Published October 2022 | Version Accepted Version
Journal Article Open

Roadmap on wavefront shaping and deep imaging in complex media

  • 1. ROR icon Kastler-Brossel Laboratory
  • 2. ROR icon Hebrew University of Jerusalem
  • 3. ROR icon University of Lille
  • 4. ROR icon Langevin Institute
  • 5. ROR icon University of Exeter
  • 6. ROR icon Laboratoire Interdisciplinaire de Physique
  • 7. ROR icon Harvey Mudd College
  • 8. ROR icon Institut Fresnel
  • 9. ROR icon Yale University
  • 10. ROR icon California Institute of Technology
  • 11. ROR icon Korea University
  • 12. ROR icon Leibniz Institute of Photonic Technology
  • 13. ROR icon Institute of Scientific Instruments
  • 14. ROR icon Purdue University West Lafayette
  • 15. ROR icon University of North Carolina at Chapel Hill
  • 16. ROR icon University of Glasgow
  • 17. ROR icon University of Tokyo
  • 18. ROR icon Duke University
  • 19. ROR icon University of California, Berkeley
  • 20. ROR icon Cornell University
  • 21. ROR icon Boston University
  • 22. ROR icon École Polytechnique Fédérale de Lausanne
  • 23. ROR icon University of Colorado Boulder
  • 24. ROR icon TU Wien
  • 25. ROR icon University of Twente
  • 26. ROR icon Missouri University of Science and Technology
  • 27. ROR icon Bilkent University

Abstract

The last decade has seen the development of a wide set of tools, such as wavefront shaping, computational or fundamental methods, that allow us to understand and control light propagation in a complex medium, such as biological tissues or multimode fibers. A vibrant and diverse community is now working in this field, which has revolutionized the prospect of diffraction-limited imaging at depth in tissues. This roadmap highlights several key aspects of this fast developing field, and some of the challenges and opportunities ahead.

Additional Information

This work has been funded by a National Science Foundation (NSF) grant (DBI-1707312). This work is supported by National Institutes of Health (U01NS118300). M.C. acknowledges the support by NIH grant 1U01NS094341, U01NS107689, RF1MH120005, RF1MH1246611, U01NS118302, 1R01NS118330, R21EY032382, Purdue University, and the scientific equipment from HHMI. The author acknowledges support from the National Science Foundation (Award 1548924) and the Colorado Office of Economic Development and International Trade. National Institutes of Health: R01CA182939, R21GM134216. This research has been funded by the FET-Open (Dynamic-863203) and European Research Council ERC Consolidator (SMARTIES-724473) grants. This research has been funded by the European Research Council (ERC-COHERENCE-681514). The author acknowledges Seokchan Yoon and Sungsam Kang for helpful discussion. This work is supported by the Institute for Basic Science (IBS-R023-D1). A. A. acknowledges funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program Grant n° 819261 (REMINISCENCE: REflection Matrix ImagiNg In wave SCiENCE). S. M. P. and A. A. acknowledge funding from the Labex WIFI (ANR-10-LABX-24, ANR-10-IDEX-0001-02 PSL*). This work is supported by ANR-15-CE19-0018-01 (MyDeepCARS) and ANR-10-INBS-04-01 (France-BioImaging). The author acknowledges funding from National Science Foundation (1813848, 1846784). The author acknowledges funding from the Dutch Research Council (14879) and the European Research Council (678919). We acknowledge funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program Grants n° 677909, 101002406, and the Israel Science Foundation (1361/18). We acknowledge funding from EPSRC (UK, Grants EP/S026630/1 and EP/T00097X/1). The authors acknowledge financial support from the Burroughs Welcome fund (2018 CASI to NCP), and from the Arnold and Mabel Beckman Foundation (2021 BYI to NCP). D.B.P. thanks the Royal Academy of Engineering, and the European Research Council (ERC starting grant, 804626) for financial support. T.C. acknowledges (ERC consolidator grant, 724530) and the Ministry of Education, Youth and Sport of the Czech Republic (CZ.02.1.01/0.0/0.0/15_003/0000476). Agence Nationale de la Recherche (ANR-14-CE17-0004-01 "LENIMBRA"); (ANR-20-CE19-0028 "NAIMA"); ANR-16-IDEX-0004 ULNE, LABEX CEMPI (ANR-11-LABX-0007), Equipex Flux (ANR-11-EQPX-0017), Turing Centre for Living systems (ANR-16-CONV-0001), Ministry of Higher Education and Research, Hauts de France council, European Regional Development Fund (CPER Photonics for Society) P4S), FiberTechLille Technology Platform (linky)., NIH R21 EY029406-01, Aix Marseille University (A-M-AAP-ID-17-13-170228-15.22). The authors thank their coworkers and collaborators who have contributed to the works described in this contribution. They also acknowledge financial support from National Science Foundation grants DMR-1905442, DMR-1905465, and from Office of Naval Reseeach grant N00014-20-1-2197. The authors thank M. Kühmayer for his help with editing the figures. A.P.M. acknowledges support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek NWO (Vici 68047618), and S.R. acknowledges support by the Austrian Science Fund (FWF) under project number P32300 (WAVELAND). Y. B. is supported by the Zuckerman STEM Leadership Program. H.D. acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 840958.

Attached Files

Accepted Version - Gigan+et+al_2022_J._Phys._Photonics_10.1088_2515-7647_ac76f9.pdf

Files

Gigan+et+al_2022_J._Phys._Photonics_10.1088_2515-7647_ac76f9.pdf

Files (12.1 MB)

Additional details

Identifiers

Eprint ID
115650
Resolver ID
CaltechAUTHORS:20220715-744287000

Funding

NSF
DBI-1707312
NIH
U01NS118300
NIH
1U01NS094341
NIH
U01NS107689
NIH
RF1MH120005
NIH
RF1MH1246611
NIH
U01NS118302
NIH
1R01NS118330
NIH
R21EY032382
Purdue University
Howard Hughes Medical Institute (HHMI)
NSF
DMR-1548924
Colorado Office of Economic Development and International Trade
NIH
R01CA182939
NIH
R21GM134216
European Research Council (ERC)
863203
European Research Council (ERC)
724473
European Research Council (ERC)
681514
Institute for Basic Science (Korea)
IBS-R023-D1
European Research Council (ERC)
819261
Agence Nationale de la Recherche (ANR)
ANR-10-LABX-24
Agence Nationale de la Recherche (ANR)
ANR-10-IDEX-0001-02 PSL
Agence Nationale de la Recherche (ANR)
ANR-15-CE19-0018-01
Agence Nationale de la Recherche (ANR)
ANR-10-INBS-04-01
NSF
CCF-1813848
NSF
ECCS-1846784
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
14879
European Research Council (ERC)
678919
European Research Council (ERC)
677909
European Research Council (ERC)
101002406
Israel Science Foundation
1361/18
Engineering and Physical Sciences Research Council (EPSRC)
EP/S026630/1
Engineering and Physical Sciences Research Council (EPSRC)
EP/T00097X/1
Burroughs Wellcome Fund
Arnold and Mabel Beckman Foundation
Royal Academy of Engineering
European Research Council (ERC)
804626
European Research Council (ERC)
724530
Ministry of Education, Youth and Sports (MEYS) of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000476
Agence Nationale de la Recherche (ANR)
ANR-14-CE17-0004-01
Agence Nationale de la Recherche (ANR)
ANR-20-CE19-0028
Agence Nationale de la Recherche (ANR)
ANR-16-IDEX-0004
Agence Nationale de la Recherche (ANR)
ANR-11-LABX-0007
Agence Nationale de la Recherche (ANR)
ANR-11-EQPX-0017
Agence Nationale de la Recherche (ANR)
ANR-16-CONV-0001
Ministry of Higher Education and Research (France)
Hauts de France
European Regional Development Fund
NIH
R21 EY029406-01
Aix Marseille University
A-M-AAP-ID-17-13-170228-15.22
NSF
DMR-1905442
NSF
DMR-1905465
Office of Naval Research (ONR)
N00014-20-1-2197
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
68047618
FWF Der Wissenschaftsfonds
P32300
Zuckerman STEM Leadership Program
Marie Curie Fellowship
840958

Dates

Created
2022-07-22
Created from EPrint's datestamp field
Updated
2022-08-26
Created from EPrint's last_modified field