CaltechAUTHORS
  A Caltech Library Service

Convective Generation of Gravity Waves in Venus's Atmosphere: Gravity Wave Spectrum and Momentum Transport

Leroy, Stephen S. and Ingersoll, Andrew P. (1995) Convective Generation of Gravity Waves in Venus's Atmosphere: Gravity Wave Spectrum and Momentum Transport. Journal of the Atmospheric Sciences, 52 (21). pp. 3717-3737. ISSN 0022-4928. doi:10.1175/1520-0469(1995)052<3717:CGOGWI>2.0.CO;2. https://resolver.caltech.edu/CaltechAUTHORS:LERjas95

[img]
Preview
PDF - Published Version
See Usage Policy.

1MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:LERjas95

Abstract

The emission of internal gravity waves from a layer of dry convection embedded within a stable atmosphere with static stability and zonal winds varying in height is calculated. This theory is applied to Venus to investigate whether these waves can help support the westward maximum of angular momentum of Venus's middle atmosphere. The emission mechanism is similar to that suggested for driving the gravity modes of the Sun and relates the amplitude and spectrum of the waves to the amplitude and spectrum of the convection. Waves are damped by several mechanisms: wavebreaking in the stable atmosphere, critical layer absorption, reabsorption by the convection, and wave radiation to space. The authors use plane parallel geometry without rotation and assume sinusoidal wave fluctuations in the horizontal dimensions. The vertical dependence is determined using the WKBJ approximation. It is found that convectively generated gravity waves do not exert an acceleration where the westward winds are greatest. Instead, they deposit westward momentum in a 1-km thick layer just above the convection. Other waves deposit eastward momentum far above the westward wind maximum where decelerations can exceed 20 m s^−1 day^−1, comparable to deceleration amplitudes in Earth's mesosphere. Although the momentum fluxes by gravity waves are substantial, the vertical profile of acceleration does not match what is required for supporting Venus's atmospheric superrotation.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1175/1520-0469(1995)052<3717:CGOGWI>2.0.CO;2DOIArticle
ORCID:
AuthorORCID
Ingersoll, Andrew P.0000-0002-2035-9198
Additional Information:© 1995 American Meteorological Society. (Manuscript received October 31, 1994, in final form April 7, 1995) We wish to thank Peter Goldreich for much assistance in this work. It was supported by a National Science Foundation Graduate Research Fellowship and by NAGW-1956 of the NASA Planetary Atmospheres program. Division of Geological and Planetary Sciences of the California Institute of Technology Contribution No. 5458.
Funders:
Funding AgencyGrant Number
NSFUNSPECIFIED
NASANAGW-1956
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Division of Geological and Planetary Sciences Contribution5458
Issue or Number:21
DOI:10.1175/1520-0469(1995)052<3717:CGOGWI>2.0.CO;2
Record Number:CaltechAUTHORS:LERjas95
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:LERjas95
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:11562
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:04 Sep 2008 22:44
Last Modified:08 Nov 2021 22:00

Repository Staff Only: item control page