S2, the non-Clifford cost of controlled-Uk is
that of r controlled single-qubit Pauli rotations.
This decomposition is conceptually different from pre-

vious LCU methods (cf. [25] and references therein). The
purpose of Lemma 2 is to allow for a trade-off between the
sample complexity and gate complexity of our algorithm.
Specifically, as shown later, the sample complexity depends
on the total weight

P
k∈S2 bk. Since this is bounded by

expðt2=rÞ, we can reduce the sample complexity by
increasing r, at the cost of increasing the gate complexity
per sample, and vice versa.

To prove Lemma 2, we write eiĤt ¼ ðeiĤt=rÞr and Taylor
expand each eiĤt=r ¼ 1þ iĤt=rþOððt=rÞ2Þ. We then pair
up consecutive terms in this expansion, which differ in
phase by i. Since Ĥ is a convex combination of Pauli
operators, this gives rise to convex combinations of multi-
qubit Pauli rotations, e.g., the leading term is

1þ iĤt=r ¼
X
l

plð1þ iPlt=rÞ ∝
X
l

pleiθPl ð7Þ

with θ ≔ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðt=rÞ2

p
. The higher-order terms con-

tain additional Pauli operators, as illustrated in Fig. 1(b).
The controlled version of each Pauli rotation can be
implemented using a controlled single-qubit rotation, along
with Clifford gates. Hence, each controlled-Uk requires r
controlled single-qubit rotations in total. Explicit forms for
the higher-order terms and proof details are given
Supplemental Material [36], Sec. C.
Our algorithm for Problem 1.—Putting together the

above results, we apply Lemma 2 to decompose each

eiĤtj in Eq. (6) as eiĤtj ¼ P
k∈S2 b

ðjÞ
k UðjÞ

k . We choose a
positive integer rj for each j ∈ S1, and define the corre-
sponding “runtime vector” r⃗ ¼ ðrjÞj ∈ NS1 . This leads to
the final decomposition

C̃ðxÞ ¼
X

ðj;kÞ∈S1×S2
Fjeijxb

ðjÞ
k|fflfflfflfflffl{zfflfflfflfflffl}

≕ ajk

tr½ρUðjÞ
k � ð8Þ

with total weight

Aðr⃗Þ ≔
X

ðj;kÞ∈S1×S2
jajkj ≤

X
j∈S1

jFjj expðt2j=rjÞ: ð9Þ

As a simple example,

rj ¼ ⌈2t2j⌉ ∀ j ∈ S1 gives Aðr⃗Þ ≤ ffiffiffi
e

p
F : ð10Þ

Recall that we can solve Problem 1 by determining if
C̃ðxÞ < η − ε or C̃ðxÞ > ε. To estimate C̃ðxÞ, we sample
ðj; kÞ from S1 × S2 with probability proportional to jajkj,
and perform a Hadamard test on ρ and UðjÞ

k , obtaining an

(a) (b)

FIG. 1. (a) Hadamard test on ρ and U: setting G ¼ 1 (respectively G ¼ S† ≔ j0ih0j − ij1ih1j) and associating the measurement
outcomes ðj0i; j1iÞ with ðþ1;−1Þ produces an unbiased estimator for Reðtr½ρU�Þ [respectively Imðtr½ρU�Þ]. (b) Schematic depiction of
the randomly compiled circuits in our algorithm. For Ĥ ¼ P

l plPl, the squares represent Pauli operators randomly drawn from fPlgl
according to fplgl, while circles denote multiqubit Pauli rotations; see the proof of Lemma 2 for details.

PHYSICAL REVIEW LETTERS 129, 030503 (2022)

030503-3



estimate mjk for tr½ρUðjÞ
k �. Then, zjk ≔ Aðr⃗Þei argðajkÞmjk is

an unbiased estimate of C̃ðxÞ. Letting Z̄ denote the average
of Csample such estimates, it follows from Hoeffding’s
inequality that guessing C̃ðxÞ < η − ε if Re½Z̄� < η=2
and C̃ðxÞ > ε otherwise gives a correct answer with
probability at least 1 − ϑ provided that Csample ≥
4Aðr⃗Þ2ðη=2 − εÞ−2 lnðϑ−1Þ. Thus, we arrive at
Algorithm 1, our algorithm for solving Problem 1, and
hence eigenvalue thresholding.
Complexity.—The Hadamard test in Step 6 is the only

quantum step and involves two circuits on nþ 1 qubits.
The expected number of controlled Pauli rotations per
circuit is

Cgateðr⃗Þ ≔
1

Aðr⃗Þ
X

ðj;kÞ∈S1×S2
jajkjrj: ð12Þ

Step 6 is repeated Csampleðr⃗Þ times, so the expected total
non-Clifford complexity is 2Csampleðr⃗Þ · Cgateðr⃗Þ.
It remains to specify how to choose the runtime vector

r⃗ ∈ NS1 . For example, we could aim to minimize the total
complexity

argmin
r⃗

Csampleðr⃗Þ · Cgateðr⃗Þ: ð13Þ

Prima facie this is a high-dimensional optimization prob-
lem, as jS1j ¼ Oðδ−1 logðϵ−1ÞÞ from Lemma 1. However,

differentiating with respect to r⃗, one sees that the argmin is
effectively described by a single free parameter. Therefore,
optimizing r⃗ is reducible to an efficiently solvable one-
dimensional problem, and this further holds when mini-
mizing Csample subject to constraints on Cgate (see
Supplemental Material [36], Sec. D). Moreover, if one is
exclusively interested in asymptotic complexities, the
simple choice for r⃗ in Eq. (10) already gives

Csampleðr⃗Þ ¼ O
�
1

η2
log2

�
1

δ
log

1

η

�
log

1

ϑ

�
¼ Õ

�
1

η2

�
ð14Þ

and Cgateðr⃗Þ ¼ O
�
1

δ2
log2

1

η

�
¼ Õ

�
1

δ2

�
; ð15Þ

since Cgateðr⃗Þ ≤ maxj∈S1rj ¼ 2½ð2dþ 1Þτλ�2 and Aðr⃗Þ ≤ffiffiffi
e

p
F for this choice, with F and d given by Lemma 1 and

picking ε ¼ const × η in Algorithm 1. Note that the worst-
case gate complexity thus has the same scaling as that in
Eq. (15) for the expected gate complexity Cgateðr⃗Þ. Hence,
we arrive at a total complexity Õðδ−2η−2Þ. For eigenvalue
thresholding, one would choose δ ¼ τΔ, in which
case δ−1 ¼ Oðλ=ΔÞ.
Ground state energy estimation.—Under appropriate

assumptions on the Hamiltonian H and ansatz state ρ,
our method for estimating the CDF can be adapted to
perform phase estimation. Specifically, eigenvalues of H
coincide with the locations of discontinuities in CðxÞ, and
we can estimate these locations given sufficient knowledge
about the overlap of ρ with relevant eigenspaces. For
simplicity, we restrict ourselves to the problem of estimat-
ing the ground state energy ½H�min, which only requires the
standard promise that tr½ρΠmin� ≥ η for some η > 0, where
Πmin denotes the projector onto the ground space of H.
The analysis in Ref. [ [6], Sec. 5] shows that by solving

Problem 1 for s ¼ Oðlogðδ−1ÞÞ different values of x
determined in a fashion similar to binary search, one can
find an x� such that Cðx� − δÞ < η and Cðx� þ δÞ > 0,
which implies jx� − τ½H�minj ≤ δ. Hence, if we take
δ ¼ τΔ, then x�=τ would give an estimate of the ground
state energy to within additive error Δ. We use Algorithm 1
to solve Problem 1, noting that we can reuse the samples
collected in Step 6 for all of the different x values, with only
a small overhead in the sample complexity. Namely, since
Algorithm 1 errs with probability at most ϑ for any x,
choosing ϑ ¼ ξ=s would ensure that the ground state is
successfully estimated with probability at least 1 − ξ.
Theorem 1.—For any n-qubit HamiltonianH of the form

in Eq. (1), let ρ be a state that has overlap tr½ρΠmin� ≥ ηwith
the ground space of H. Then, the ground state energy of H
can be estimated to within additive error Δ with probability
at least 1 − ξ using Oðð1=η2Þlog2½ðλ=ΔÞ logð1=ηÞ�×
log ½ð1=ξÞ logðλ=ΔÞ�Þ quantum circuits on nþ 1 qubits.
Each circuit uses one copy of ρ and at most
Oððλ2=Δ2Þlog2ð1=ηÞÞ single-qubit Pauli rotations.

Algorithm 1. Algorithm for Problem 1.

Problem inputs: an n-qubit Hamiltonian H ¼ P
L
l¼1 αlPl with

αl > 0 and λ ≔
P

L
l¼1 αl, an ansatz state ρ, a precision

parameter Δ > 0; τ ≔ ½π=ð2λþ ΔÞ�.
Algorithm parameters: real numbers x ∈ ½−τλ; τλ�, δ ∈ ð0; τΔ�,
η ∈ ð0; 1�, and ε ∈ ð0; η=2Þ, a probability ϑ.

Output: 0 if Cðx − δÞ < η, 1 if Cðxþ δÞ > 0, and either 0 or 1 if
both are true [where Cð·Þ is the CDF defined in Eq. (2)] with
probability of error at most ϑ.

1: Compute the coefficients fFjgj∈S1 of the Fourier series from
Lemma 1 with approximation parameters δ and ε. Set
tj ← −jλτ ∀ j ∈ S1.

2: Choose a runtime vector r⃗ ∈ NS1 [using, e.g., Eq. (10) or
Eq. (13)], and apply Lemma 2 to obtain the decomposition
in Eq. (8), with total weight Aðr⃗Þ as in Eq. (9).

3:
Csampleðr⃗Þ ← ⌈

�
2Aðr⃗Þ
η=2 − ε

�
2

ln
1

ϑ
⌉: ð11Þ

4: For i ¼ 1;…; Csampleðr⃗Þ:
5: Sample a unitary UðjÞ

k from Eq. (8).
6: Perform a Hadamard test with inputs ρ and UðjÞ

k ,

obtaining an estimate mi of tr½ρUðjÞ
k �.

7: zi ← Aðr⃗Þei½argðFjÞþjx�mi
8: z̄ ←

P
i zi=Csampleðr⃗Þ. If Reðz̄Þ < η=2, return 0. Else,

return 1.
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Thus, our quantum complexities are independent of the
Hamiltonian sparsity L, at the price of the quadratic
dependence Õðλ2Δ−2η−2Þ for the total gate count. This
is in contrast to standard results on phase estimation (see,
e.g., Ref. [ [20], Table I]). Additionally, note that
Theorem 1 is derived using the specific choice of runtime
vector in Eq. (10). By tuning r⃗ (using for instance the
optimization procedures in the Supplemental Material [36],
Sec. D), we can reduce the gate complexity per circuit by
running more circuits, for a given set of problem
parameters.
Comparisons.—Conventional phase estimation algo-

rithms depend on the sparsity L, which is especially
prohibitive for chemistry Hamiltonians. Several algorithms

]18–20 ] have used heuristic truncation policies to justify
eliminating certain terms from the Hamiltonians, thereby
reducing L. While supporting numerics were presented,
these truncations are not rigorous. It was also assumed that
only a single run of the algorithm suffices. In practice, a
single sample might return an incorrect result due to
imperfect overlap with the ground state (η < 1), inherent
failure probabilities of phase estimation, or quantum error
correction failure events. In contrast, our algorithm is
rigorously analyzed; we use no Hamiltonian truncation,
and upper bound the number of samples in terms of η and
the target success probability. (We neglect quantum error
correction failure events, though these can easily be sup-
pressed to lower levels than other failure modes.)
Hydrogen chains.—As a benchmark system for assess-

ing the scaling of quantum algorithms applied to quantum
chemistry, we discuss hydrogen chains [20,37]. Using the
best value λ ∼OðN1.34Þ given in Ref. [37], our algorithm
scales as ÕðN2.68=Δ2Þ. For comparison, the scaling of
qubitization is ÕðN3.34=ΔÞ without truncation, and with
heuristic truncations, ÕðN2.3=ΔÞ for the sparse method of
Ref. [18] and ÕðN2.1=ΔÞ for the tensor hypercontraction
approach of Ref. [20]. Hence, for constant Δ, qubitization
gives better scaling than our algorithm if the proposed
truncation schemes are accurate. However, we emphasize
that our rigorous analysis does not make use of heuristic
strategies for truncating Hamiltonian terms [18–20] and
that qubitization uses considerably more logical ancillae.
Finally, if we are interested in extensive properties where
Δ ∝ N, then our approach scales as ÕðN0.68Þ, outperform-
ing all qubitization algorithms.
FeMoco.—We estimate the costs of our algorithm

applied to the Li et al. FeMoco Hamiltonian [38], another
popular benchmark for which there have been several state-
of-the-art resource studies [18–20]. We consider chemical
accuracy Δ ¼ 0.0016 Hartree, and use λ ¼ 1511 Hartree,
obtained using the bounds in Ref. [37]. We present our
results in Fig. 2, illustrating the trade-off between the
expected number of gates per circuit and the number of

samples required. Since the Hamiltonian from Ref. [38] has
152 spin orbitals, each circuit uses 153 qubits.
We have presented our gate counts as Cgate controlled

Pauli rotations, but asymptotically our circuits can typically
be realized using ∼2Cgate Toffoli gates. For modest system
sizes and a modest number of logical ancilla (∼40), the
Toffoli count is ∼6Cgate (see Supplemental Material [36],
Sec. F). The FeMoco resource estimate for the QDRIFT
random compiler combined with phase estimation in
Ref. [ [20], Appendix D] arrived at 1016 Toffoli gates
per sample, which is ∼104 times larger than 2Cgate from the
results in Fig. 2. Moreover, our rigorous analysis will
likely be loose and overestimate resources; for instance,
more aggressive—though heuristic—Hamiltonian rescal-
ing is justifiable and can further reduce costs (see
Supplemental Material [36], Sec. G).

We thank Sam McArdle for helpful discussions, espe-
cially with regard to calculations for the quantum chemistry
examples, and Fernando Brandão for discussions and
support throughout this project.
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